
Simultaneous Learning of Motion and Sensor Model Parameters for
Mobile Robots

Teddy N. Yap, Jr. and Christian R. Shelton
Department of Computer Science and Engineering

University of California, Riverside, CA 92521, USA
{tyap, cshelton}@cs.ucr.edu

Abstract— Motion and sensor models are crucial components
in current algorithms for mobile robot localization and map-
ping. These models are typically provided and hand-tuned by
a human operator and are often derived from intensive and
careful calibration experiments and the operator’s knowledge
and experience with the robot and its operating environment.
In this paper, we demonstrate how the parameters of both
the motion and sensor models can be automatically estimated
during normal robot operations via machine learning methods
thereby eliminating the necessity of manually tuning these
models through a laborious calibration process. Results from
real-world robotic experiments are presented that show the
effectiveness of the estimation approach.

I. INTRODUCTION
With the current algorithms for mobile robot localization

and mapping, robots can now successfully track their pose
relative to their environment as well as build maps of
their surroundings based from sensor data during navigation
[1], [2], [3], [4], [5]. Crucial to these algorithms are the
robot’s motion and sensor models. The robot’s motion model
describes the effect the control input has on the state of the
robot (e.g. its pose) while the sensor model relates the actual
sensor measurements (e.g. sonar readings or laser scans)
to the state of the robot or the environment. Since robot
motion is not perfect and sensor measurements are almost
always subject to random noise and error, the motion and
sensor models are appropriately represented as probability
distributions [6], [7], [8], [9].

The process of tuning the parameters of the motion and
sensor models of a mobile robot is called calibration. Robot
calibration is an important step in robotics since a calibrated
robot performs better than an uncalibrated one. However,
the parameters of the models are typically specified and
manually tuned by a human operator and are often the results
of intensive and careful calibration experiments as well as the
operator’s knowledge and experience with the robot and its
operating environment. Since the models are influenced by
the robot’s characteristics and environmental properties, they
are manually re-calibrated whenever there is a significant
change in the robot or the environment.

In this paper, we demonstrate how the parameters of both
the motion and sensor models of a mobile robot can be
automatically estimated during normal operation via machine
learning methods. We assume that the robot has access to the
map of the environment as well as the historical account of its

motion (i.e. odometry information) and perception (i.e. sonar
readings). We propose using the Expectation Maximization
(EM) [10] approach to estimate the motion and sensor model
parameters of the robot. To obtain the likely trajectory of
the robot through the environment, we perform particle
filtering and smoothing [11], [12] using the actual sensor data
obtained by the robot during its normal operation. We then
compute the maximum likelihood estimates of the parameters
given the estimated robot trajectory and actual data.

The contributions of this paper are as follows. We demon-
strate how the parameters of a mobile robot can be auto-
matically estimated from data, thus eliminating the need for
manual tuning. As opposed to calibrating a robot through
specific calibration experiments, our estimation approach
does not require any special calibration setup and can be
performed by the robot as it operates with little or no human
intervention and without disruption to its normal operation.
Since the parameters are estimated from actual data, the
robot can learn an appropriate set of parameter values rather
than relying on preset parameter guesses. Unlike previous
approaches that calibrate only the motion model parameters
[13], [14], [7], [15], [16], we also aim for the estimation
of the sensor model parameters. Results from some actual
robotic experiments are presented that show the effectiveness
of the estimation approach as well as the advantages of
calibrating both the motion and sensor models.

II. RELATED WORK
Calibration has been an active research area in mobile

robotics. UMBmark [13] is a method for the quantitative
measurement of systematic odometry errors in a mobile robot
that involves performing a series of simple calibration exper-
iments in which the robot traverses a square path in both
clockwise and counter-clockwise directions and manually
measuring the absolute position of the vehicle to compare
with the robot’s calculated position based on odometry. Roy
and Thrun [16] proposed a statistical method for the online
self-calibration of the odometry of mobile robots which
eliminates the need for explicit measurements of actual
robot motion by a human or some external device. Unlike
UMBmark, the method of Roy and Thrun is automatic
and calibrates a robot’s odometers continuously during its
everyday operation allowing the robot to adapt to changes
that might occur over its lifetime. Eliazar and Parr [7]

have a similar goal where they proposed a method that
can start with a crude motion model and bootstrap itself
towards a more refined motion model thus, allowing the
robot to adapt to changing motion parameters. But unlike
[16], Eliazar and Parr used a more general motion model
which incorporates interdependence between motion terms
including the influence of turns on lateral movement and
vice-versa. Instead of dealing with systematic errors, they
also estimated non-systematic errors through the variance
in the different motion terms. Other notable work on the
automatic calibration of robot odometry include the self-
calibrating extended Kalman filter (EKFSC) approach by
Caltabiano, Muscato, and Russo [14] and the observable
filter (OF) (used in conjunction with the augmented Kalman
filter (AKF)) by Martinelli et al. [15]. Foxlin [17] introduced
a general architectural framework that enables systems to
simultaneously track themselves, construct a map of land-
marks in the environment, and calibrate sensor intrinsic
and extrinsic parameters. Recently, Stronger and Stone [18]
presented a technique for the simultaneous calibration of
action and sensor models (SCASM) on a mobile robot.
However, the models used in [18] are not probabilistic and
their method makes use of careful calibration setup and
requires the robot to go through a training phase thereby
disrupting the robot from its normal operation.

Our work is similar in spirit with that of [7] and [16]
but instead of only estimating motion model parameters,
we also aim for the estimation of sensor model parameters.
Unlike [18], our models are expressed probabilistically and
our estimation method can be performed by the robot during
its normal operation thus skipping the need for a separate
training phase. Our results demonstrate the advantage of co-
calibrating both models.

III. PROBABILISTIC MOTION AND SENSOR
MODELS

In this section, we discuss the probabilistic motion and
sensor models we employ for our mobile robot. Note that
there are several ways one can describe the motion and sen-
sor models of a mobile robot probabilistically. The specific
probabilistic motion and sensor models presented here are
chosen because they are found to work well with our current
robot and should not be seen as the only models that go with
our automated calibration technique. In fact, in this paper, we
propose a general framework for estimating the parameters
of a mobile robot that can be used for other motion and
sensor models as well.

A. Motion Model

The purpose of the motion model is to describe the effect
the control input has on the robot’s configuration (e.g. its
pose). In this paper, we assume that the robot moves in a
planar environment so that its configuration at any given
time t can be represented as a three-dimensional column
vector xt = (xt, yt, θt)

T , where (xt, yt)
T is the robot’s two-

dimensional Cartesian coordinates and θt denotes the robot’s
heading or orientation. Since robot motion is not perfect and

uncertain (i.e. the same control command will never produce
the same effect on the robot’s configuration), the motion
model is expressed as a probability distribution of the form
p(xt|xt−1, ct) (also called the state transition probability),
where xt−1 and xt are the robot’s states for two consecutive
time steps t−1 and t, respectively, and ct is the control com-
mand executed by the robot during the time interval [t−1, t).
The control command ct is given by the pair (dt, rt)

T , where
dt is the distance traveled by the robot and rt is the rotation
made by the robot, as reported by the wheel encoders. As
suggested by the probability distribution p(xt|xt−1, ct), the
next state of the robot depends stochastically on its previous
state one time step earlier and the control input ct. Although
not explicitly included as part of the conditioning variables in
p(xt|xt−1, ct), the map of the environment as well as the set
of parameters that define the motion model also determine
the robot’s next state.

There are several ways one can describe the motion model.
In [16], Roy and Thrun suggested the following.

xt = xt−1 + dt cos(θt−1 + rt)
yt = yt−1 + dt sin(θt−1 + rt)
θt = (θt−1 + rt) mod 2π ,

with the assumption that the drive and turn commands are
independent. A more complex motion model proposed by
Eliazar and Parr [7] that can account for simultaneous turning
and lateral movement decomposes the movement into two
principal components

xt = xt−1+Dt cos(θt−1+
Tt

2
)+Ct cos(θt−1+

Tt + π

2
) (1)

yt = yt−1+Dt sin(θt−1+
Tt

2
)+Ct sin(θt−1+

Tt + π

2
) (2)

θt = (θt−1 + Tt) mod 2π , (3)

where θt−1+
Tt

2 is referred to as the major axis of movement,
θt−1 + Tt+π

2 is the minor axis of movement (orthogonal to
the major axis), and Ct is an extra lateral translation term to
account for the shift in the orthogonal direction to the major
axis. In their motion model, the variables Dt, Tt, and Ct are
all independent and conditionally Gaussian given dt and rt:

Dt ∼ N (dtµDd
+ rtµDr

, d2
t σ

2
Dd

+ r2
t σ2

Dr
)

Tt ∼ N (dtµTd
+ rtµTr

, d2
t σ

2
Td

+ r2
t σ2

Tr
)

Ct ∼ N (dtµCd
+ rtµCr

, d2
t σ

2
Cd

+ r2
t σ2

Cr
) ,

where N (a, b) is a Gaussian distribution with mean
a and variance b, µAb

is the coefficient for the
contribution of the odometry term b to the mean
of the distribution over A. Thus, the 12 parameters
µDd

, µTd
, µCd

, µDr
, µTr

, µCr
, σ2

Dd
, σ2

Td
, σ2

Cd
, σ2

Dr
, σ2

Tr
, and

σ2
Cr

, define this motion model.
In this paper, we adopt the motion model of Eliazar and

Parr but with a slightly different noise model. We still use
(1), (2), and (3) for our state update equations except that

Dt ∼ N (dt, d
2
t σ

2
Dd

+ r2
t σ2

Dr
+ σ2

D1
)

Tt ∼ N (rt, d
2
t σ

2
Td

+ r2
t σ2

Tr
+ σ2

T1
)

Ct ∼ N (0, d2
t σ

2
Cd

+ r2
t σ2

Cr
+ σ2

C1
) .

Our noise model is similar to the noise model of Eliazar
and Parr with µDd

= 1, µDr
= 0, µTd

= 0, µTr
= 1,

µCd
= 0, µCr

= 0. We added extra constant terms to the
variances using additional parameters σ2

D1
, σ2

T1
, and σ2

C1
.

These parameters are added to account for errors that are
not proportional to the translation or rotation of the robot.
The motion parameters we wish to estimate from data are
σ2

Dd
, σ2

Td
, σ2

Cd
, σ2

Dr
, σ2

Tr
, σ2

Cr
, σ2

D1
, σ2

T1
, and σ2

C1
.

B. Sensor Model

Another crucial component of current algorithms for lo-
calization and mapping in mobile robotics is the sensor
model. The sensor model, also called the measurement or
observation model, describes the process by which sensor
measurements are generated. Robot sensors are inherently
noisy and uncertain, thus it is not uncommon to define the
observation model as a conditional probability distribution
p(st|xt), where st is the set of measurements received at
time t and xt is the robot pose at time t. Just like in the
motion model, even though we do not explicitly include
the environment map as part of the conditioning variables
in p(st|xt), it also determines the sensor measurement. Of
course, the actual definition of the distribution p(st|xt)
depends on the type of sensor used by the robot (e.g.
cameras, range sensors). In this study, our mobile robot
is equipped with a cyclic array of 16 ultrasound sensors
with eight front sonars and eight back sonars. Thus, in
our case, st = {s1

t , s
2
t , ..., s

K
t }, where sk

t is the kth sensor
measurement received at time t and K = 16 is the total
number of sensor measurements. We assume that the errors
in the sensor measurements are independent.

The distance reported by the range finder is often subject
to random noise and error. In this paper, we make use
of the sensor model for range finders described in [19]
that represents the distribution as a mixture of four dis-
tributions corresponding to the four types of measurement
errors typically observed in range readings. The four types
of measurement errors are small measurement noise, errors
due to unexpected objects or obstacles, errors due to failure
to detect objects, and random unexplained noise. We let
sk∗

t denote the true distance to an obstacle, sk
t denote

the recorded measurement, and smax denote the maximum
possible reading (e.g. 5000mm).

In order to model small measurement noise associated with
range readings, we define a narrow Gaussian distribution phit
over the range [0, smax] with mean sk∗

t and standard deviation
σhit. σhit is an intrinsic parameter of the distribution phit.
Formally

phit(s
k
t |xt) =





η 1
σhit

√
2π

e
− (sk

t −sk∗

t)2

2σ2
hit if 0 ≤ sk

t ≤ smax

0 otherwise
,

(4)

where η is a normalizing factor due to clipping.
Although we assume that the map of the environment is

static and does not include moving objects such as people,
actual robot environments (such as buildings and hallways)
are highly non-static and are often populated with dynamic
entities other than the robot itself. These dynamic entities
often block the robot’s range sensors’ “line-of-sight” thus
causing them to return measurements shorter than the true
range. This particular type of measurement error is modeled
by a truncated exponential distribution pshort with parameter
λshort. Specifically,

pshort(s
k
t |xt) =

{
ηλshorte

−λshorts
k
t if 0 ≤ sk

t ≤ sk∗
t

0 otherwise , (5)

where η = 1/(1− e−λshorts
k∗

t).
Sometimes, range finders fail to detect obstacles. For sonar

sensors, this type of error can happen due to specular reflec-
tions when the echo fails to return to the sonar. Thus, the
obstacle appears invisible from the robot’s perspective. Sonar
sensors are typically programmed to return the maximum
sensor range smax when this happens. This particular type
of measurement error is modeled by a pseudo point-mass
distribution pmax centered at smax:

pmax(s
k
t |xt) =

{
1 if sk

t = smax
0 otherwise . (6)

Finally, range finders can return totally unexplainable
measurements. This can be caused by interference or cross-
talk between different sensors or incomplete knowledge
about ranging technologies. This type of measurement error
is modeled by a uniform distribution prand over the entire
measurement range:

prand(s
k
t |xt) =

{
1

smax
if 0 ≤ sk

t ≤ smax
0 otherwise . (7)

The four distributions defined in (4) – (7) are com-
bined by a weighted average through the mixing parameters
αhit, αshort, αmax, and αrand

p(sk
t |xt) = αhitphit(s

k
t |xt) + αshortpshort(s

k
t |xt) +

αmaxpmax(s
k
t |xt) + αrandprand(s

k
t |xt) ,

such that

αhit + αshort + αmax + αrand = 1 .

It is often appropriate to think of the mixing parameters
as the a priori probabilities that a particular sensor reading
is caused by one of the four types of measurement errors
discussed above. Note that the mixing parameters and σhit
and λshort are the intrinsic parameters of this particular sensor
model which we wish to learn from actual data.

IV. PARTICLE FILTERING AND SMOOTHING
Fig. 1 illustrates the stochastic evolution of the state

of the robot and its environment as defined by the state
transition probability and measurement probability for three
consecutive time steps, t− 1, t, and t + 1. In the figure, the

c c c

x x x

s s s

t

t

t t

t t

+1

+1

−1

−1

t −1 t t +1

Fig. 1. The stochastic evolution of the robot’s state, controls, and
measurements.

robot pose xt at time t is stochastically dependent on its pose
xt−1 at time t− 1 and the control data ct, while the sensor
data st at time t is stochastically dependent on the robot pose
xt at time t. In the figure, shaded circles represent observable
variables while unshaded circles represent unobservable or
latent variables.

In order to estimate the motion and sensor parameters
of the robot, we need to know its likely trajectory through
the environment. As Fig. 1 shows, the actual trajectory
of the robot is not directly observable. In this paper, we
estimate the actual trajectory by performing particle filtering
and smoothing using the observed control and sensor data.
The following subsections provide a brief review of particle
filtering and smoothing. Interested readers are referred to
[20] and [11] for a more detailed treatment on particle
filtering and smoothing, respectively.

A. Particle Filtering

Filtering is the task of computing the belief state, that is,
the posterior distribution over the current state of the system
given all available data to-date. In mobile robot localization,
filtering computes the probability p(xt|c1:t, s1:t)

1 that the
robot is at position xt given all control and sensor data from
time 1 to time t (c1:t and s1:t, respectively) assuming that
the control and sensor data arrive starting at time 1.

The most general framework for computing beliefs is
given by the Bayes’ filter. Bayes’ filter recursively computes
the posterior distribution over the state of a dynamical system
conditioned on all available data to-date. Various implemen-
tations of the Bayes’ filter exist (e.g. Kalman filter, extended
Kalman filter, particle filter) with each implementation re-
lying on different assumptions regarding the state transition
and measurement probabilities and the initial belief.

Particle filters implement Bayes’ filter by approximating
the required distribution by a finite number of samples called
particles, where each particle is a concrete state instantiation.
At each time step t, upon receipt of the latest control data
ct and sensor data st, a particle filter goes through the
following stages in order to update the set of N particles
Xt−1 = {x1

t−1,x
2
t−1, ...,x

N
t−1}, representing the posterior

distribution over the state one time step earlier, to the set of
particles Xt = {x1

t ,x
2
t , ...,x

N
t }, representing the posterior

distribution over the current state. The notation x
n
t denotes

the nth particle in the particle set Xt at time t.
1We use zm:n to denote the sequence zm, zm+1, ...,zn.

• Particle Updating. Update each particle x
n
t−1 by sam-

pling from the state transition probability p(xt|xn
t−1, ct)

to get the new particle x
n
t .

• Particle Weighting. Weight each new particle x
n
t accord-

ing to the measurement probability p(st|xn
t).

• Particle Resampling. Resample from the set of weighted
particles with replacement with each particle having the
probability of being selected proportional to its weight.

B. Particle Smoothing

After performing particle filtering, we now have a particle
representation of the posterior distribution over the state of
the robot for each time step, given the observations prior to
that time.

Smoothing is the task of computing the posterior dis-
tribution over a past state, given all evidence up to the
present. Therefore, unlike filtering, smoothing provides a
better estimate of the state of the system since it incorporates
more (later) evidence.

In this paper, we rely on a simple and efficient technique
presented in [12] for generating samples from the smoothing
density p(x1:T |c1:T , s1:T) where T denotes the last time
step. The technique assumes that particle filtering has already
been carried out on the entire dataset resulting in a particle
approximation of the posterior distribution at each time step
t consisting of a weighted particle set.

The algorithm starts by drawing a particle at the last time
step with probability proportional to its forward filtering
weight. The algorithm then proceeds backward in time
modifying the weights of the particles at each time step by
multiplying their forward filtering weight by the probability
that they lead to a transition to the drawn particle at the
next time step. The algorithm then draws a particle with
probability proportional to its modified weight at every time
step. The sequence of particles x̃t drawn from time 1 to
time T (1 ≤ t ≤ T) constitutes a sampled robot trajec-
tory x̃1:T , (x̃1, x̃2, ..., x̃T) from the smoothing density
p(x1:T |c1:T , s1:T).

V. PARAMETER ESTIMATION FRAMEWORK
To estimate the set of motion and sensor model parameters

of the robot, we propose using the Expectation Maximization
(EM) algorithm [10]. EM is a standard machine learning
method for finding the maximum likelihood estimates of
parameters in probabilistic models where the models include
unobservable or latent variables. It is an iterative optimization
method for estimating unknown parameters given partial
data.

In the expectation step or E-step, we perform particle
filtering and smoothing and obtain sample robot trajectories
from the smoothing density p(x1:T |c1:T , s1:T) as discussed
in the previous section. In the maximization step or M-step,
we treat the sampled trajectories obtained in the E-step as the
ground truth to compute the maximum likelihood parameters
of the models. Starting with some initial values of the param-
eters, we repeatedly alternate between performing the E-step
and M-step until convergence. It has been shown [10] that the

EM algorithm is guaranteed to reach a local optimum. We
should emphasize that our E-step is just an approximation
of the “true” E-step of the EM algorithm since we are
sampling from the posterior distribution p(x1:T |c1:T , s1:T)
over possible robot paths instead of computing the exact
expected robot trajectory to be used in the M-step.

To compute the maximum likelihood values of the motion
model parameters in the M-step, we calculate the motion
errors for t = 1, 2, ..., T − 1 (based from the sampled
robot trajectory x̃1:T obtained in the E-step) as well as
the contributions of the odometry values dt and rt to the
variances of these errors. We then maximize the likelihood
function via conjugate gradient ascent with respect to the
motion model parameters.

To compute the maximum likelihood values of the sensor
model parameters in the M-step, we first calculate soft
assignments of each individual sensor reading si to the four
components of our sensor model. That is, we calculate the
probability ρi,ccc that the sensor reading si was generated
by component ccc of our sensor model, where ccc ∈
{hit, short, max, rand}. That is

ρi,hit = ηphit(si|xi)
ρi,short = ηpshort(si|xi)
ρi,max = ηpmax(si|xi)
ρi,rand = ηprand(si|xi) ,

where xi is the location where the sensor reading was
taken and η is a normalization constant to ensure that the
above four values sum to 1. We then calculate the maximum
likelihood values of the parameters (where S denotes the set
of all sensor measurements si)

αhit =
P

i
ρi,hit

|S|
αshort =

P

i ρi,short
|S|

αmax =
P

i ρi,max
|S|

αrand =
P

i
ρi,rand
|S|

σhit =
√

P

i
ρi,hit(si−s∗

i
)2

P

i
ρi,hit

λshort =
P

i
ρi,short

P

i
ρi,shortsi

,

where s∗i is the true range of the object which can be
easily computed by performing ray tracing on the map. See
[19] for a detailed derivation of the above formulas. We
should point out that the process of computing the maximum
likelihood values of the sensor model parameters constitute
an EM algorithm itself. In our experiments, we compute
the maximum likelihood sensor parameters only once per
iteration of our EM framework using the above formulas
rather than having another EM algorithm nested within our
EM framework. The derivation of the EM algorithm in
[21] justifies this partial optimization step as well as the
approximate E-step; our EM algorithm can still be viewed
as optimizing the likelihood of the robot’s trajectory. Fig.
2 shows the block diagram for the parameter estimation
framework used in this paper.

Collect control and sensor data

Initialize motion and sensor model parameters

M−step: Compute the maximum likelihood values

 of the motion and sensor model parameters

E−step: Perform particle filtering and smoothing

 to obtain sample robot trajectories

Expectation Maximization

Fig. 2. The block diagram for the parameter estimation framework.

VI. EXPERIMENTAL RESULTS
To demonstrate the effectiveness of the estimation ap-

proach discussed in the previous section, we present the
results of robotic experiments we conducted. In our ex-
periments, we used an ActivMedia Robotics P3-DX as our
testbed robot. The robot is equipped with a front sonar array
with eight sensors, one on each side and six forward at 20o

intervals. It also has a rear sonar array with eight sensors,
one on each side and six rear at 20o intervals. It is controlled
by an IBM ThinkPad X32 notebook computer.

In our experiments, we considered two test environments
(see Fig. 3 and Fig. 4). The first test environment is a
makeshift environment we set-up that represents a scaled-
down version of a typical office environment. The associ-
ated map of the environment has an approximate size of
6.7m × 6.7m. The second test environment is a portion
of the south wing of the third floor of our Computer
Science building. Compared to the first test environment,
the second test environment is significantly bigger with a
map size of approximately 38m × 30m. The second test
environment is more realistic than the first test environment
in that it is dynamic and contains many unmodeled objects
and obstacles (e.g. people walking around, trash bins). For
both test environments, we instructed the robot to navigate
through the environment by visiting predefined waypoints
and returning to the starting position while collecting control
and sensor data along the way. In our experiments, the
parameter estimation routine is carried out offline on a
different machine for computational reasons. Table I provides
summary information about our experiments. Notice that the
parameter estimation routine currently runs approximately
10 times slower than real-time (i.e. data collection time)
but with further advances in processor speed-up and code
optimization we can expect the parameter estimation routine
to achieve real-time execution. Another way to speed-up
the estimation process is to consider only portions of the
collected data set instead of using the entire data set.

Table II shows the values of the parameters we obtained
after performing our estimation method starting from some
initial crude (uncalibrated) model parameters and using the
historical account of the robot’s motion and perception. As
can be seen in Table II, the estimated values of the motion
parameters for both test environments are similar except for
the values of the parameters σ2

T1
, σ2

D1
, and σ2

C1
. These are

all related to the non-proportional variance in the robot’s

Fig. 3. The first test environment (left) and its associated map with
waypoints (right).

Fig. 4. The second test environment (left) and its associated map with
waypoints (right).

translational and rotational motions. The drastic difference
between the estimated values in the two environments is
natural given the differences in floor material: carpet in the
first test environment and concrete with expansion joints in
the second test environment.

The differences in sensor model parameters are similarly
explainable. Recall that the parameter αshort represents the
probability that a particular sensor measurement is caused
by unexpected objects in the environment such as people
walking along the corridors and other unmodeled objects
(e.g. trash bins) not included in the map. Since the second
test environment is highly dynamic and contains a lot of
unexpected objects, the learned value for parameter αshort
is 3.4 times larger than the value obtained from the first
test environment. We also notice that the value of αmax,
the probability that the range finder would fail to detect
obstacles, is higher by approximately 17% in the second test
environment than the value in the first test environment. The
second test environment also contains smooth glass walls
along the corridors that can cause specular reflections thus
making the walls invisible to the sensor.

After obtaining the estimated parameters, we also tested
their effect on the speed of robot navigation. In these

TABLE I
EXPERIMENTS SUMMARY

Test Test
Environment 1 Environment 2

Map Sizes ≈ 6.7m × 6.7m ≈ 38m × 30m
Data Collection Times (1 round) ≈ 5minutes ≈ 13minutes
Total Time Step T 601 1, 008

Number of Sonar Measurements 9, 616 16, 128

Parameter Estimation Times 53m38s 2h7m52s

TABLE II
THE INITIAL AND ESTIMATED VALUES OF THE PARAMETERS.

Estimated Parameter Values
Initial Parameter Values Test Environment 1 Test Environment 2
σ2

Tr
0.01 0.338267 0.348720

σ2
Td

0.01 0.000345 0.000318

σ2
T1

0.01 0.666048 0.007811

σ2
Dr

0.01 0.010731 0.007965

σ2
Dd

0.01 0.021869 0.044325

σ2
D1

0.01 0.000001 0.010533

σ2
Cr

0.01 0.013427 0.026958

σ2
Cd

0.01 0.008588 0.005744

σ2
C1

0.01 0.000014 0.001121

αhit 0.30 0.434601 0.319870

αshort 0.20 0.029356 0.100010

αmax 0.30 0.348269 0.408525

αrand 0.20 0.187774 0.171595

σhit 500.00 31.18050 23.65530

λsh 0.15 0.001094 0.000651

TABLE III
THE NAVIGATION TIMES OF THE ROBOT.

Navigation Times
A B C

Test Environment 1 (5 rounds) 25m47s 25m41s 22m43s
Test Environment 2 (2 rounds) 26m19s 25m58s 25m3s

experiments, we compared the times it took the robot to
navigate through the same path in both environments when:
A) using the uncalibrated motion and sensor models, B)
using only the calibrated motion model, and C) using both
calibrated motion and sensor models. Table III shows the
navigation times for these experiments. As can be seen in
Table III, using both calibrated motion and sensor models
led to noticeable speed-ups in robot navigation.

Finally, to demonstrate the appropriateness of the esti-
mated parameter values in estimating the robot path, we
constructed sonar maps by plotting the endpoints of sonar
readings with respect to the estimated path of the robot2. Fig.
5 shows the generated sonar maps displayed on top of the
true map of the environment for easier visual inspection. It is
easy to see that the sonar map generated using both calibrated
motion and sensor models is better than those generated
using the uncalibrated motion and sensor models or using
only the calibrated motion model since the sonar readings
are well-aligned with the actual map of the environment. For
a more quantitative comparison, we generated the cumulative
plot in Fig. 6 which shows the percentage of sonar endpoints
that are closer than a given distance from the nearest wall
in the environment. As Fig. 6 shows, over 50% of the sonar
endpoints are closer than d = 50mm to the nearest wall for
the sonar map generated using both calibrated motion and
sensor models while only about 33% of the sonar endpoints
are closer than d = 50mm to the nearest wall for the sonar

2We do not include the maximum sonar readings smax in the plot since
they provide us with little information as to the location of the objects or
obstacles.

Fig. 5. The generated sonar maps using uncalibrated motion and sensor
models (left), calibrated motion model only (middle), calibrated motion
and sensor models (right). The (blue) dots represent the endpoints of sonar
readings with respect to the estimated path of the robot. The true map is
displayed for easier visual inspection.

0 50 100 150 200 250 300 350
0

10

20

30

40

50

60

70

80

90

Distance d (mm)

%
 o

f
s
o
n
a
r

e
n
d
p
o
in

ts
 c

lo
s
e
r

th
a
n
 d

 t
o
 n

e
a
re

s
t
w

a
ll

Using the Uncalibrated Motion and Sensor Models
Using Only the Calibrated Motion Model
Using Both Calibrated Motion and Sensor Models

Fig. 6. Percentage of sonar endpoints that are less than a certain distance
from the nearest wall in the environment.

map generated with uncalibrated motion and sensor models.

VII. CONCLUSIONS AND FUTURE WORK
Robot calibration is an important activity in mobile

robotics. However, current calibration techniques often in-
volve intensive and carefully set-up calibration experiments
as well as significant amount of human effort. In this paper,
we presented an automated technique for calibrating a mobile
robot’s motion and sensor models based from the control
and sensor data obtained naturally during robot operations.
Our method is based on a standard machine learning method
called the EM algorithm. Starting from some initial param-
eter values, our method iteratively optimizes the parameters
based from data collected during normal robot operation.
Unlike other calibration techniques, our method does not
require any special calibration setup and can be performed by
the robot as it operates with little or no human intervention.
Since the parameters are estimated from actual data, the robot
can learn a more appropriate set of parameter values. The
estimation procedure can be readily invoked by the robot at
a later time when there is a need to re-calibrate the models.
The results of some actual robotic experiments are presented
that show the effectiveness of our approach. As pointed out,
our parameter estimation framework is general in that it is
not tied to any particular motion and sensor models and can
be used for other motion and sensor models as well.

Although the results of the experiments are quite promis-
ing, we believe that there are several avenues for future work.
One possible future extension would be to solve the problem

of calibrating the robot’s motion and sensor models without
the benefit of an a priori map. In this case, the map of the
environment has to be estimated from scratch together with
the robot’s motion and sensor models and at the same time
being able to correctly localize a robot. We call this problem
Simultaneous Localization, Mapping, and Calibration (or
SLAM-C for short). This problem is relatively more difficult
and complex and a solution to this problem would actually
open up other several important and practical applications
for mobile robots.

REFERENCES

[1] M. W. M. G. Dissanayake, P. Newman, S. Clark, H. F. Durrant-Whyte,
and M. Csorba, “A solution to the simultaneous localization and map
building (SLAM) problem,” IEEE J. Robot. Automat., vol. 17, no. 3,
pp. 229–241, June 2001.

[2] A. Eliazar and R. Parr, “DP-SLAM: Fast, robust simultaneous local-
ization and mapping without predetermined landmarks,” in Proc. 18th
IJCAI’03, Aug. 2003, pp. 1135–1142.

[3] A. I. Eliazar and R. Parr, “DP-SLAM 2.0,” in Proc. IEEE ICRA’04,
Apr. – May 2004, pp. 1314–1320.

[4] M. Montemerlo and S. Thrun, “Simultaneous localization and mapping
with unknown data association using FastSLAM,” in Proc. IEEE
ICRA’03, vol. 2, Sept. 2003, pp. 1985–1991.

[5] M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit, “FastSLAM:
A factored solution to the simultaneous localization and mapping
problem,” in Proc. 18th AAAI’02, July – Aug. 2002, pp. 593–598.

[6] A. Elfes, “Sonar-based real-world mapping and navigation,” IEEE J.
Robot. Automat., vol. RA-3, no. 3, pp. 249–265, June 1987.

[7] A. I. Eliazar and R. Parr, “Learning probabilistic motion models for
mobile robots,” in Proc. 21st ICML’04, July 2004, pp. 32–39.

[8] D. Fox, W. Burgard, and S. Thrun, “Markov localization for mobile
robots in dynamic environments,” Journal of Artificial Intelligence
Research, vol. 11, pp. 391–427, Nov. 1999.

[9] S. Thrun, “Learning occupancy grid maps with forward sensor mod-
els,” Autonomous Robots, vol. 15, no. 2, pp. 111–127, Sept. 2003.

[10] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum likelihood
from incomplete data via the EM algorithm,” Journal of the Royal
Statistical Society. Series B (Methodological), vol. 39, no. 1, pp. 1–
38, 1977.

[11] A. Doucet, S. J. Godsill, and M. West, “Monte Carlo filtering and
smoothing with application to time-varying spectral estimation,” in
Proc. IEEE ICASSP’00, vol. 2, June 2000, pp. 701–704.

[12] S. J. Godsill, A. Doucet, and M. West, “Monte Carlo smoothing for
nonlinear time series,” Journal of the American Statistical Association,
vol. 99, no. 465, pp. 156–168, Mar. 2004.

[13] J. Borenstein and L. Feng, “UMBmark: A benchmark test for measur-
ing odometry errors in mobile robots,” in Proc. SPIE Conf. on Mobile
Robots, Oct. 1995, pp. 113–124.

[14] D. Caltabiano, G. Muscato, and F. Russo, “Localization and self
calibration of a robot for volcano exploration,” in Proc. IEEE ICRA’04,
Apr. – May 2004, pp. 586–591.

[15] A. Martinelli, N. Tomatis, A. Tapus, and R. Siegwart, “Simultaneous
localization and odometry calibration for mobile robot,” in Proc.
IEEE/RSJ IROS’03, Oct. 2003, pp. 1499–1504.

[16] N. Roy and S. Thrun, “Online self-calibration for mobile robots,” in
Proc. IEEE ICRA’99, May 1999, pp. 2292–2297.

[17] E. M. Foxlin, “Generalized architecture for simultaneous localization,
auto-calibration, and map-building,” in Proc. IEEE/RSJ IROS’02, Oct.
2002, pp. 527–533.

[18] D. Stronger and P. Stone, “Simultaneous calibration of action and
sensor models on a mobile robot,” in Proc. IEEE ICRA’05, Apr. 2005,
pp. 4563–4568.

[19] S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics. Cambridge,
MA: MIT Press, 2005.

[20] M. S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp, “A
tutorial on particle filters for online nonlinear/non-Gaussian Bayesian
tracking,” IEEE Trans. Signal Processing, vol. 50, no. 2, pp. 174–188,
Feb. 2002.

[21] R. Neal and G. E. Hinton, “A view of the EM algorithm that justifies
incremental, sparse, and other variants,” in Learning in Graphical
Models, M. I. Jordan, Ed. MIT Press, 1999, pp. 355–368.

