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ABSTRACT OF THE DISSERTATION

Deep Neyman-Scott Processes

by

Chengkuan Hong

Doctor of Philosophy, Graduate Program in Computer Science
University of California, Riverside, September 2022

Dr. Christian R. Shelton, Chairperson

Building hierarchical models has long been of interest to members of the artificial intelligence

community. Many hierarchical models (e.g., probabilistic graphical models, deep neural

networks, and graph neural networks) have achieved great success. However, all of the

current hierarchical models assume the number of variables is fixed. The natural question is

“What if the number of variables is unknown a priori?”

For this purpose, we consider a deep Neyman-Scott process in this thesis, for which

the building components of a network are all Poisson processes. The number of variables is

a random variable.

We develop an efficient posterior sampling via Markov chain Monte Carlo and

use it for likelihood-based inference. Our method allows for the inference in sophisticated

hierarchical point processes. We show in the experiments that more hidden Poisson processes

yield better performance for likelihood fitting and event types prediction. We also compare

our method with recently developed neural-network-based models for temporal real-world

datasets and demonstrate competitive abilities for both data fitting and prediction.
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We also show that we can use our likelihood-based inference algorithm to learn

approximate posterior point processes. Our approximate posterior point processes are close

to the true posterior point processes. When doing prediction, we no longer have to do

Markov chain Monte Carlo to approximate the true posterior point processes. Instead, we

can directly sample our approximate posterior point processes based on the observed data,

and the prediction performance of our approximate posterior point processes is better than

the prediction performance of the samples from Markov chain Monte Carlo when only a

limited amount of running time is allowed.
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Chapter 1

Introduction to Point Processes

Point processes have attracted attention due to their ability to model the temporal

and spatial patterns of data. They have been applied to various fields, e.g., finance (Bauwens

and Hautsch, 2009), neuroscience (Perkel et al., 1967), and cosmology (Stoica et al., 2014).

1.1 Temporal Point Processes

A temporal point process (TPP) (Daley and Vere-Jones, 2003) is usually represented

as a counting process N(t), i.e.

N(t) =
∑
ti∈Ht

u(t− ti),

where Ht = {ti | ti < t} is the history of events, ti ∈ R≥0 is the time point where an event

with index i happens, and

u(t) =


1, t > 0

0, t ≤ 0

.

We restrict our attention to the case when N(t) <∞ and t ∈ R≥0 is finite.
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Definition 1.1 (conditional intensity function). The conditional intensity function (CIF)

is defined as

λ(t) = lim
dt→0

E(N([t, t+ dt]) | Ht)
dt

,

where N([t, t+ dt]) = N(t+ dt)−N(t).

A CIF determines the expected number of events at each infinitesimal interval. We

assume there can exist at most one event when dt→ 0 and the number of events follows a

Bernoulli distribution. The probability of one event at [t, t+ dt] is λ(t) · dt. Thus, a CIF

fully determines a TPP.

Definition 1.2 (cumulative intensity function). The cumulative intensity function Λ(t) of

λ(·) is defined as

Λ(t) =

∫ t

0
λ(τ)dτ.

1.2 Spatial Point Processes

In a similar fashion, we can define a spatial point process (SPP) as a random

countable subset of a space S. Usually, S is a subset of a Euclidean space or a manifold.

For a realization x of a SPP, N(B) represents the cardinality of the points in B ∩ x. Here,

we require that the realization to be locally finite, that is N(B)) <∞, where B ⊆ S is an

arbitrary bounded region.

Definition 1.3 (Papangelou conditional intensity function (Papangelou, 1974)). The Papan-

gelou conditional intensity function (PCIF) of a SPP N at location ξ defined on Euclidean
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space is defined as

λP(ξ) = lim
δ→0

E(N(Bδ(ξ))) | [N\Bδ(ξ)])
ν(Bδ(ξ))

,

where Bδ(ξ) is the intersection of x and a ball Bδ(ξ) centered at ξ with radius δ, [N\Bδ(ξ)]

is the information of the point processes N outside Bδ(ξ), and ν(Bδ(ξ)) is the volume of

Bδ(ξ).

Similar to a CIF, a PCIF also uniquely determines an SPP. Different than CIF,

PCIF considers the correlations of a point with other points in the whole space rather than

only in the past.

1.3 Marked Point Processes

Let X be an SPP or a TPP on S. For a given space M , there is a random mark

mξ ∈M attached to each point ξ ∈ x ∼ X, then

Y = {(ξ,mξ) : ξ ∈ x ∼ X}

is called a marked point process.

1.4 Poisson Processes

A Poisson process is a special case of a point process such that the expected number

of points at each infinitesimal interval is independent of all the other points, and the CIF is

equal to the PCIF. Thus, we can just use an intensity function (IF) to describe a Poisson

process, which is equal to the CIF and the PCIF.
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If the IF λ(t) = λ0 > 0 is a constant function, we call it a homogeneous Poisson

process (HPP). If, otherwise, the λ(t) varies with location or time, we call it an inhomogeneous

Poisson process (IPP).

1.4.1 Density

For a Poisson process, there is no density w.r.t the Lebesgue measure as the

realizations reside in infinite dimensional spaces. However, we can define densities through

Radon–Nikodym derivative with the reference as another Poisson process.

Proposition 1.4 (Møller and Waagepetersen (2003)). Let Ξi ∼ Poisson(S, λi), λi : S →

[0,∞), and Λi(S) =
∫
S λi(ξ)dξ <∞ for i = 1, 2. Also λ2(ξ) > 0 whenever λ1(ξ) > 0. Then

Poisson(S, λ1) is absolutely continuous w.r.t Poisson(S, λ2), with density

f(x) = exp (Λ2(S)− Λ1(S))
∏
ξ∈x

λ1(ξ)/λ2(ξ).

We usually choose λ2 = 1 s.t. any Poisson process Poisson(S, λ1) in a bounded

region S is absolutely continuous w.r.t Poisson(S, 1) and the density is

f(x) = exp(

∫
S
dξ − Λ1(S))

∏
ξ∈x

λ1(ξ).

Since
∫
S dξ is a constant number, we will write the density as

f(x) = exp(−Λ1(S))
∏
ξ∈x

λ1(ξ) (1.1)

without special specification.

1.4.2 Sampling

As we mainly focus on the TPPs, we only introduce the sampling for Poisson

processes in one dimension. The sampling for an HPP is pretty straightforward. Suppose
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we want to generate samples for an HPP with intensity function as λ0 on an interval [0, T ].

We have two ways to sample:

• Inter-event times. The inter-event times follow an exponential distribution. So we

only need to generate samples from the exponential distribution with mean 1/λ0.

• Order statistics. We can first generate the number n from a Poisson distribution with

mean λ0T . Then we can generate n i.i.d random variables for the exact times from

the uniform distribution on [0, T ].

Typical methods for the sampling for an IPP include the inversion method, thinning,

and using order statistics:

• Inversion method. We can generate samples z1, z2, · · · from an HPP with 1 as its

intensity function. Then Λ−1(z1),Λ−1(z2), · · · are the samples corresponding to the

cumulative intensity function Λ(·).

• Thinning. Suppose we want to generate samples for a Poisson process with an intensity

function as λ(t). We first generate samples from a dominating Poisson process with

an intensity function λd(t) that is larger than the intensity function λ(t) at any time

point. Then we accept each sample at time t from the dominating Poisson process

independently with probability λ(t)
λd(t) . This method requires that the dominating

Poisson process should be sampled efficiently.

• Order statistics. For a given interval [0, T ], we first generate n from a Poisson

distribution with expected value as Λ(T ). Then we generate n random variables from

a distribution with cumulative distribution function F (t) = Λ(t)
Λ(T ) as order statistics.
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1.5 Cox Processes

A Cox process (Cox, 1955), also called a doubly stochastic Poisson process, gener-

alizes a Poisson process s.t. the intensity function of a Poisson process becomes a realization

of a random field.

Definition 1.5 (Møller and Waagepetersen (2003)). Given a nonnegative random field

Z = {Z(ξ) : ξ ∈ S ⊆ Rd}, if the conditional distribution of a point process Ξ is a Poisson

process with intensity function Z, then Ξ is a Cox process driven by the random field (or,

latent process) Z.

A Cox process is generally preferred over a Poisson process when modeling real-

world data, as we usually do not have any prior knowledge of the functional form of the

intensity function for a Poisson process. A Cox process assumes the intensity function itself

is a latent stochastic process. By introducing this latent process, we introduce dependence

between the expected number of events at different times or places. Typical examples for

the latent stochastic process are Poisson processes (Neyman and Scott, 1958), Cox processes

(Adams, 2009), Strauss processes (Yau and Loh, 2012), and Gaussian processes (Adams

et al., 2009).
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Chapter 2

Deep Neyman-Scott Processes

The Neyman-Scott process (NSP) (Neyman and Scott, 1958) is a special class

of Cox processes. In this thesis, we focus on Neyman-Scott processes (NSPs) with order

larger than one, which we call deep Neyman-Scott processes (DNSPs). Neyman and Scott

first described DNSPs in 1958; they were trying to model the distribution of galaxies in

the Universe. Each building block of the DNSPs is a Poisson process. Taking DNSPs of

order two as an example, one Poisson process generates the centers of some superclusters,

consisting of galaxy clusters. In turn, each galaxy cluster generates its own set of points,

galaxies, from a Poisson process centered the cluster center. The advantage of the DNSPs

compared to the other Cox processes is that they have the ability to build deep hierarchical

models where each component in the system is a point process.
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2.1 The General Structure

To build DNSPs, we will stack Poisson processes in a hierarchical manner s.t. the

distributions of the IFs as random processes are controlled by the Poisson processes on upper

layers.

Each observed data point x is a collection of sequences {xk}K0
k=1 = {{t0,k,j}

m0,k

j=1 }
K0
k=1,

where xk is the sequence of the k-th type of event (or events with the k-th mark in a

discrete-marked point process) and t0,k,j is the time or the location of the j-th event of

this type. (The 0 indicates this is an observation event at the bottom layer of the model.)

For each data point x, there are L hidden layers of point processes Z = {Z1, . . . ,ZL}, with

Z` = {Z`,k}K`k=1. K` is the number of hidden processes at level `, and Z`,k is a Poisson process.

Z`,k and Z`+1,j are connected by a kernel function φθ(`+1,k)→(`,j)
(·), whose functional form

will be given later. Figure 2.1 gives the general structure of DNSPs similar to a graphical

model, where each node represents a Poisson process.

2.2 Generative Model Semantics

We first draw samples from the point processes on the top layer. The IF for ZL,k

is a constant function

λL,k(t) = µk, where µk > 0.

Next, we draw samples for each hidden Poisson process conditional on the Poisson process

in the layer immediately above. The IF for Z`,k conditional on Z`+1 is

λ`,k(t) =

K`+1∑
i=1

∑
t`+1,i,j

φθ(`+1,i)→(`,k)
(t− t`+1,i,j), (2.1)
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where {t`+1,i,j}
m`+1,i

j=1 is a realization for Z`+1,i. The filtration {Ht} for layer ` is {t`+1,i,j :

t`+1,i,j < t}, i.e., all events at the immediately upper layer at a prior time.

z`+1,kθ(`+2,∗)→(`+1,k)

...

zL,kµL,k

z`,kθ(`+1,∗)→(`,k)

...

z1,kθ(2,∗)→(1,k)

xkθ(1,∗)→(0,k)

KL

K`+1

K`

K1

K0

z`+1,kθ(`+2,∗)→(`+1,k)

...

zL,kµL,k

z`,kθ(`+1,∗)→(`,k)

...

z1,kθ(2,∗)→(1,k)

xkθ(1,∗)→(0,k)

KL

K`+1

K`

K1

K0

Figure 2.1: The structure of a DNSP, where θ(`+1,∗)→(`,k) = [θ(`+1,i)→(`,k)]
K`+1

i=1 . The node

for z`,k is zoomed in.

Conditioned on Z`+1, Z`,k is a Poisson process whose IF at each time interval is

independent of the IF at the other time intervals, and the number of events at each time

interval follows a Poisson distribution.

The bounded region S for each hidden Poisson process is set to be the same as the

evidence and no edge effects are considered in our model.
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2.3 Evidence Likelihood

The observed data is assumed to be drawn conditioned on the hidden Poisson

processes on the lowest hidden layer in a manner analogous to those of the layers above.

The IF for xk is

λ0,k(t) =

K1∑
i=1

∑
t1,i,j

φθ(1,i)→(0,k)
(t− t1,i,j), (2.2)

where {t1,i,j}
m1,i

j=1 is a realization for Z1,i.

Thus, according to Equation 1.1, the conditional log-likelihood for the data point

x in the bounded region S is

K0∑
i=1

(∑
t0,i,j

log λ0,i(t0,i,j)−
∫
S
λ0,i(t)dt

)
.

2.4 Examples

Different kernels lead to different behaviors of DNSPs. Here we give different

examples for kernels.

Example 2.1 (Thomas processes (Thomas, 1949)). The kernel function is

φθ = exp
(
−‖x‖2/(2w2)

)
/
(
2πw2

)d/2
, for w, d > 0,

where θ = {w, d}.

Example 2.2 (Matérn processes (Matérn, 1960)). The kernel function is

φθ(x) =
1‖x‖≤r

wdrd
, for r, d > 0,

where θ = {r, d}.
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Remark 2.3. When we deal with the temporal data, it is reasonable to make the kernel

function be zero for negative inputs (i.e., to be “causal”) and converge to 0 as t goes to

infinity, as we assume the influence of the events can only be from the past to the future

and it will eventually disappear. The only constrain for the kernel function is that the sum

appearing in the intensity function (Equations 2.1 and 2.2) should always be non-negative.

We also want the kernel function to be as flexible as possible with only a few parameters.

For the above given reasons, we give an example for TPPs in Example 2.4. The

gamma kernel asymptotes to 0 as x → ∞. Moreover, with the varying parameters, the

gamma kernel can have either monotonically decreasing behavior, or a unimodal shape,

which provides flexibility.

Example 2.4 (DNSPs with a gamma kernel for TPPs). The kernel function is

φθ(x) =


p · βα

Γ(α)x
α−1e−βx, for x > 0, p, α, β > 0,

0, for x ≤ 0,

where θ = {p, α, β} and Γ(α) is the gamma function.

Figure 2.2 demonstrates the distributions of the events for DNSPs with two hidden

layers. The forward sampling is implemented by using the inversion method (Çinlar, 2013).

Please refer to Section 4.1 for how to do posterior sampling.

Example 2.5 (DNSPs with a Weibull kernel for TPPs). The kernel function is

φθ(x) =


p · kλ

(
x
λ

)k−1
e−(x/λ)k , for x > 0, k, λ > 0,

0, for x ≤ 0,

where θ = {p, k, λ}.
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z1,0 z1,1

θ(2,0)→(1,0) θ(2,0)→(1,1)

z2,0

x0

θ(1,0)→(0,0)

x1

θ(1,1)→(0,1)

z1,0 z1,1

θ(2,0)→(1,0) θ(2,0)→(1,1)

z2,0

x0

θ(1,0)→(0,0)

x1

θ(1,1)→(0,1)

Figure 2.2: The distributions of the events for forward sampling (left) and posterior sampling

(right). For forward sampling, three events are drawn from Z2,0. The dashed lines indicate

the positions of the three events on the top layer. The plots for the other TPPs are the

densities and rug plots of the samples drawn conditioned on z2,0. For posterior sampling,

the samples for x0 and x1 are collected and fixed from the forward sampling. Then we draw

posterior samples for the other TPPs conditional on x0 and x1 and plot their densities and

rug plots as well. Note the modes of the posterior distribution for z2,0 recover the positions

of the prior events for z2,0 in forward sampling.

Similar to the gamma kernel used in previous work, the Weibull kernel converges to

0 when x goes to infinity as the influence of the events from the past will fade eventually. The

shape of a Weibull kernel is very similar to a gamma kernel, and, with different combinations

of the parameters, the Weibull kernel can also monotonically decrease or behave like a

Gaussian function. But, the Weibull kernel has the advantage over gamma kernel that the

gradients of the Weibull kernel function itself and the integral of the Weibull kernel function

are both analytically available.
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In this thesis, we mainly focus on DNSPs applied to TPPs, which we call temporal

DNSPs, and the bounded region S is usually written as [0, T ], although many statements

for TPPs are still true for general spatial DNSPs.
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Chapter 3

Related Work

We list some related work in this chapter. Section 3.1 introduces the work using

neural networks to model the TPPs. Section 3.2 describes the normalization-flow-based

model for TPPs. Section 3.3 is about the Gaussian-process-related models for TPPs and

SPPs. Section 3.4 is about the modeling technique based on piecewise constant function

embedding. Section 3.5 reviews variational inference.

3.1 Neural Networks

Much recent work uses neural networks to directly model the CIF for a TPP (Du

et al., 2016; Mei and Eisner, 2017; Zuo et al., 2020; Zhang et al., 2020).

Du et al. (2016) assume the CIF of a TPP is a nonlinear function as

λ(t) = exp
(
vt

T · hj + wt(t− tj) + bt
)
,

where hj is the hidden state of the recurrent neural network (RNN) at j-th event, vt is a

column vector, wt and bt are scalars, and the probability for the (j + 1)-th event to generate
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a mark k is

P (mj+1 = k|hj) =
exp

(
V y
k,:hj + byk

)
∑K

k=1 exp
(
V y
k,:hj + byk

) ,
where K is the number of marks, and V y

k,: is the k-th row of matrix V y.

Mei and Eisner (2017) use a long short-term memory (LSTM) (Hochreiter and

Schmidhuber, 1997; Graves, 2012), a variant of an RNN, to model the CIF of what they call

neural Hawkes processes. The CIF is

λ(t) =
K∑
k=1

λk(t) =
K∑
k=1

fk(w
T
k hj(t)),

where fk(x) = sk log
(

1 + exp
(
x
sk

))
, sk > 0. Different from Du et al. (2016), hj(t) is

continually obtained from memory cells and determined by the events up until time tj . The

probability of type k for the (j + 1)-th event is

P (mj+1 = k|hj) =
λk(tj+1)

λ(tj+1)
.

Zhang et al. (2020) employ the self-attention mechanism to model the CIF. The

functional form is

λ(t) =
K∑
k=1

λk(t) =
K∑
k=1

f(µk,j+1 + (ηk,j+1 − µk,j+1) exp(−γk,j+1(t− tj))),

where

µk,j+1 = g(hk,i+1Wµ),

ηk,j+1 = g(hk,j+1Wη),

γk,j+1 = f(hk,j+1Wγ),

f is the softplus function,
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g is the Gaussian error linear unit for nonlinear activations,

hk,j+1 is the hidden vector learned by self-attention,

Wµ,Wη,Wγ are weight matrices.

The probability of type k for an event is the same as Mei and Eisner (2017).

Similar to Zhang et al. (2020), Zuo et al. (2020) build a transformer to learn a

hidden state hj . They choose a functional form of the CIF similar to Du et al. (2016); Mei

and Eisner (2017) as

λ(t) =
K∑
k=1

fk

(
αk
t− tj
tj

+wT
k hj + bk

)
.

The probability of type k for an event is the same as Mei and Eisner (2017). While for the

prediction task, Zuo et al. (2020) embed an extra layer for the time and type respectively.

Omi et al. (2019) propose to model the cumulative intensity function

Λ(τ) =

∫ τ

0
λ(t)dt

rather than the CIF. An RNN is utilized to learn the hidden state and then the hidden state

and τ are fed into another cumulative intensity function network to output the cumulative

intensity function. The direct modeling of the cumulative intensity function avoids the

expensive numerical approximation of the integral.

Shchur et al. (2020a) develop a mixture model for TPPs. The p.d.f used to describe

the distribution of the inter-arrival time τ is

p(τ |w,µ, s) =
K∑
k=1

wk
1

τsk
√

2π
exp

(
−(log τ − µk)2

2s2
k

)
.

A history embedding given by a RNN, metadata and a sequence embedding are concatenated

into a vector and fed into neural networks to output w,µ and s.
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All the above models learn the parameters by maximizing the log-likelihood function.

Mehrasa et al. (2019) try to use variational auto-encoder (VAE) (Kingma and

Welling, 2014) to model the probability distributions of the inter-arrival time and the mark.

The distribution of the inter-arrival time follows an exponential distribution:

pτθ(τj |zj) = λ(zj) exp(−λ(zj)τj) for τj ≥ 0.

The mark follows a multinomial distribution:

pkθ(mj = k|zj) = pk(zj) and

K∑
k=1

pk(zj) = 1.

λ(zj) and pkθ(mj |zj) are modeled using neural networks. The input sequence for the VAE

is denoted as x1:n = {x1, · · · , xn}, where xn = (tn,mn), tn is the time and mn is the

mark. Then the approximate posterior and prior of the latent state zn are represented as

multivariate Gaussian distributions:

qφ(zn | x1:n) = N (µφn , σ
2
φn)

pφ(zn+1 | x1:n) = N (µφn+1 , σ
2
ψn+1

).

Two LSTMs are used to encode the history of events times and marks for prior and

approximate posterior distributions. The hidden states of LSTMs are passed to extra

networks to generate µφn , σ
2
φn
, µφn , σ

2
φn

. During the training process, the parameters are

learned by optimizing the variational lower bound.
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3.1.1 Summary

These methods train neural networks to learn the history embedding of TPPs. The

use of GPUs (graphics processing units) makes it very efficient to train. The flexibility of

neural networks makes the models fit different patterns of temporal data well.

However, all of these methods assume the latent space is deterministically identified

by a neural network, which lacks the natural flexibility induced by the randomness of a

stochastic process. Further, a huge number of parameters is generally required.

DNSPs assume the latent space is consisted of a random number of events, modeled

by Poisson processes. The number of parameters used to control the kernels is far smaller

than the number required by neural networks.

3.2 Normalization Flows

Shchur et al. (2020b) design a model, called TriTPP, for TPPs based on normaliza-

tion flows. A triangular map F built with rational quadratic splines (RQSs) (Durkan et al.,

2019) is used to model the cumulative intensity function.

The derivatives and inverse of F are in closed form. Thus, the sampling is fast by

using the inversion method (Çinlar, 2013). The calculation of density is also fast as the CIF

is just the derivative of F w.r.t the time. And F is highly flexible because of the flexibility

of RQSs.

Similar to the models based on neural networks, TriTPP does not model the

randomness mechanism. It assumes that there is a deterministic embedding based on RQSs

for different sequences of data.
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3.3 Gaussian Process (GP) Modulated Point Processes

Others have constructed GP-modulated point processes (Møller et al., 1998; Adams

et al., 2009; Gunter et al., 2014; Lloyd et al., 2015; Lian et al., 2015; Donner and Opper,

2018; Aglietti et al., 2019). Suppose f(t) is a realization of a Gaussian process, different

choices of how to connect λ(t) to f(t) results in different models.

Møller et al. (1998) construct a log Gaussian Cox process (LGCP) whose intensity

function is λ(t) = exp (f(t)). An MCMC method is given to approximate the posterior

intensity process.

The intensity function given by Adams et al. (2009) is λ(t) = λ∗σ(f(t)), where

λ∗ is an upper bound for λ(t) and σ(·) is the sigmoid function. This kind of Cox process

is called a sigmoidal Gaussian Cox process (SGCP). An MCMC method is also used to

estimate the distribution of the posterior intensity function.

Gunter et al. (2014) build a dependent Cox point process. The latent processes are

all Gaussian processes and a convolution is applied to each of the latent processes with a

different kernel. Then the intensity function is the sum of all the latent processes after the

convolution. Similar to Adams et al. (2009), an MCMC method called “adaptive thinning”

is developed for the posterior inference, which uses a piecewise constant function to model

the upper bound.

Lloyd et al. (2015) set the intensity function λ(t) = f2(t). The inference is

performed by optimizing the evidence lower bound (ELBO). The Gaussian process f is

dependent on a set of inducing points and the approximate distribution of the inducing

points is assumed to be Gaussian.
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Lian et al. (2015) combine a piecewise constant history embedding into a Gaussian

process prior. The intensity function is λ(t) = f2(t), where f(t) is a hierarchical Gaussian

process. A low dimensional vector fM is assumed to be from a Gaussian distribution and

the f(·) as the input to λ(·) is a Gaussian process conditional on fM . An approximate

variational form of the Gaussian distribution for fM is given and the inference is conducted

through optimizing the ELBO.

Donner and Opper (2018) introduce a data augmentation scheme for the inference

of SGCP. With the mean-field assumption, the inference can be done by optimizing an

ELBO with an analytic form.

Aglietti et al. (2019) construct another data augmentation scheme for SGCP.

By applying an augmentation of superposition of Poisson point processes, the variational

inference avoids the calculation of numerical integrals and scales to large datasets well.

3.3.1 Summary

Such models assume the intensity functions are smooth. However, the intensity

functions can experience sudden changes upon events arrivals, e.g., a big earthquake can

dramatically increase the probability to have a small earthquake in the near future. And

the integral of the intensity function is not available in a closed form. Some approximations

are required for the computation of the integral. Moreover, these models are not able to be

stacked to construct a deep model built with point processes.
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3.4 Piecewise-constant Intensity Model

Another line of work it to use a PCIM (Gunawardana et al., 2011) or other variants

(Weiss and Page, 2013; Lian et al., 2015). Gunawardana et al. (2011) assume the conditional

intensity function is piecewise constant. The intensity at each piece is assumed to be from a

Gamma distribution and thus the posterior has a closed form. A decision-tree-based learning

is developed for the learning of local structures. Weiss and Page (2013) extends the tree

structures from Gunawardana et al. (2011) to the forests structures.

The history of events is embedded into a piecewise-constant function, which is the

intensity function itself or a function that can output the intensity. The size of time windows

for the calculation of the piecewise-constant function needs to be pre-determined. And these

models lose the ability to have continuous history embedding.

3.5 Variational Inference

Variational inference (VI) transforms a posterior inference problem into an op-

timization problem, and it has already been very successful for probabilistic modeling.

Usually, VI first constructs a family of approximate distributions q, and then adjusts the

parameters of q to approach the true posterior distribution p by minimizing a divergence

metric. Most VI algorithms try to minimize the exclusive KL divergence, DKL(q ‖ p) (e.g.,

Jordan et al., 1999; Kingma and Welling, 2014; Ranganath et al., 2014; Blei et al., 2017).

While it is computationally efficient to optimize the exclusive KL divergence, it can lead to

underestimation of the uncertainty of the posterior (Naesseth et al., 2020). To mitigate the

underestimation issue, Naesseth et al. (2020) proposed a VI algorithm, called Markovian
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score climbing (MSC), that minimizes the inclusive KL divergence, DKL(p ‖ q). MSC uses

MCMC to get an unbiased estimate of the gradient of the inclusive KL divergence. Naesseth

et al. (2020) also show that MSC can be combined with maximum likelihood estimation

(MLE) to jointly learn variational parameters and model parameters.

In a similar fashion, we design a VI algorithm for NSPs that minimizes inclusive

KL divergence. Different from MSC, whose variational parameters are for Markov kernels,

our variational parameters are for auxiliary variables of MCMC. Moreover, the number of

dimensions is fixed in Naesseth et al. (2020), and our MCMC has an unbounded number of

dimensions.
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Chapter 4

Posterior Sampling

One of the fundamental questions we would like to ask is “What is the distribution

of the points for the hidden layers given the observed data points?” Unfortunately, the

posterior hidden point processes are not TPPs even when we only consider the temporal

DNSPs with the kernels as in Example 2.4, because the events belonging to a point process

have correlations to all the events from that point process and the events from other point

processes connecting to that point process. The posterior sampling for a hidden point process

is not trivial as it involves the sampling for an unbounded number of variables and there are

no simple expressions for the posterior hidden point processes. In this chapter, we describe

a posterior sampling method for temporal DNSPs, but the algorithm can be generalized to

general spatial DNSPs easily.

The PCIF for our model is given in Proposition 4.1. See Appendix A for more

details.
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Proposition 4.1. For temporal DNSPs, the Papangelou conditional intensity function for

the posterior point process of Z`,k is

λP;`,k(t) =λ`,k(t)

·

K`−1∏
i=1

(
exp

(
−Φ(`,k)→(`−1,i)(T − t)

) ∏
t`−1,i,j>t

λ′`−1,i(t`−1,i,j , t)

λ`−1,i(t`−1,i,j)

) , (4.1)

where

λ′`−1,i(x, t) = λ`−1,i(x) + φ(`,k)→(`−1,i)(x− t)

and

Φ(`,k)→(`−1,i)(x) =

∫ x

0
φθ(`,k)→(`−1,i)

(τ)dτ.

From Proposition 4.1, we can see that the PCIF at time t is not only controlled by

the events on layers `+ 1 through λ`,k(·), but controlled by the events on layers ` and `− 1

through {λ`−1,i(·)}
K`−1

i=1 .

As the PCIF has complex correlations both within and between nodes, it is hard

to directly do posterior sampling for the hidden point processes. Considering the simplest

case, if we only have one hidden layer, our model just becomes a multivariate NSP. Typical

methods for the posterior sampling of NSP include Metropolis-Hastings (M-H) algorithm

(Metropolis et al., 1953; Norman and Filinov, 1969; Hastings, 1970), and spatial birth-and-

death (SB&D) algorithm (Kelly and Ripley, 1976; Ripley, 1977; Baddeley and Møller, 1989).

In the SPPs community, SB&D is more popular possibly due to its simplicity and efficiency

(Geyer and Møller, 1994; Clifford and Nicholls, 1994; Møller and Waagepetersen, 2003).

Unfortunately, the sufficient condition for the convergence of SB&D is not satisfied in our

case, and it is an open question of whether SB&D converges for our model. We provide

more details in Appendix B.
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4.1 Markov Chain Monte Carlo

We devised a Markov chain equipped with auxiliary variables that converges quickly

to the true posterior distribution. Compared with a naive MCMC sampler which just re-

samples all the hidden events from homogeneous Poisson processes every time as the proposal,

our posterior sampling is much more efficient due to the help of auxiliary variables.

Remark 4.2. Our MCMC can be applied to non-casual kernels (i.e., the kernels can be

functions which have non-zero values in the whole space, like a Gaussian function) and SPPs

with any dimensions, not only temporal DNSPs. No matter how we choose the kernel, the

detailed balance and ergodicity conditions are still satisfied, and thus the MCMC sampler

still converges to the posterior distribution.

4.1.1 Virtual Events

Similar to prior work (Rao and Teh, 2011, 2013; Qin and Shelton, 2015; Shelton

et al., 2018), we add virtual events as auxiliary variables for our MCMC sampler. They work

by providing the candidates for the real events of the hidden point processes, and they do

not contribute to any intensity functions. With the help of the virtual events, we only need

to search for the real events where the virtual events appear, instead of the whole space. We

explore all possible real event locations by resampling virtual events.

For each data point x, there are L layers of virtual point processes (VPPs) Z̃ =

{Z̃1, . . . , Z̃L} aligning with the hidden real point processes (RPPs) Z, where Z̃` = {Z̃`,k}K`k=1
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with Z̃`,k as a virtual point process. The CIF for Z̃`,k conditioned on Z`−1 is

λ̃`,k(t̃) = µ̃`,k +

K`−1∑
i=1

∑
t`−1,i,j

φ̃θ̃(`−1,i)→(`,k)
(t`−1,i,j − t̃) (4.2)

where µ̃`,k ≥ 0 is the base rate, φ̃θ̃(`−1,i)→(`,k)
(·) is the virtual kernel function, which we

assume is a gamma kernel for TPPs as in Example 2.4. Note that φ̃θ̃(`−1,i)→(`,k)
(t`−1,i,j − t̃)

evolves in the opposite direction to φθ(`+1,i)→(`,k)
(t− t`+1,i,j), the reason for which we will

explain later. However, the intensity of virtual events at layer ` depends on the real events

at layer `− 1, not the virtual events there.

4.1.2 Complete Likelihood

The complete likelihood for the joint RPPs and VPPs for a data point is

p(x,Z=z, Z̃=z̃) = p(zL)
L−1∏
`=0

p(z` | z`+1)p̃(z̃`+1 | z`) (4.3)

where

p(zL) =
∏KL
k=1 p(zL,k),

p(z` | z`+1) =
∏K`
k=1 p(z`,k | z`+1),

p̃(z̃` | z`−1) =
∏K`
k=1 p̃(z̃`,k | z`−1),

The likelihood of zL,k is

p(zL,k) = exp (−µL,kT )µ
mL,k
L,k ,

where mL,k is the number of events drawn from ZL,k.

The likelihood of z`,k for 0 ≤ ` ≤ L− 1 is

p(z`,k|z`+1)=exp

( ∑
t`,k,j≤T

log λ`,k(t`,k,j)−
∫ T

0
λ`,k(t) dt

)
.
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(a) Re-sample virtual

events

(b) Flip: real to vir-

tual

(c) Flip: virtual to real (d) Swap

Figure 4.1: Examples for sampler moves.

(Here and for the rest of the paper, we let z0,k be xk.)

The likelihood of z̃`,k for 1 ≤ ` ≤ L is

p̃(z̃`,k|z`−1)=exp

( ∑
t̃`,k,j≤T

log λ̃`,k(t̃`,k,j)−
∫ T

0
λ̃`,k(t) dt

)
.

4.1.3 Sampler Moves

During the sampling process, we first select a hidden point process uniformly and

then apply a move selected randomly from the following three types with a predetermined

probability distribution. See Figure 4.1 for illustration, where represents a real event, and

represents a virtual event.

Move 1: Re-sample virtual events. This move re-samples the virtual events for

a VPP. The dimensionality of the samples is changed after each re-sampling. But the

determinant of the Jacobian matrix, introduced as the correction for the changes of variables

in reversible-jump MCMC (Green, 1995), is 1, since the new variables are independent of

the current state of the Markov chain. The acceptance probability is always 1 for this move.

See Appendix C.1 for more details.
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Move 2: Flip. We uniformly pick an event from the union of the samples from the

RPP and the VPP, and then propose to change the type for that event. If the type of the

picked event is real, we propose to flip it to be a virtual event, and vice versa.

Move 3: Swap. One event is picked uniformly from the samples for each of the

RPP and the VPP. Then we propose to swap the types of these two events, i.e., the real

event becomes a virtual event and vice versa.

Suppose the proposals for the changes are to adjust the events in z`,k and z̃`,k to

become the events in z′`,k and z̃′`,k. Then the likelihood ratio is

P =
p(z′`,k|z`+1)p̃(z̃′`,k|z`−1)

p(z`,k|z`+1)p̃(z̃`,k|z`−1)
·
p(z`−1|z′`)p̃(z̃`+1|z′`)
p(z`−1|z`)p̃(z̃`+1|z`)

,

where

p(z`−1 | z`) =
∏K`−1

k=1 p(z`−1,k | z`),

p̃(z̃`+1 | z`) =
∏K`+1

k=1 p̃(z̃`+1,k | z`).

The ratio for the proposal probability is 1 for both Move 2 and Move 3. So the

acceptance probability for Move 2 and Move 3 is min(1,P · 1). See Appendix C.2 and C.3

for a detailed derivation.

It is necessary to have Move 3 to help accelerate mixing even though Move 2 seems

to already include the ability to swap through two consecutive flips. However, often there

is a real event that has large positive contribution to the likelihood in Equation 4.3. If we

propose to flip this event to a virtual event, the likelihood ratio P would be very small,

hence this real event would stay in the same place for a long time. Similarly, flipping a

virtual event first would be unlikely.

28



With these three sampler moves, we can address why we use VPP intensity functions

of the form of Equation 4.2:

1. The intensity functions for the VPPs are only controlled by the RPPs on the lower

layers. Thus, we are able to sample the VPPs directly and efficiently, using the

inversion method (Çinlar, 2013) in Move 1, to push the information from bottom to

top.

2. The virtual events tend to appear more at the places where the probability is high to

have a real event. Notice that the distribution of the real events as the children of the

parent events on the upper layer follow the shape of the kernel functions. If the kernel

function is decreasing, then the real events as children on the lower layers tend to be

at places closer to the right of parent events on the upper layer. Then it makes sense

to propose more virtual events on the upper layers closer to the left of real events on

the lower layer. So it is natural to have virtual kernel functions that evolve with time

in the reverse direction to the real kernel functions.

3. The base rates µ̃`,k can help accelerate the mixing for the point processes not directly

connected to the evidence. Consider a three-layer model with x as the evidence,

Z1,1, Z2,1 as the RPPs, and Z̃1,1, Z̃2,1 as the VPPs. If there is no base rate µ̃2,1, then

all the virtual events in Z̃2,1 are drawn as the children of the real events in Z1,1. And

the virtual events from Z̃2,1 are fixed when we propose to move the events belonging

to Z1,1. Then the probability to reject a Move 2 or 3 for the events belonging to

Z1,1 would be very high, as the children from Z̃2,1 would restrict the mobility of their
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parents from Z1,1. If instead we have a base rate µ̃2,1, then the base rate can help take

care of the children and the parents have more freedom to move.

4.1.4 Update Virtual Kernels Parameters

Because we want the distribution of the proposed virtual events to be as close

as possible to the posterior distribution of the real events, we would like to maximize the

likelihood of the parameters for the VPPs assuming the posterior samples for the real events

are drawn from the VPPs. That is, we use gradient ascent to adjust the parameters of the

VPPs to make it more efficient (as the sampler is valid across different VPP parameters).

As the number of events usually varies significantly for different evidence samples,

we assume the base rates µ̃n,L,i and µn,i on the top layer are different for each data point

xn, where n represents the data index.

Let z
(1)
n , . . . , z

(S)
n be the posterior samples from the distribution p(Zn | xn;µn,θ),

where θ =
[
θ(`+1,∗)→(`,∗)

]L−1

`=0
are the parameters of the kernel functions and µn = [µn,i]

KL
i=1

are the parameters of the HPPs on the top layer. Given the log-likelihood of the parameters

of the VPPs w.r.t the real events

˜llh
(
θ̃, µ̃n; xn, zn

)
=

L∑
`=1

˜llh(`−1,∗)→(`,∗);xn,zn

where

˜llh(`−1,∗)→(`,∗);xn,zn =

K∑̀
k=1

( ∑
tn,`,k,j≤T

log λ̃n,`,k(tn,`,k,j)−
∫ T

0
λ̃n,`,k(t)dt

)
,
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the update rules are

µ̃n ←µ̃n +
r̃

SN

S∑
s=1

∇µ̃n
˜llh
(
θ̃, µ̃n; xn, z

(s)
n

)
, (4.4)

θ̃ ←θ̃ +
r̃

SN

N∑
n=1

S∑
s=1

∇θ̃
˜llh
(
θ̃, µ̃n; xn, z

(s)
n

)
, (4.5)

where

µ̃n =
[
[µ̃n,`,k]

L
`=1

]K`
k=1

,

θ̃ =

[[[
θ̃(`−1,i)→(`,j)

]K`−1

i=1

]K`
j=1

]L
`=1

,

N is the number of data points, and r̃ > 0 is the step size for optimizing. See Appendix D.1

for the gradient.
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Chapter 5

Inference

In this chapter, we introduce moment-based inference in Section 5.1, Bayesian

inference in Section 5.2, and Monte Carlo expectation-maximization in Section 5.3. Moment-

based inference chooses to minimize the contrast between a kernel estimation and the

theoretical expression of the pair correlation function. Moment-based inference does not

involve the simulation of the posterior hidden point processes and thus is computationally

efficient. Bayesian inference and Monte Carlo expectation-maximization all require posterior

samples of the posterior hidden point processes. Bayesian inference produces the samples

of the parameters from the posterior distributions of the parameters, while Monte Carlo

expectation-maximization estimates the set of parameters by maximizing the marginal

likelihood of the observed data. We also investigate variational inference with exclusive

Kullback–Leibler (KL) divergence (Kullback and Leibler, 1951; Kullback, 1997) in Section

5.4 and inclusive KL divergence in Section 5.5.
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5.1 Moment-based Inference

Andersen et al. (2018) give a moment-based method for the inference of univariate

NSPs of order 2, but it could be easily generalized to univariate NSPs with any order.

Although the moment-based inference is computationally easy, some hyper-parameters for

the estimation of the moments have to be tuned manually and it is not able to estimate the

posterior intensity surface of the unobservable point processes.

5.2 Bayesian Inference

We use MCMC to approximate the posterior distributions of the parameters. We

use Θ = {θ, {µn}} to denote all of the parameters. We need to sample Θ from the posterior

distribution

p(Θ | x, z) =
p(x, z,Θ)

p(x, z)
.

Each time we uniformly select a parameter Θ from Θ. The acceptance ratio is

A = min(α, 1),

where

α =
p(Θ′ | x, z)q(Θ′ → Θ)

p(Θ | x, z)q(Θ→ Θ′)
=
p(Θ′)p(x, z | Θ′)q(Θ′ → Θ)

p(Θ)p(x, z | Θ)q(Θ→ Θ′)
,

Θ′ is the proposes value, and Θ is the current value.
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We assume the prior distributions for each parameter is Gamma distribution, and

use h to denote the shape, c to denote the scale:

p(Θ) = Gamma(θ;h, c),

q(Θ′ → Θ) = Gamma(Θ;h,Θ′/h),

q(Θ→ Θ′) = Gamma(Θ′;h,Θ/h),

and

α =(
((((

((((1/(Γ(h)ch)(Θ′)h−1 exp(−Θ′/c) · 1/
(
�
��Γ(h)(Θ′/h)h

)
���Θh−1 exp(−Θ/(Θ′/h)) · p(x, z | Θ′)

((((
((((1/(Γ(h)ch)Θh−1 exp(−Θ/c) · 1/ (��

�Γ(h)(Θ/h)h)���
�

(Θ′)h−1 exp(−Θ′/(Θ/h)) · p(x, z | Θ)

=
Θh exp(−Θ′/c−Θ/(Θ′/h)) · p(x, z | Θ′)
(Θ′)h exp(−Θ/c−Θ′/(Θ/h)) · p(x, z | Θ)

.

We generate synthetic data and do posterior sampling for both the parameters

and the hidden events for a DNSP with 2 hidden layers and 1 type. The kernel function

is an exponential kernel function (i.e., φθ(x) = µ+ αβ exp(−βx)). We collect samples for

parameters as shown in Figure 5.1. After 10000 burn-in steps, we collect 10 sets of samples

with sample size as 5000 for each parameter. µ0 is the constant rate for the top layer,

µ1, α1, β1 are for layer 1, and µ2, α2, β2 are for layer 2.

5.3 Monte Carlo Expectation-Maximization

Bayesian inference requies the posterior sampling for the parameters, but in our

case it becomes too slow to be feasible if we have many parameters. For more efficient

inference, we adopt Monte Carlo expectation-maximization (MCEM) (Wei and Tanner,

1990) as an indirect way to maximize the marginal likelihood. Different from the ordinary
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Figure 5.1: Full Bayesian Inference for Parameters
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Figure 5.1: Full Bayesian Inference for Parameters (cont.)

EM, the expected value of the log-likelihood is approximated by a Monte Carlo method in

the expectation steps. Posterior samples of the hidden point processes are required for the

estimation of the expected values.

MCEM iteratively applies the following two-step process until the parameters for

the RPPs converge.

Step 1. Generate posterior samples z
(1)
n , . . . , z

(S)
n from the distribution p(Zn |

xn;µn,θ).

Step 2. Update the parameters. Given the log-likelihood function of the parameters

of the RPPs w.r.t the real events

llh(θ,µn; xn, zn) = log

(
KL∏
i=1

p(zn,L,i) ·
L−1∏
`=0

K∏̀
i=1

p(zn,`,i | zn,`+1)

)
, (5.1)

the update rules for the parameters are

µn ← arg max
µn

{
1

S

S∑
s=1

llh(θ,µn; xn, z
(s)
n )

}
, (5.2)
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θ ← θ +
r

SN

N∑
n=1

S∑
s=1

∇θllh(θ,µn; xn, z
(s)
n ), (5.3)

where N is the number of data points and r > 0 is the step size for optimizing. See Appendix

D.2 for the gradient and maximization formula.

The inference here is not the standard MCEM. We combine full maximization

(Equation 5.2) and ascent-based MCEM (Equation 5.3) described in Caffo et al. (2005).

When the sample size S goes to infinity and we update the parameters as in Equations 5.2

and 5.3, the expected value of the log-likelihood in Equation 5.1 increases at each iteration

with probability converging to 1 (Caffo et al., 2005). The general theory for the convergence

of MCEM has not been well-established. Different senses and different approaches for the

convergence analysises are given by Neath et al. (2013). We tried various settings for MCEM

and choose the one that is stable and computationally efficient. Adam (Kingma and Ba,

2015) was utilized for the optimization of the parameters of the kernel and virtual kernel

functions. Notice that we are not changing the parameters for the real or virtual kernels

during MCMC sampling. The posterior samples for the real events are collected from the

MCMC sampler after it reaches convergence. Pseudo-code is given in Algorithm 1.

5.3.1 Experiments

The code is available online at https://github.com/hongchengkuan/Deep-Neym

an-Scott-Processes.
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Algorithm 1 MCEM for DNSPs

Input: data {xn}, model M

Initialization: base rates {µn}, kernel parameters θ, virtual base rates {µ̃n}, virtual kernel

parameters θ̃, initial states for the Markov chains.

1: for n = 1 to N do

2: repeat

3: z
(1)
n , . . . , z

(S)
n ∼ p(Zn | xn;µn,θ) by MCMC

4: Maximize base rates based on Equation 5.2 . Maximize the marginal likelihood

5: Use Adam to optimize Equation 5.3 . Maximize the marginal likelihood

6: Use Adam to optimize Equations 4.4 and 4.5

7: Record z
(S)
n as the initial state for the next Markov chain in MCMC

8: until the expected log-likelihood in Equation 5.1 converges

9: end for

Architectures

We constructed hierarchical models as in Fig. 5.2. Black horizontal arrows are

point processes. Gray arrows are model connections. For the 1-hidden model, we only have

one layer of hidden TPPs and there is only one TPP in total on the top layer. The hidden

TPP is connected to all the types of events in the evidence.

For the 2-hidden model, we have the one hidden TPP on layer 1 for each type in

the evidence with a single connection between matched hidden- and observed-TPPs, i.e.,

φθ(1,i)→(0,j)
(·) = 0 if i 6= j. There is also only one hidden TPP on the top layer, which is

connected to all hidden TPPs on layer 1.
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Figure 5.2: n-hidden

The n-hidden model can be constructed by adding more hidden layers for each type

similarly. For each dataset, the best result is shown in bold and underlined, the runner-up

in bold.

Training and Testing

The probabilities of the moves for Move 1, Move 2, and Move 3 are 0.2, 0.6, and

0.2 respectively. We train the models using Algorithm 1 to get the parameters of the kernel

and virtual kernel functions.

During testing, the parameters of the kernel functions and virtual kernel functions

are fixed. We update the base rates according to Eqs. 5.2 and 4.4. The posterior samples

for RPPs are collected to calculate the expectation of the log-likelihood per event. For each

sequence in the evidence, there is an event at the end. To better capture the last event, we

assume there is a synthetic real event for each hidden TPP at the end. This synthetic real

event is only involved with the calculation of the intensity functions for the VPPs.
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Likelihood

For a neural network, the CIF has a parametric form λfΘ(x)(t) determined by a

function fΘ and the data x. The parameters Θ for fΘ are learned during training. For

testing, the CIF λfΘ(x)(t) is determined by the testing data x and fΘ. The log-likelihood is

logP (x | λfΘ(x)(t)).

For a DNSP, Θ, the parameters for the kernels, are learned during training, and fully

specify P (Z | x). We use a random function fΘ to determine the CIF. The distribution of

fΘ(x) is fully determined by P (Z | x), and thus is fully determined by Θ and x. We calculate

the expected value of the log-likelihood EfΘ(x)[logP (x | λfΘ(x)(t))] = EZ∼P (Z|x)[logP (x | Z)]

to compare with the baselines.

We do not compare the marginal log-likelihood logEZ∼P (Z)[P (x | Z)] of our model

with the log-likelihood of the neural-network-based models because there are no efficient

methods for estimating this expectation, as “forward sampling” with P (Z) is prohibitively

inefficient and samples from P (Z | x), which our method is designed to generate, cannot be

used (as the importance sampling ratio weight cannot be calculated).

Similarly, it is difficult to calculate the marginal likelihood for MTPP and the

log-likelihood for MTPP is the evidence lower bound per event.

To address the difference in likelihood calculations across methods, we also provide

two additional metrics: predictive accuracy and root mean squared error, which are handled

in exactly the same fashion for all methods (see below).
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Prediction

For prediction, each method predicts the time and type of the next event, condi-

tioned on all events prior to it. This process is repeated for every event in the testing data

(slowly increasing the conditioning set for each new prediction).

Instead of calculating an infinite integral as in NHP and SAHP, or using an

additional layer of a neural network as in THP, we simply do forward sampling to predict

the time and type for the next future event, as we have an explicit formula for the intensity.

We predict the time for the next future event from the beginning to the end. After we

get to the convergence of our Markov chain, we draw the samples for the next future event ei =

(ti, ki) conditional on the current state of the Markov chain. Suppose the samples for the next

future event ei conditional on the history Hi−1 = {(t1, k1), (t2, k2), (t3, k3), · · · , (ti−1, ki−1)}

are (t1i , k
1
i ), (t

2
i , k

2
i ), . . . , (t

S
i , k

S
i ), where {tji}Sj=1 are the times of the samples for the future

event ei and {kji }Sj=1 are the types of the future event ei. The prediction for the future event

time is t̂i = 1
S
∑S

j=1 t
j
i and the type prediction is k̂i = arg maxk∈{1,...,K0}

∑S
j=1 1k(kji ), where

1k(k
j
i ) is the indicator function which is equal to 1 iff k = kji . Then we calculate the root

mean squared error (RMSE) for the time prediction and accuracy for the type prediction.

After the prediction for ei, we use the current state of the Markov chain for Hi−1

as the initial state for the Markov chain for Hi and run the Markov chain until convergence.

Then we predict the time and type for the event ei+1 conditional on Hi the same as how we

predict the event ei. The pseudocode can be found in Algorithm 2.
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Algorithm 2 Predict en+1 conditional on {e1, e2, · · · , en}
Input: observed data x = {e1, e2, · · · , en}, where ei = (ti, ki), and model M

Initialization: Θ, Θ̃, and sample size S.

Output: time prediction t̂n+1, type prediction k̂n+1

1: for s = 1 to S do

2: sample zs ∼ p(z | x; Θ) . posterior sampling

3: end for

4: estimate the CIFs for the top layer based on {zs}Ss=1 (MLE)

5: for s = 1 to S do

6: sample zs ∼ p(z | x; Θ) . posterior sampling

7: sample the future time t̂sn+1 based on zs . time extension sampling

8: sample the future type k̂sn+1 based on zs . time extension sampling

9: end for

10: t̂n+1 = 1
S

S∑
s=1

t̂sn+1

11: k̂n+1 = arg max
k∈{1,...,K0}

S∑
s=1

1k(k̂
s
n+1)

Synthetic Data Experiments

We use synthetic data to illustrate the modeling power of multiple layers. The

synthetic data are generated from DNSPs with differing numbers of hidden layers and 2

event types. They are divided into training and test sets. Then we apply our models with

different number of hidden layers to train and test the synthetic datasets. The log-likelihood

per event, time prediction root mean squared error (RMSE) and type prediction accuracy for

the test set are shown in Table 5.1. The leftmost column represents the different depths we
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use to generate synthetic data and the right 3 columns are the results when we use different

model depths for training and testing. For log-likelihood (which our model is trained for),

increasing depth helps, particularly up to the depth of the data. Accuracy and RMSE have

similar behavior.

Table 5.1: Synthetic Experimental Results

Synthetic Datasets Model Log-likelihood RMSE Accuracy

2-hidden

1-hidden −0.006 1.048 0.722

2-hidden 0.286 0.942 0.760

3-hidden 0.301 1.010 0.762

4-hidden 0.304 1.189 0.757

3-hidden

1-hidden 0.528 0.731 0.782

2-hidden 0.822 0.611 0.812

3-hidden 0.835 0.613 0.814

4-hidden 0.831 0.670 0.809

4-hidden

1-hidden 1.177 0.411 0.820

2-hidden 1.458 0.409 0.845

3-hidden 1.464 0.391 0.846

4-hidden 1.466 0.391 0.846

43



Real-world Data Experiments

We compare our DNSP to four currently popular continuous-time event modeling

methods: MTPP (Lian et al., 2015), the neural Hawkes process (NHP) (Mei and Eisner,

2017), the self-attentive Hawkes process (SAHP) (Zhang et al., 2020), and the transformer

Hawkes process (THP) (Zuo et al., 2020). MTPP combines Gaussian processes and piecewise-

constant intensity models (Gunawardana et al., 2011), while the other baselines are based

on neural networks. The datasets we use are retweets, earthquakes, and homicides. Each

dataset is split into training, validation, and test sets randomly five times. We report the

mean values with the standard deviations shown in parentheses. Validation is used to tune

the hyperparameters and early stopping for all the datasets for NHP, SAHP and THP.

For DNSPs, validation is only used for early stopping for retweets dataset, as we only use

mini-batch gradient ascent for retweets. Batch gradient ascent and termination based on

training are used for earthquakes and homicides. For MTPP, each task corresponds to a type

in our experiments. The model parameters of MTPP are fixed across different sequences

and each sequence has their own variational parameters. We use forward sampling to do the

prediction for MTPP in a similar way.

Datasets

Retweets (Zhao et al., 2015) The retweets dataset collected sequences of tweets streams.

Each sequence contains the times and types for some follow-up retweets. We use the same

dataset as used in NHP. The retweets are grouped into three types (small, medium and

large) according to the number of followers of the users who owned the retweets.
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Earthquakes (NCEDC, 2014; BDSN, 2014; HRSN, 2014; BARD, 2014) We collected

the times and magnitudes for earthquakes between 01/01/2014 00:00:00 and 01/01/2020

00:00:00 in the region spanning between 34.5◦ and 43.2◦ latitude and between −126.00◦ and

−117.76◦ longitude. If the magnitude of a earthquake is smaller than 1, we classify it as a

small earthquake, otherwise a large earthquake.

Homicides (COC) This dataset contains the times for homicides that occurred at five

contiguous districts (007-011) with the most homicides in Chicago from 01/01/2001 00:00:00

to 01/01/2020 00:00:00. The type for an event is the district where the homicide occurred.

The terms of use can be found at https://www.chicago.gov/city/en/narr/foia/data d

isclaimer.html.

The number of types, the number of total events and the number of sequences for

each dataset are summarized in Table 5.2.

Table 5.2: Datasets Statistics

Datasets # types # events
# sequences

train validation test

Retweets 3 2610102 20000 2000 2000

Earthquakes 2 156743 209 53 53

Homicides 5 3956 6 2 2
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Results The results in Table 5.3 indicate that our model achieves competitive results

compared to the baselines. We have the best RMSE for earthquakes and homicides, the best

accuracy for earthquakes, and the best likelihood for retweets and homicides. The likelihood

for the earthquakes dataset is only a little worse than SAHP and THP. Note that our model

only needs to fit tens of parameters during training, compared to the hundreds of thousands

parameters needed for the neural networks.

It is also notable that the 2-hidden is better than 1-hidden in terms of likelihood

and accuracy while, for RMSE, 2-hidden is worse than 1-hidden consistently. It indicates

that separate hidden TPPs for each type does increase the power to fit the evidence. The

RMSE of the 1-hidden model is not maintained when increasing model capacity to the

2-hidden model, because we are fitting to likelihood which is related but different than

RMSE. Note that on the homicides data, our RMSE error for both 2-hidden and 1-hidden

are significantly better than those of prior work.

We also ran the real-world experiments for both a fully connected model and a

model with more than 2 hidden layers. The likelihood, RMSE, and accuracy were not

improved, because the single top layer is sufficient to correlate events across the different

types.

Time Complexity The time complexities for flip, swap, and resampling for a single event

in MCMC are O(1), constant irrespective of any values (amount of data, parameter values,

length of time, etc). A full analysis of the MCMC time complexity would require bounding

46



Table 5.3: Real-World Experimental Results

Datasets Model Log-likelihood RMSE(×104) Accuracy

Retweets

MTPP −13.44(0.18) 1.64(0.03) 0.36(0.00)

NHP −6.12(0.03) 1.64(0.03) 0.48(0.01)

SAHP −4.38(0.17) 1.60(0.04) 0.51(0.03)

THP −4.63(0.03) 1.54(0.03) 0.61(0.00)

1-hidden −4.15(0.07) 1.60(0.03) 0.48(0.00)

2-hidden −3.54(0.15) 1.69(0.07) 0.57(0.00)

Earthquakes

MTPP −10.45(0.09) 0.20(0.01) 0.52(0.00)

NHP −8.70(0.08) 0.20(0.01) 0.39(0.01)

SAHP −8.29(0.25) 0.16(0.01) 0.56(0.03)

THP −8.13(0.05) 0.20(0.01) 0.61(0.01)

1-hidden −8.45(0.05) 0.15(0.01) 0.61(0.01)

2-hidden −8.43(0.06) 0.16(0.01) 0.60(0.01)

Homicides

MTPP −18.15(1.40) 23.14(3.41) 0.20(0.02)

NHP −21.93(0.93) 23.13(3.42) 0.18(0.03)

SAHP −14.02(0.33) 23.13(3.42) 0.19(0.02)

THP −14.87(0.63) 23.13(3.42) 0.26(0.03)

1-hidden −11.68(0.20) 17.40(2.68) 0.25(0.01)

2-hidden −10.78(0.11) 17.73(2.84) 0.25(0.02)

the number of steps necessary (by mixing time arguments, usually). As with almost all

other non-trivial MCMC inference methods, we do not have such a bound.
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Intuitively, a model with more hidden layers has much larger search space for the

events from a posterior distribution and it should take more time to get fully mixed. And

we have observed experimental results to support our intuition. As shown in Table 5.4, the

2-hidden models take more time to get fully mixed than 1-hidden models.

The experiments are trained on a cluster with multiple CPU cores. The number of

CPU cores ranges from 8 to 64.

Table 5.4: Training Time in Hours

Datasets Model Time

Retweets
1-hidden 12.0

2-hidden 108.5

Earthquakes
1-hidden 0.8

2-hidden 22.3

Homicides
1-hidden 1.1

2-hidden 14.0

5.4 Variational Inference with Exclusive KL Divergence

Although the MCMC algorithm can approximate the true posterior distribution

with an arbitrarily small error, the burn-in steps usually consume a lot of time. Moreover,

for every sequence of data, we need to maintain different real and virtual events sets with

different number of events and there is no single instruction we can use to manipulate all the
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events sets at the same time, thus the GPU implementation of MCMC is not immediately

available. Variational inference (VI) (Jordan et al., 1999) casts the problem of approximating

the posterior distribution problem into an optimization problem. For every sequence of

data, we use a same number of parameters to describe the hidden point processes and the

sequences of events from a same point process can be padded with dummy values into

sequences with a same length.

For DNSPs, the approximate distribution can break up the correlations between

hidden points and assume the hidden points are independently distributed. In doing so,

the hidden points are completely characterized by an intensity function, which specifies

the probability of the number of hidden points at each infinitesimal region as a Bernoulli

random variable. The intensity function is then obtained by minimizing the exclusive

Kullback–Leibler (KL) divergence (Kullback and Leibler, 1951; Kullback, 1997) between our

assumed distribution and the posterior distribution of hidden points.

Definition 5.1 (KL divergence). The general KL divergence from a point process with

probability measure P to a point process with probability measure Q is

DKL(Q ‖ P ) =

∫
log

(
dQ

dP

)
dQ.

The approximate point processes for the posterior point processes are independent

Poisson processes ZE = {ZE1 , · · · ,ZEL}, with ZE` = {ZE`,k}
K`
k=1. The intensity function for

ZE`,k is assumed to be λE`,k(·). Under this assumption, all of the correlations between hidden

events are removed.
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Proposition 5.2. Minimizing the exclusive KL divergence DKL(Q(ZE) ‖ P (Z)) is equiva-

lent to maximizing the evidence lower bound (ELBO)

L =−
∑
`,i

∫
S`,i

λE`,i(t)(log λE`,i(t)− 1)dt

+

(∑
tx0,k,j

∫
log

∑
tz1,i,h

φ(1,i)→(0,k)(t
x
0,k,j − tz1,i,h)dQ(ZE)

−
∑
`≥1,i,k

∫
S`,i

Φ(`,i)→(`−1,k);S`−1,k
(t)λE`,i(t)dt

+
∑
`≥1

∫ ∑
k,j

log
∑
i,h

φ(`+1,i)→(`,k)(t
z
`,k,j − tz`+1,i,h)dQ(ZE)

)
, (5.4)

where {S`,i} are the bounded regions where the point processes exist, Φ(`,i)→(`−1,k);S`−1,k
=∫

S`−1,k
φ(`,i)→(`−1,k)(τ − t)dτ , tx represents an event from the data, and tz represents an

event from the approximate point process. Moreover, L is the lower bound for the marginal

probability density function.

See Appendix E.1 for the proof.

5.4.1 Approximate the Intensity Function

The ELBO in Equation 5.4 is a functional w.r.t {λE`,i(·)} and the direct way to

minimize the functional is to calculate the functional derivative and find a critical point for

the functional. But the expression for the ELBO is quite complicated and there is no simple

expression for the critical point.

For simplicity and demonstration purpose, we only consider approximating DNSPs

for TPPs as in Example 2.4. So we parameterize the cumulative intensity function using

the rational quadratic splines as by Gregory and Delbourgo (1982); Durkan et al. (2019);

Shchur et al. (2020b), and the intensity function is just the derivative of the cumulative
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intensity function. As mentioned in Section 3.2, the intensity function modeled using rational

quadratic splines is very flexible and sampling from the IPP is extremely fast.

Parameterization of the spline

We follow the notations and expressions as of Durkan et al. (2019). The spline

g maps [a, b] to [ga, gb] and a set of knots {(x(k), y(k))}Kk=0 is selected s.t. they satisfy the

following conditions:

(x(0), y(0)) = (a, ga), (5.5)

(x(K), y(K)) = (b, gb), (5.6)

x(k) < x(k+1) and y(k) < y(k+1) for all k = 0, · · · ,K − 1. (5.7)

We use {δ(k)}Kk=0 to denote the non-negative derivatives of the spline at the knots. The

monotonic rational quadratic spline given by Gregory and Delbourgo (1982) passes through

every knot. The functional form for the spline is

g(x) =
α(k)(ξ)

β(k)(ξ)
, x ∈ [x(k), x(k+1)]

where

α(k)(ξ) = s(k)y(k+1)ξ2 +
[
y(k)δ(k+1) + y(k+1)δ(k)

]
ξ(1− ξ) + s(k)y(k)(1− ξ)2, (5.8)

β(k)(ξ) = s(k) +
[
δ(k+1) + δ(k) − 2s(k)

]
ξ(1− ξ), (5.9)

s(k) =
(y(k+1) − y(k))

w(k)
, (5.10)

ξ =
x− x(k)

w(k)
, (5.11)

w(k) = x(k+1) − x(k). (5.12)

The details of the inverse and derivative for g can be found in Durkan et al. (2019).
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Parameterization of the transformation

Suppose we want to generate samples for a IPP for an interval [0, T ], then

Λ(t) = λ · g
(
t · 1

T

)
,

where g is a rational quadratic spline mapping from (0, 1) to (0, 1), and λ is a positive

parameter.

5.4.2 Synthetic Results

We use a synthetic experiment to demonstrate that our approximate posterior

point process is very close to the true posterior point process. The structures we use here

for DNSPs are 1-hidden and 2-hidden models. The number of types for both of them is 1.

Kernel We choose a gamma kernel as in Example 2.4. Let p = 1, α = 1 and β = 1, then

the kernel function is simply

φθ(x) =


e−x, for x > 0,

0, for x ≤ 0.

Differential Relaxation There is a discontinuous point for the kernel function at 0 and

the ELBO is not differentiable w.r.t the parameters of the spline. Like the relaxation trick

in Shchur et al. (2020b), we make the kernel differentiable by multiplying the kernel function

by a sigmoid function and the new kernel function becomes

φθ(x) = e−x · 1

1 + e−x/γ
, γ ∈ (0, 1).

The smaller the γ is, the more accurate the approximation is. But a small value for γ makes

training harder.
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Synthetic Data We assume there is only one type of event and the time interval is [0, 20].

The events for the evidence are at times at 6 and 10.

Intensity We compare the intensity function inferenced from rational quadratic spline

and the intensity estimated using MCMC samples. The intensity function produced by

VI is simply ∂
∂tΛ(t). For the estimation from MCMC samples, we first divide the whole

time interval into small sub-intervals. For each small sub-interval, we count the number of

events falling into that sub-interval and then divide the number by the length of that small

sub-interval to get the intensity for that small sub-interval.

The comparison results are given in Figure 5.3 and Figure 5.4, where the blue

circles are knots. It is obvious from the figures that the intensity function given by VI closely

follows the intensity function estimated by using MCMC samples.

5.5 Variational Inference with Inclusive KL Divergence

The mean-field approximation does not include any prior information from the

observation, which makes it hard to train and we cannot directly get the approximation

based on the observation. Hence, we design another class of approximate posterior point

processes with hierarchical structures, and the shapes of the approximate posterior point

processes depend on the observed data. Surprisingly, if we let the approximate posterior point

processes be our virtual point processes, the approximation can be learned using Algorithm 1.

During the training process, lines 4 and 5 in Algorithm 1 are used to maximize the marginal

likelihood, line 6 in Algorithm 1 is used to minimize the inclusive KL divergence. The
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Figure 5.3: Comparison of the intensity function between VI and MCMC for 1-hidden model.

parameters for the virtual point processes can serve as our parameters for the approximate

point processes. With the help of our approximate point processes, we can avoid the time-

consuming mixing steps of MCMC when performing prediction and we are able to achieve

better prediction performance for both the time and the type when only a limited amount

of time is allowed.

5.5.1 Approximate Posterior Point Processes

We denote our variational approximate point processes as ZI , and we assume they

have hierarchical structures like DNSPs. However, the approximate point processes are

generated from bottom to top (upward), instead of from top to bottom (downward). The

upward approximation mechanism allows us to infer the approximate posterior distributions
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Figure 5.4: Comparison of the intensity function between VI and MCMC for 2-hidden model.

of the point processes directly from the observation, which can help accelerate the sampling

process for the posterior point processes. Moreover, the events from the layers immediately

below can give heuristics for the positions of the posterior events from the layers immediately

above.

Generative Semantics for ZI The approximate posterior point processes are generative

models, and they are denoted as ZI = {ZI1, · · · ,ZIL}, with ZI` = {ZI`,k}
K`
k=1.

ZI1 is assumed to be Poisson processes, and the CIF for ZI1,k is

λI1,k(t) = qI1,k(t; z
I
0 = x,θI1,k(t)), (5.13)

where qI1,k(t; x,θ
I
1,k(t)) is a function of t with some parameters determined by the sampled

events from the observation x, and other parameters θI1,k(t) that can depend on time t.
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Next, we draw samples for each ZI` conditional on the samples zI`−1 from ZI`−1.

The CIF for ZI`,k conditional on ZI`−1 is

λI`,k(t) = qI`,k(t; z
I
`−1,θ

I
`,k(t)), (5.14)

where qI`,k(t; z
I
`−1,θ

I
`,k(t)) is a function of t with some parameters determined by the events

from zI`−1, and other parameters can also depend on time t.

5.5.2 Examples for Variational Point Processes

As explained above, there are two major goals when constructing the approxi-

mations: (1) the approximations should be able to propagate the information from the

observations to the top, and (2) the approximate posterior point processes should be close

to the true posterior point processes. For these purposes, we consider the following two

examples of functional forms for qI`,k(·) in this dissertation: upward Neyman-Scott processes

and upward self-attention processes.

Upward Neyman-Scott Processes (UNSP) Like the virtual point processes, we can

assume the approximate point processes are NSPs evolving in an upward direction. In this

case, the CIF is

λI`,k(t)= qI`,k
(
t; zI`−1,θ

I
`,k

)
= µI`,k +

K`−1∑
i=1

∑
t`−1,i,j

φθI
(`−1,i)→(`,k)

(t`−1,i,j − t), (5.15)

where ΘI
`,k =

{
µI`,k,

{
θI(`−1,i)→(`,k)

}K`−1

i=1

}
and µI`,k ≥ 0. We see that Equation 5.15 has the

same functional form as Equation 4.2.
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Upward Self-Attention Processes (USAP) Self-attention has been widely used in the

modeling for point processes (e.g., Zuo et al., 2020; Zhang et al., 2020; Chen et al., 2021).

Here, we use self-attention to encode the event information from a layer below to a layer

above. Each event t`−1,i,j is encoded into a hidden vector h`−1,i,j = fAttn(t`−1,i,j , z
I
`−1 =

{{t`−1,i,j}
m`−1,i

j=1 }K`−1

i=1 }) through self-attention. The CIF for t`−1,i,j−1 < t ≤ t`−1,i,j becomes

λI`,k(t) = qI`,k
(
t; zI`−1,θ

I
`,k

)
= µI`,k + φθI`−1,i,j

(t`−1,i,j − t), (5.16)

where ΘI
`,k =

{
µI`,k,

{{
θI`−1,i,j

}K`−1

i=1

}m`−1,i

j=1

}
, µI`,k ≥ 0, and θI`,k is the output of a linear

transformation of the hidden vector h`−1,i,j . More details can be found in Appx. F.

Comparison We compare UNSP, USAP, and MCMC in Figure 5.5. We have 3 events in

the observation (times at 6, 10, and 20), and we use MCMC, UNSPs and USAPs to infer

the posterior point processes. Layer 2 is further away from the observation than layer 1.

The yellow lines with many spikes are the approximate intensity functions estimated by

using the samples from MCMC. We divide the time interval into many small subintervals,

and for each small subinterval, the approximate intensity function is the number of events

in that small subinterval divided by the length of that small subinterval. The blue solid

lines are approximate intensity functions for VI. We obtain the intensity function for layer 1

directly from qI1,0(·). For the approximate intensity function for layer 2, we first generate

many samples from qI1,0(·) which induce samples of qI2,0(·). Then the approximate intensity

function for layer 2 is the mean of all the samples for qI2,0(·). We see that USAP fits the

approximate intensity functions estimated by the MCMC better than UNSP.
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(a) UNSP vs. MCMC

(b) USAP vs. MCMC

Figure 5.5: Approximate intensity functions estimated by using MCMC and VI.

The better approximation of USAPs in Figure 5.5 comes from the fact that the

kernel function can adjust their parameters at each interval independently. While for UNSPs,

the CIF at each interval is affected by all the kernel functions that are triggered by the

events which happen after that interval and are from the layer immediately below.

In addition, for the CIFs of the approximate posterior point processes at time t,

USAPs can capture the information from both the events happening before t and the events
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happening after t, while UNSPs can only propagate the information from the future to the

past. Both the events happening before t and the events happening after t have an influence

on the posterior point processes at time t (Proposition 4.1). Therefore, USAPs are better

than UNSPs, since UNSPs only include the information of the events happening after t.

Remark 5.3. Similar to Remark 4.2, we can simply replace the kernel function with a

non-causal kernel (i.e., a kernel function that has positive values for all inputs with any

dimensionality) to apply UNSPs in general Euclidean space (not just a timeline). It is not as

straightforward to apply USAPs to spatial point processes (SPPs) with multiple dimensions,

as we need to identify the “bounding” events for any point in space.

5.5.3 Inference

Inference for the Model Parameters

While Section 5.3 view the lines 4 and 5 in Algorithm 1 as a part of ascent-based

MCEM, we can also view it as an unbiased estimator of the gradient of the marginal

likelihood log p(x; Θ) based on the Fisher identity (Ou and Song, 2020; Naesseth et al.,

2020),

∇Θ log p(x; Θ) = Ep(z|x;Θ) [∇Θ log p(z,x; Θ)] . (5.17)

Based on Equation 5.17, we can update the model parameters by stochastic gradient ascent.

The full convergence analysis for the model parameters has not been well-established, and it

is still an active research area (Neath et al., 2013).
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Algorithm 3 Prediction with MCMC

Input: observed data x = {e1, e2, · · · , en},

where ei = (ti, ki), and model M

Initialization: Θ, Θ̃, and sample size S.

Output: time prediction t̂n+1, type predic-

tion k̂n+1

1: for s = 1 to S do

2: sample zs ∼ p(z | x; Θ)

3: end for

4: estimate the CIFs for the top layer based

on {zs}Ss=1 (MLE)

5: for s = 1 to S do

6: sample zs ∼ p(z | x; Θ)

7: sample the future time t̂sn+1 based on

zs

8: sample the future type k̂sn+1 based on

zs

9: end for

10: t̂n+1 = 1
S

S∑
s=1

t̂sn+1

11: k̂n+1 = arg max
k∈{1,...,K0}

S∑
s=1

1k(k̂
s
n+1)

Algorithm 4 Prediction with
:::::::::::::
approximation

Input: observed data x = {e1, e2, · · · , en},

where ei = (ti, ki), and model M

Initialization: Θ, ΘI , and sample size S.

Output: time prediction t̂n+1, type predic-

tion k̂n+1

1: for s = 1 to S do

2:
:::::::
sample

::::::::::::::::
zs ∼ q(z; x,ΘI)

3: end for

4: estimate the CIFs for the top layer based

on {zs}Ss=1 (MLE)

5: for s = 1 to S do

6:
:::::::
sample

::::::::::::::::
zs ∼ q(z; x,ΘI)

7: sample the future time t̂sn+1 based on

zs

8: sample the future type k̂sn+1 based on

zs

9: end for

10: t̂n+1 = 1
S

S∑
s=1

t̂sn+1

11: k̂n+1 = arg max
k∈{1,...,K0}

S∑
s=1

1k(k̂
s
n+1)
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Inference for the Variational Parameters

Variational inference with the inclusive KL divergence and unbiased gradient has

demonstrated the ability to help mitigate the issue of the underestimation of the variance of

the posterior (Naesseth et al., 2020). The inclusive KL divergence between the true posterior

point processes and the approximate point processes DKL(p ‖ qI) is

Ep(z|x;Θ)

[
log p(z | x; Θ)− log q(z; x,ΘI)

]
,

where ΘI =

{{
ΘI
`,k

}L
`=1

}K`
k=1

, log q(z; x,ΘI) is the log-likelihood of the approximate point

processes, and

log q(z; x,ΘI)=

L∑
`=1

log q(z`; z`−1,Θ
I
` )

=

L∑
`=1

K∑̀
k=1

∑
t`,k,j

logλI`,k(t`,k,j)−
∫ T

0
λI`,k(t)dt

.
The gradient of the KL divergence w.r.t the variational parameters ΘI is

Ep(z|x;Θ)[−∇ΘI log q(z; x,ΘI)], (5.18)

because p(z | x; Θ) does not depend on ΘI .

Naesseth et al. (2020) prove the convergence of the variational parameters under

some regularity conditions for MCMC with a fixed number of dimensions. However, our

Markov chains have an unbounded number of dimensions. We leave the research for the

convergence of our variational parameters for future work.

According to Eqs. 5.18, 4.4, and 4.5, we can see that the gradient of the inclusive

KL divergence is identical to the gradient of the log-likelihood of the virtual point processes

if we let the virtual point processes be our approximate point processes (i.e., let Θ̃ = ΘI).
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Therefore, we can use Algorithm 1 to train our approximate point processes and the

parameters for the virtual point processes would just be the parameters for our approximate

point processes. Then, when doing sampling for the approximate posterior point processes,

we can directly sample from it using the inversion sampling without involving any gradient

ascent or MCMC steps. This is especially helpful when doing prediction because we can

avoid the time-consuming mixing steps of MCMC for the prediction of each event. We will

explain more about this in Section 5.5.4.

We use Adam (Kingma and Ba, 2015) to optimize both the model parameters and

variational parameters.

5.5.4 Prediction

We rewrite the prediction procedures with MCMC in Algorithm 3. Suppose we

are given a sequence of events {e1, e2, · · · , en}, where ei = (ti, ki), ti and ki represent

the time and the type for the i-th event respectively, and t1 ≤ t2 ≤ t3 ≤ · · · ≤ tn. We

initialize RPPs with parameters Θ, VPPs with parameters Θ̃. These parameters were

obtained by MCEM run on the training data. We first generate posterior samples to

estimate the constant rates for the top layer. Suppose the number of events for the s-th

sample of ZL,k is ms
L,k and the time period is [0, T ], then the MLE for the constant rate is

µk = 1
S
∑S

s=1

msL,k
T . After getting new constant rates for the top layer, we can generate a new

set of posterior samples, starting the initial state of the Markov chain to be the last sample

of the previous MCMC sampling. Conditional on the generated posterior sample z, we can

extend the CIFs of RPPs to the future (i.e., the CIFs at the time period (tn,∞)), because

the CIFs only depend on the history of the events. Then, we can sample the time and the
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type for the next future event. Suppose the samples for the next future event (en+1) are

(t1n+1, k
1
n+1), (t2n+1, k

2
n+1), . . . , (tSn+1, k

S
n+1), where (tsn+1, k

s
n+1) represents the s-th sample of

the time and the type for the (n+1)-th event, then the time prediction is t̂n+1 = 1
S
∑S

s=1 t
s
n+1

and the type prediction is k̂n+1 = arg maxk∈{1,...,K0}
∑S

s=1 1k(k
s
n+1), where 1k(k

s
n+1) is the

indicator function which is equal to 1 iff k = ksn+1. After each prediction, we record the

last posterior sample as the initial state of the next MCMC step, and we also update the

constant rates for the top layer using MLE.

Algorithm 4 is our proposed method for prediction with our approximate posterior

point processes. We replace the MCMC sampling with the sampling from our approximate

posterior point processes. Sampling from q(z; x,ΘI) is much faster than sampling from

MCMC, because we can directly use the inversion method (Çinlar, 2013) to sample instead

of performing many MCMC steps. Faster sampling can help us achieve better prediction

performance when only a limited amount of time is allowed, which we will use experiments

to demonstrate in Section 5.5.5.

5.5.5 Experiments

Like Section 5.3.1, we use root mean square error (RMSE) to compare the time

prediction and use accuracy to compare the type prediction. The models we use for DNSPs

are 1-hidden and 2-hidden as explained in Section 5.3.1. Each dataset is split into training,

validation, and test sets. We use training sets to train our model parameters and variational

parameters, use validation sets to stop early, and use test sets to calculate the metrics used

to compare the performance. When performing prediction, we use different numbers of

samples to measure the performance. Different numbers of samples correspond to different
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computational time budgets, as more time is needed for a larger sample size. We add a tiny

background base rate (1× 10−10) to the intensity for the observation to prevent NaN and

Inf issues.

In Figures 5.6, 5.7, 5.8 and 5.9, we use different line styles with different colors to

represent the results from different models or algorithms. The vertical axes represent the

RMSE or accuracy. The horizontal axes represent the time used to do sampling with various

sample sizes for the predictions for all events from all sequences. Among UNSPs, USAPs,

and MCMC, UNSPs are the best in the areas filled with light orange, and USAPs are the

best in the areas filled with light green.

Our experiments show that when only a limited amount of time is available, UNSPs

and USAPs perform better than MCMC for both time prediction and type prediction. USAPs

are clearly better than USAPs in terms of time prediction, and the type predictions of USAPs

and UNSPs are similar. Moreover, DNSPs-based methods are better than non-DNSPs-based

methods for all these real-world datasets.

Datasets

Synthetic Datasets The point processes are defined in the interval (0, 20]. The constant

rate for the top layer is a fixed number across different sequences. We fix the kernel

parameters and k is set to be 1 for the Weibull kernel functions. The sampling procedure

is the same as the generative process, and we do this for both the 1-hidden and 2-hidden

models.

The retweet, earthquake, homicide datasets are the same as in Section 5.3.1.

The statistics of the datasets are shown in Table 5.5.
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Table 5.5: Datasets Statistics for Predictions

Datasets # of types # of predictions
# of sequences

training validation test

1-hidden Synthetic 2 1563 1000 100 100

2-hidden Synthetic 2 4664 1000 100 100

Retweets 3 216465 20000 2000 2000

Earthquakes 2 25646 209 53 53

Homicides 5 997 6 2 2

Self-Attention Training Details

For all our experiments, we use 1 layer of multi-head self-attention block with 4

heads. The number of dimensions can be found in Table 5.6, where dk, dv, dM , and dH

appear in Eqs. F.2 and F.3, MPSS stands for model parameters step size, and SASS stands

for self-attention step size.
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Table 5.6: Self-Attention Dimensions

Datasets Model dk dv dM dH MPSS SASS

1-hidden Synthetic USAP(1-hidden) 8 8 32 64 0.01 0.010

2-hidden Synthetic USAP(2-hidden) 8 8 32 64 0.01 0.010

Retweets
USAP(1-hidden) 16 16 64 128 1.00 0.001

USAP(2-hidden) 16 16 64 128 1.00 0.001

Earthquakes
USAP(1-hidden) 16 16 64 128 1.00 0.001

USAP(2-hidden) 16 16 64 128 1.00 0.010

Homicides
USAP(1-hidden) 8 8 32 64 1.00 0.010

USAP(2-hidden) 16 16 64 128 1.00 0.010

Hardware and Software

We run the experiments for synthetic datasets, retweets, and earthquakes in a

cluster. For each job, we use two cores from a Intel® Xeon® Silver 4214 CPUs running at

2.20GHz and 1 GeForce® RTX 2080 Ti.

We run each experiment for homicides in a machine with a core from Intel®

i7-5930K CPU and 1 GeForce® GTX 1080 Ti.

We use Pytorch to implement our algorithms.

Implementation of MCMC for GPUs

We re-implemented the MCMC algorithm to use GPUs. We do not randomly select

a move from resampling, flip, and swap, instead, we have a deterministic order for these
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moves. We choose this setting to minimize the number of dimension changes of the tensors

used to store the events.

We store the real events and the virtual events in the same tensor. The only move

that changes the dimension of this tensor is to re-sample the virtual events. For each MCMC

sampling step, we first do a re-sampling, then followed by 3 flips, 1 swap, 3 flips, and 1 swap.

5.5.6 Synthetic Data Experiments

We construct 2 synthetic datasets. One dataset is generated from a 1-hidden model

and the other is generated from a 2-hidden model. We use 1-hidden DNSP to learn from the

dataset generated from 1-hidden, and 2-hidden DNSP to from learn the dataset generated

from 2-hidden. For simplicity, k is set to be 1 and fixed for the Weibull kernel, so that it

becomes an exponential function.

Figure 5.6 summarizes the results for our synthetic datasets. It shows that when we

increase the sample size, the prediction performance of UNSPs, USAPs, and MCMC become

better, at a cost of running time. The improvement of MCMC is more significant, as MCMC

becomes closer to the true posterior point processes when we sample more from MCMC,

while USAPs and UNSPs will never converge to the true posterior point processes. It also

demonstrates that USAPs and UNSPs can achieve better prediction results for both the

time and the type than MCMC when only a small period of time is allowed. When we can

run our programs long enough, MCMC achieves the best results for all these experiments,

which is reasonable because MCMC converges to the true posterior distribution when the

sample size goes to infinity and the synthetic data is generated from DNSPs.
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USAPs are better than UNSPs with regards to RMSE for both 1-hidden and

2-hidden datasets (Figures 5.6a and 5.6c). There is a significant drop for the RMSE when

we increase the sample size; it is because we may have no or very few hidden events in our

posterior samples when the sample size is too small, causing the CIFs for the top layer or for

the future to be very small. With a small CIF, the sample for the next future event would

be very far away from the next true future event.

For accuracy, USAPs are clearly better than UNSPs for the 2-hidden synthetic

dataset (Figure 5.6d) and they have similar performance for the 1-hidden synthetic dataset

(Figure 5.6b).

5.5.7 Real-World Data Experiments

The datasets we use are of retweets (Zhao et al., 2015), earthquakes (NCEDC,

2014; BDSN, 2014; HRSN, 2014; BARD, 2014), and homicides (COC) . We compare MCMC,

UNSPs, and USAPs for DNSPs with other state-of-the-art methods: transformer Hawkes

process (THP) (Zuo et al., 2020), self-attentive Hawkes process (SAHP) (Zhang et al., 2020),

neural Hawkes process (NHP) (Mei and Eisner, 2017), and MTPP (Lian et al., 2015). THP,

SAHP, and NHP are neural-network-based Hawkes processes. MTPP is a Cox-process-based

model. We split each real-world dataset into training, validation, and test sets. We train,

validate and test for all these models using the same split. For retweets, we use mini-batch

gradient ascent, and we use batch gradient ascent for other datasets. The training and

prediction procedures of the methods are the same as in Section 5.3.1. We do not fix k for

the Weibull kernel as we did in the synthetic data experiments.
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Figures 5.7, 5.8 and 5.9 summarize the real-world experimental results for retweets,

earthquakes and homicides respectively. Similar to the experimental results for the synthetic

dataset, UNSPs and USAPs are better than MCMC for both the time prediction and the

type prediction when we only have a small number of samples from the approximate posterior

distribution. As we increase the sample size, UNSPs, USAPs, and MCMC all gain some

improvement to various degrees.

For the time prediction, DNSPs with MCMC or approximate posterior point

processes achieve the best prediction results in all these experiments (Figures 5.7a, 5.7c,

5.8a, 5.8c, 5.9a, and 5.9c). UNSPs or USAPs are better than other non-DNSPs baselines

for all these experiments (Figures 5.7a, 5.7c, 5.8a, 5.8c, 5.9a, and 5.9c). USAPs are better

than UNSPs for all of these experiments in the end (Figures 5.7a, 5.7c, 5.8a, 5.8c, 5.9a, and

5.9c). UNSPs are better than USAPs for retweets and earthquakes when we only have a

small number of samples (Figures 5.7a, 5.7c, 5.8a, and 5.8c). USAPs are always better than

UNSPs for homicides in terms of time prediction (Figures 5.9a and 5.9c).

For the type prediction, DNSPs with MCMC or approximate posterior point

processes achieve the best prediction results for all these datasets (Figure 5.7d for retweets,

5.8d for earthquakes, Figure 5.9d for homicides). UNSPs or USAPs are better than other

non-DNSPs baselines for all these datasets (Figure 5.7d for retweets, 5.8d for earthquakes,

Figure 5.9d for homicides). In Figures 5.7b and 5.9d, USAPs are better than UNSPs, while

UNSPs are better than USAPs in Figures 5.7d and 5.8d. USAPs and UNSPs have similar

performance in Figures 5.8b and 5.9b.
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(a) 1-hidden RMSE (b) 1-hidden accuracy

(c) 2-hidden RMSE (d) 2-hidden accuracy

Figure 5.6: Synthetic Dataset

(a) 1-hidden RMSE (b) 1-hidden accuracy

(c) 2-hidden RMSE (d) 2-hidden accuracy

Figure 5.7: Retweet Dataset
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(a) 1-hidden RMSE (b) 1-hidden accuracy

(c) 2-hidden RMSE (d) 2-hidden accuracy

Figure 5.8: Earthquake Dataset

(a) 1-hidden RMSE (b) 1-hidden accuracy

(c) 2-hidden RMSE (d) 2-hidden accuracy

Figure 5.9: Homicide Dataset
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Chapter 6

Conclusion

We build a deep Neyman-Scott process (DNSP) and use it to model real-world

event sequences. Different from the existing methods for Cox processes, we are able to

stack point processes in a hierarchical manner and do not assume the intensity function is

smooth in the space. We propose and test an efficient MCMC posterior sampling algorithm

for DNSPs. Virtual events as auxiliary variables help accelerate the mixing of our Markov

chains. With the fast posterior sampling, we are able to do inference for large datasets. Our

encouraging experiments results suggest that it is promising to build a deep model with

point processes.

VI and point processes have both attracted great attention due to their excellent

performance. However, little attention has been given to developing VI algorithms for point

processes with hierarchical structures. We develop the first VI algorithm for NSPs (a class

of point processes with hierarchical structures) in this paper.
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Typically, posterior inference for NSPs is considered a very hard problem, and

MCMC is required, as it involves an unbounded number of points in the posterior point

processes. We incorporate MCMC into our VI algorithm, treating the samples from our

approximate posterior point processes as the candidates for the posterior point processes.

During training processes, we gradually update our approximations to make our approxima-

tions become closer and closer to the posterior point processes through the minimization of

the inclusive KL divergence. Our experiments show that our approximate posterior point

processes (USAPs and UNSPs) can fit the true posterior point processes very well. When

time constraint is a concern, USAPs and UNSPs provide a very good alternative to MCMC.

In our VI algorithm, we bring 4 active research areas (MCMC, VI, neural networks,

and point processes) together, and we have found many research topics that we believe will

be of interest to many researchers in these areas, e.g., analysis of the mixing time of MCMC,

convergence analysis of variational parameters, efficient and well-behaved architectures of

neural networks, and the construction of spatio-temporal point processes with hierarchies.
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process. In Hal Daumé III and Aarti Singh, editors, Proceedings of the 37th International
Conference on Machine Learning, volume 119 of Proceedings of Machine Learning Research,
pages 11692–11702. PMLR, 13–18 Jul 2020. URL https://proceedings.mlr.press/v1

19/zuo20a.html.

79

https://ojs.aaai.org/index.php/AAAI/article/view/12116
https://ojs.aaai.org/index.php/AAAI/article/view/12116
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.mlr.press/v119/zhang20q.html
https://proceedings.mlr.press/v119/zhang20q.html
https://proceedings.mlr.press/v119/zuo20a.html
https://proceedings.mlr.press/v119/zuo20a.html


Appendix A

Posterior PCIF

Lemma A.1 (Kallenberg (1984)). The PCIF for a point process Ξ defined on S with density

f is

λP(t) =
f(ξ ∪ {t})
f(ξ)

, t ∈ S\ξ,

with ξ as a realization of Ξ and a/0 = 0 for a ≥ 0.

A.1 Proof of Proposition 4.1

Proposition 4.1. For temporal DNSPs, the Papangelou conditional intensity function for

the posterior point process of Z`,k is

λP;`,k(t) =λ`,k(t)

·

K`−1∏
i=1

(
exp

(
−Φ(`,k)→(`−1,i)(T − t)

) ∏
t`−1,i,j>t

λ′`−1,i(t`−1,i,j , t)

λ`−1,i(t`−1,i,j)

) , (4.1)

where

λ′`−1,i(x, t) = λ`−1,i(x) + φ(`,k)→(`−1,i)(x− t)
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and

Φ(`,k)→(`−1,i)(x) =

∫ x

0
φθ(`,k)→(`−1,i)

(τ)dτ.

Proof. The p.d.f to have an event at time t for Z`,k is

p(t,x, z1, . . . , z`−1, z`/{t}, z`+1, . . . , zL) = p(zL)p(zL−1 | zL) · · · p(x | z1),

where z`/{t} means there is no event at time t for Z`,k.

If there is no event at time t, the p.d.f conditional on the information of the point

processes except time t is

p(x, z1, . . . , z`−1, z`/{t}, z`+1, . . . , zL) = p(zL)p(zL−1 | zL) · · · p(z`/{t} | z`+1) · · · p(x | z1).

Thus, according to Lemma A.1, the posterior PCIF to have an event at time t is

λP;`,k(t) =
p(t,x, z1, . . . , z`−1, z`/{t}, z`+1, . . . , zL)

p(x, z1, . . . , z`−1, z`/{t}, z`+1, . . . , zL)

=
p(z`/{t} ∪ {t} | z`+1)

p(z`/{t} | z`+1)

= λ`,k(t)

K`−1∏
i=1

(
exp

(
−Φ(`,k)→(`−1,i)(T − t)

) ∏
t`−1,i,j>t

λ′`−1,i(t`−1,i,j , t)

λ`−1,i(t`−1,i,j)

)
.
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Appendix B

Spatial Birth-and-Death Algorithm

We attempt to construct a spatial birth-death process to simulate the posterior

distribution of hidden point processes. We need to construct two proposals: birth and death.

We use a birth to add an event and a death to delete an event.

Spatial birth-and-death Preston (1977) is a continuous-time Markov process. The

detailed balance equation is

p(z`,k | x)b(z`,k, t) = p(z`,k ∪ {t} | x)d(z`,k ∪ {t}, t), (B.1)

where b(z`,k, t) is the birth rate to add a new event at time t to the current hidden events

set z`,k and d(z`,k, t) is the death rate for removing an event with time t.

A common way to determine the birth rate b(z`,k, t) is to make it proportional to

the PCIF as in Equation 4.1 and the death rate to be a constant number Ripley (1977);

Baddeley and Møller (1989); Møller (1989). However, it would be very hard to calculate the

total birth rate exactly, as it would require an integral of the product terms in Equation 4.1.

If, instead, we try to find an upper bound for the PCIF and then use thinning to get the
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samples for the birth process, it would have far too many attempted jumps rejected for the

birth stage.

Similar to Lieshout et al. (2002), we can make the birth rate to be

b(z`,k, t) = µ̃`,k +

K`−1∑
i=1

∑
t`−1,i,j>t

φ̃θ̃(`−1,i)→(`,k)
(t`−1,i,j − t). (B.2)

The only difference from Lieshout et al. (2002) is we divide the birth rate by λ`,k(·) and the

birth rate not only depends on the evidence, but also depends on the posterior samples.

To satisfy the detailed balance Equation B.1, the death rate d(z`,k ∪ t, t) needs to

be

d(z`,k ∪ t, t) =
b(z`,k, t)

λP;`,k(t)

=
µ̃`,k +

∑K`−1

i=1

∑
t`−1,i,j>t

φ̃θ̃(`−1,i)→(`,k)
(t`−1,i,j − t)

λ`,k(t)
∏K`−1

i=1

(
exp

(
−Φ(`,k)→(`−1,i)(T − t)

)∏
t`−1,i,j>t

λ′`−1,i(t`−1,i,j ,t)

λ`−1,i(t`−1,i,j)

) ,

(B.3)

where λ′`−1,i(x, y) = λ`−1,i(x) + φθ(`,k)→(`−1,i)
(x− y).

The total birth rate is

β(z) =
∑
`,k

∫ T

0
b(z`,k, t)dt =

∑
`,k

µ̃`,kT +

K`−1∑
i=1

∑
t`−1,i,j

Φ̃θ̃(`−1,i)→(`,k)
(t`−1,i,j)

 , (B.4)

and the total death rate is

δ(z) =
∑
`,k

∑
j

d(z`,k, t`,k,j)

 .

Open problem: Does the SB&D with the birth rate as in Equation B.2 and the

death rate as in Equation B.3 converge to an invariant distribution?

The SB&D given in Lieshout et al. (2002) is guaranteed to converge to an invariant

distribution as it satisfies a sufficient condition that the total birth rate is bounded from
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above and the total death rate is bounded from below. However, the total birth rate in

Equation B.4 is finite but not bounded in our case, which violates the sufficient condition

satisfied in Lieshout et al. (2002). Please refer to Møller and Waagepetersen (2003) for more

details.
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Appendix C

Acceptance Probability

We follow the notation in Section 4.1.

Recall

P =
p(x, z′, z̃′)

p(x, z, z̃)
=
p(z′`,k | z`+1) · p̃(z̃′`,k | z`−1)

p(z`,k | z`+1) · p̃(z̃`,k | z`−1)
·
p(z`−1 | z′`) · p̃(z̃`+1 | z′`)
p(z`−1 | z`) · p̃(z̃`+1 | z`)

,

where

p(z`−1 | z`) =

K`−1∏
k=1

p(z`−1,k | z`),

p̃(z̃`+1 | z`) =

K`+1∏
k=1

p̃(z̃`+1,k | z`).

C.1 Re-sample Virtual Events

Suppose we want to re-sample the virtual events for Z̃`,k, the proposal probability

is

q(z̃`,k | z`−1) = p̃(z̃`,k | z`−1),
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and the integrated detailed balance equation is

∫
A

∫
A′
p(x, z, z̃)q(z̃′`,k | z`−1)α(z̃`,k, z̃

′
`,k)dz̃

′
`,kdz̃`,k

=

∫
A

∫
A′
p(x, z′, z̃′)q(z̃`,k | z`−1)α(z̃′`,k, z̃`,k)dz̃

′
`,kdz̃`,k,

where z̃`,k ∈ A and z̃′`,k ∈ A′.

The proposal probability ratio is

Q =
q(z̃`,k | z`−1)

q(z̃′`,k | z`−1)
=
p̃(z̃`,k | z`−1)

p̃(z̃′`,k | z`−1)
.

The likelihood ratio is

P =
p(x, z′, z̃′)

p(x, z, z̃)
=
p̃(z̃′`,k | z`−1)

p̃(z̃`,k | z`−1)
.

The absolute value of the determinant of the Jacobian is

J =

∣∣∣∣∣∂(z̃′`,k, z̃`,k)

∂(z̃′`,k, z̃`,k)

∣∣∣∣∣ = 1.

So the acceptance probability is

α(z̃`,k, z̃
′
`,k) = P · Q · J = 1.

C.2 Flip a Virtual Event to a Real Event

Suppose we want to flip a virtual event t̃`,k,j to a real event t`,k,m`,k+1.

The number of events for the current state and the proposed state is m`,k + m̃`,k.

The probabilities to pick t̃`,k,j and t`,k,m`,k+1 are both 1/(m`,k + m̃`,k), as the total number

of events does not change. Hence, the proposal probability ratio is

Q =
1/(m`,k + m̃`,k)

1/(m`,k + m̃`,k)
= 1.

86



The likelihood ratio is

Pv =
λ`,k(t̃`,k,j)

λ̃`,k(t̃`,k,j)
·
p(z`−1 | z′`) · p̃(z̃`+1 | z′`)
p(z`−1 | z`) · p̃(z̃`+1 | z`)

=
λ`,k(t̃`,k,j)

λ̃`,k(t̃`,k,j)

·
K`−1∏
i=1

(
exp

(
−Φθ(`,k)→(`−1,i)

(T − t̃`,k,j)
) ∏

t`−1,i,j>t̃`,k,j
λ′`−1,i(t`−1,i,j , t̃`,k,j)∏

t`−1,i,j>t̃`,k,j
λ`−1,i(t`−1,i,j)

)

·
K`+1∏
i=1

(
exp

(
−Φ̃θ̃(`,k)→(`+1,i)

(t̃`,k,j)
) ∏

t̃`+1,i,j<t̃`,k,j
λ̃′`+1,i(t̃`+1,i,j , t̃`,k,j)∏

t̃`+1,i,j<t̃`,k,j
λ̃`+1,i(t̃`+1,i,j)

)
,

where Φ̃θ̃(`,k)→(`+1,i)
(x) =

∫ x
0 φ̃θ̃(`,k)→(`+1,i)

(τ)dτ , λ′`−1,i(x, y) = λ`−1,i(x) +φθ(`,k)→(`−1,i)
(x−y),

and λ̃′`+1,i(x, y) = λ̃`+1,i(x) + φ̃θ̃(`,k)→(`+1,i)
(y − x).

So the acceptance probability is

α = min(1,Pv).

C.3 Flip a Real Event to a Virtual Event

Suppose we want to flip a real event t`,k,j to a virtual event t̃`,k,m̃`,k+1.

Similar to Section C.2, the proposal probability ratio is Q = 1.

The likelihood ratio is

Pr =
λ̃`,k(t`,k,j)

λ`,k(t`,k,j)
·
p(z`−1 | z′`) · p̃(z̃`+1 | z′`)
p(z`−1 | z`) · p̃(z̃`+1 | z`)

=
λ̃`,k(t`,k,j)

λ`,k(t`,k,j)

·
K`−1∏
i=1

(
exp

(
Φθ(`,k)→(`−1,i)

(T − t`,k,j)
) ∏

t`−1,i,j>t`,k,j
λ′`−1,i(t`−1,i,j , t`,k,j)∏

t`−1,i,j>t`,k,j
λ`−1,i(t`−1,i,j)

)

·
K`+1∏
i=1

(
exp

(
Φ̃θ̃(`,k)→(`+1,i)

(t`,k,j)
) ∏

t̃`+1,i,j<t`,k,j
λ̃′`+1,i(t̃`+1,i,j , t`,k,j)∏

t̃`+1,i,j<t`,k,j
λ̃`+1,i(t̃`+1,i,j)

)
,

87



where

λ′`−1,i(x, y) = λ`−1,i(x)− φθ(`,k)→(`−1,i)
(x− y)

, and

λ̃′`+1,i(x, y) = λ̃`+1,i(x)− φ̃θ̃(`,k)→(`+1,i)
(y − x).

So the acceptance probability is

α = min(1,Pr).

C.4 Swap a Real Event and a Virtual Event

Suppose we want to flip a virtual event t̃`,k,j to a real event t`,k,m`,i+1 and we also

want to flip a real event t`,k,j to a virtual event t̃`,k,m̃`,k+1.

The probability to pick t̃`,k,j and t`,k,j is 1/m`,k ·1/m̃`,k, the same for the probability

to pick the real and virtual events in the reverse move. Thus, the proposal probability ratio

is Q = 1.

The likelihood ratio is

P = Pv · Pr .

So the acceptance probability is

α = min(1,P).
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Appendix D

Optimization

D.1 Derivatives w.r.t the Parameters for VPPs

For simplicity, we omit the data index n. The likelihood of the parameters for the

VPPs w.r.t the real events is

˜llh =
L∑
`=1

K∑̀
k=1

( m̃`,k∑
j=1

log λ̃`,k(t`,k,j)−
∫ T

0
λ̃`,k(t)dt

)
,

where ∫ T

0
λ̃`,k(t)dt = µ̃`,kT +

K`−1∑
i=1

m`−1,i∑
j=1

Φ̃θ̃(`−1,i)→(`,k)
(t`−1,i,j).

The integral of the virtual kernel function is

Φ̃θ̃(`−1,i)→(`,k)
(t) =

∫ t

0
φ̃θ̃(`,i)→(`+1,k)

(τ)dτ =

∫ t

0
p̃
β̃α̃

Γ(α̃)
τ α̃−1e−β̃τdτ = p̃

1

Γ(α̃)
γ(α̃, β̃t)

with p̃ = p̃(`−1,i)→(`,k), α̃ = α̃(`−1,i)→(`,k), β̃ = β̃(`−1,i)→(`,k).

The partial derivative of ˜llh w.r.t µ̃`,k is

∂µ̃`,k
˜llh =

m̃`,k∑
j=1

1

λ̃`,k(t`,k,j)
− T.
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In the following section, we use θ̃ to denote θ̃(`−1,∗)→(`,k).

The partial derivative of ˜llh w.r.t p̃ is

∂p̃ ˜llh =∂p̃

( m̃`,k∑
j=1

log λ̃`,k(t`,k,j)−
K`−1∑
i=1

m`−1,i∑
j=1

Φ̃θ̃(t`−1,i,j)

)

=

m̃`,k∑
j=1

∂p̃φθ̃θ̃
(t`,k,j)

λ̃`,k(t`,k,j)
−
K`−1∑
i=1

m`−1,i∑
j=1

∂p̃Φ̃θ̃θ̃
(t`−1,i,j),

where

∂p̃φθ̃(t) =
β̃α̃

Γ(α̃)
tα̃−1e−β̃t, ∂p̃Φ̃θ̃(t) =

1

Γ(α̃)
γ(α̃, β̃t).

The partial derivative of ˜llh w.r.t α̃ is

∂α̃ ˜llh =

m̃`,k∑
j=1

∂α̃φθ̃(t`,k,j)

λ̃`,k(t`,k,j)
−
K`−1∑
i=1

m`−1,i∑
j=1

∂α̃Φ̃θ̃(t`−1,i,j),

where

∂α̃φθ̃(t) =p̃
(β̃t)α̃−1 ln(β̃t)Γ(α̃)− (β̃t)α̃−1Ψ(α̃)Γ(α̃)

Γ2(α̃)
β̃e−β̃t = p̃(β̃t)α̃−1 ln(β̃t)−Ψ(α̃)

Γ(α̃)
β̃e−β̃t,

∂α̃Φθ̃(t) =p̃

(
−Ψ(α̃)

Γ(α̃)
γ(α̃, β̃t) +

1

Γ(α̃)

∂γ(α̃, β̃t)

∂α̃

)

=p̃

(
−Ψ(α̃)

Γ(α̃)
γ(α̃, β̃t) +

1

Γ(α̃)

∂(Γ(α̃)− Γ(α̃, β̃t))

∂α̃

)

=p̃

(
− Ψ(α̃)

Γ(α̃)
γ(α̃, β̃t) +

1

Γ(α̃)
·
(

Ψ(α̃)Γ(α̃)− ln(β̃t)Γ(α̃, β̃t)− β̃t · T (3, α̃, β̃t)
))

,

where T (m, s, x) a special case of the Meijer G-function

T (m, s, x) = Gm,0m−1,m


0, 0, · · · , 0︸ ︷︷ ︸

m−1

s− 1,−1, · · · ,−1︸ ︷︷ ︸
m

∣∣∣∣∣∣∣∣∣∣∣
x

 .
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However, it is expensive and numerically unstable to directly calculate Meijer G-function, so

we use the first order finite difference to approximate the derivative.

The partial derivative of ˜llh w.r.t β̃ is

∂β̃
˜llh =

m̃`,k∑
j=1

∂β̃φθ̃(t`,k,j)

λ̃`,k(t`,k,j)
−
K`−1∑
i=1

m`−1,i∑
j=1

∂β̃Φ̃θ̃(t`−1,i,j),

where

∂β̃φθ̃(t) = p̃/Γ(α̃)tα̃−1(α̃β̃α̃−1e−β̃t − β̃α̃e−β̃tt) = p̃/Γ(α̃)tα̃−1β̃α̃−1e−β̃t(α̃− β̃t) ,

∂β̃Φθ̃(t) = p̃
1

Γ(α̃)

∂γ(α̃, β̃t)

∂β̃
= p̃

1

Γ(α̃)
(β̃t)α̃−1e−β̃t · t .

We use softplus function to make sure the parameters are all positive.

D.2 Maximization and Derivatives w.r.t the Parameters for

RPPs

The likelihood of the parameters for Zn w.r.t the real events is

llh =

L∑
`=0

K∑̀
k=1

(mn,`,k∑
j=1

log λn,`,k(tn,`,k,j)−
∫ T

0
λn,`,k(t)dt

)
,

where ∫ T

0
λn,L,k(t)dt = µn,kT ,

∫ T

0
λn,`,k(t)dt =

K`+1∑
i=1

mn,`+1,i∑
j=1

Φθ(`+1,i)→(`,k)
(tn,`+1,i,j) for 0 ≤ ` ≤ L− 1 .

The maximizing value for µn,L,k is

µn,L,k =
mn,L,k

T
.

The functional forms for the derivatives of the other parameters of the kernel functions are

the same as the forms for VPPs.
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Appendix E

Evidence Lower Bound

E.1 Proof of Proposition 5.2

Proposition 5.2. Minimizing the exclusive KL divergence DKL(Q(ZE) ‖ P (Z)) is equiva-

lent to maximizing the evidence lower bound (ELBO)

L =−
∑
`,i

∫
S`,i

λE`,i(t)(log λE`,i(t)− 1)dt

+

(∑
tx0,k,j

∫
log

∑
tz1,i,h

φ(1,i)→(0,k)(t
x
0,k,j − tz1,i,h)dQ(ZE)

−
∑
`≥1,i,k

∫
S`,i

Φ(`,i)→(`−1,k);S`−1,k
(t)λE`,i(t)dt

+
∑
`≥1

∫ ∑
k,j

log
∑
i,h

φ(`+1,i)→(`,k)(t
z
`,k,j − tz`+1,i,h)dQ(ZE)

)
, (5.4)

where {S`,i} are the bounded regions where the point processes exist, Φ(`,i)→(`−1,k);S`−1,k
=∫

S`−1,k
φ(`,i)→(`−1,k)(τ − t)dτ , tx represents an event from the data, and tz represents an

event from the approximate point process. Moreover, L is the lower bound for the marginal

probability density function.
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Proof. We choose the Poisson process with 1 as its intensity function as our reference point

process. Denote the probability measure for the reference point process as P0.

Then according to Definition 5.1 and Proposition 1.4,

DKL(Q(ZE) ‖ P (Z | x)) (E.1)

=

∫
log

(
dQ(ZE)

dP (Z | x)

)
dQ(ZE) (E.2)

=

∫
log

(
dQ(ZE)

dP0
· dP0

dP (Z | x)

)
dQ(ZE) (E.3)

=

∫
log

(
dQ(ZE)

dP0

)
dQ(ZE)−

∫
log

(
dP (Z | x)

dP0

)
dQ(ZE). (E.4)

The first part of Equation E.4 is

∫
log

(
dQ(ZE)

dP0

)
dQ(ZE) (E.5)

=

∫ −∑
`,i

∫
S`,i

(λE`,i(t)− 1)dt+
∑
`,i,j

log λE`,i(t
z
`,i,j)

 dQ(ZE) (E.6)

=
∑
`,i

∫
S`,i

λE`,i(t)(log λE`,i(t)− 1)dt+
∑
`,i

∫
S`,i

dt. (E.7)

The second part of Equation E.4 is

∫
log

(
dP (Z | x)

dP0

)
dQ(ZE) (E.8)

=

∫
log f(Z | x)dQ(ZE) (E.9)

=

∫
log f(Z,x)dQ(ZE)− log f(x), (E.10)

where

∫
log f(Z,x)dQ(ZE) =

∫
log(f(x | Z) · f(Z))dQ(ZE) (E.11)

=

∫ −∑
i,j,k

∫
S0,k

(φ(1,i)→(0,k)(t− tz1,i,j)− 1)dt+
∑
tx0,k,j

log
∑
tz1,i,h

φ(1,i)→(0,k)(t
x
0,k,j − tz1,i,h)
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−
∑
`≥1,k

∫
S`,k

(λp`,k(t)− 1)dt+
∑

`≥1,k,j

log λp`,k(t
z
`,k,j)

 dQ(ZE) (E.12)

=

∫ −∑
i,j,k

∫
S0,k

(φ(1,i)→(0,k)(t− tz1,i,j)− 1)dt+
∑
tx0,k,j

log
∑
tz1,i,h

φ(1,i)→(0,k)(t
x
0,k,j − tz1,i,h)

−
∑
`≥1,k

∫
S`,k

(
∑
i,j

φ(`+1,i)→(`,k)(t− tz`+1,i,j)− 1)dt

+
∑

`≥1,k,j

log
∑
i,h

φ(`+1,i)→(`,k)(t
z
`,k,j − tz`+1,i,h)

 dQ(ZE) (E.13)

=
∑
tx0,k,j

∫
log

∑
tz1,i,h

φ(1,i)→(0,k)(t
x
0,k,j − tz1,i,h)dQ(ZE)−

∑
i,k

∫
S1,i

Φ(1,i)→(0,k);S0,k
(t)λE1,i(t)dt

−
∑
`≥1,i,k

∫
S`+1,i

Φ(`+1,i)→(`,k);S`,k(t)λE`+1,i(t)dt

+
∑
`≥1

∫ ∑
k,j

log
∑
i,h

φ(`+1,i)→(`,k)(t
z
`,k,j − tz`+1,i,h)dQ(ZE) +

∑
`,k

∫
S`,k

dt (E.14)

=
∑
tx0,k,j

∫
log

∑
tz1,i,h

φ(1,i)→(0,k)(t
x
0,k,j − tz1,i,h)dQ(ZE) (E.15)

−
∑
`≥1,i,k

∫
S`,i

Φ(`,i)→(`−1,k);S`−1,k
(t)λE`,i(t)dt

+
∑
`≥1

∫ ∑
k,j

log
∑
i,h

φ(`+1,i)→(`,k)(t
z
`,k,j − tz`+1,i,h)dQ(ZE) +

∑
`,k

∫
S`,k

dt. (E.16)

Combining Equations E.7, E.10 and E.4, the KL divergence becomes

DKL(Q(ZE) ‖ P (Z | x)) (E.17)

=
∑
`,i

∫
S`,i

λE`,i(t)(log λE`,i(t)− 1)dt+
∑
`,i

∫
S`,i

dt

−

(∑
tx0,k,j

∫
log

∑
tz1,i,h

φ(1,i)→(0,k)(t
x
0,k,j − tz1,i,h)dQ(ZE)

−
∑
`≥1,i,k

∫
S`,i

Φ(`,i)→(`−1,k);S`−1,k
(t)λE`,i(t)dt
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+
∑
`≥1

∫ ∑
k,j

log
∑
i,h

φ(`+1,i)→(`,k)(t
z
`,k,j − tz`+1,i,h)dQ(ZE) +

∑
`,k

∫
S`,k

dt

)
+ log f(x)

(E.18)

=− L+ log f(x) (E.19)

Thus, if the parameters for the kernels are fixed, then minimizing the KL divergence is

equivalent to maximizing the ELBO L.

Moreover, since L = log f(x)−DKL(Q(ZE) ‖ P (Z | x)) and the KL divergence is

nonnegative, L is the lower bound of the marginal probability density function. Then, we

can maximize the marginal probability indirectly by maximizing the ELBO L.
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Appendix F

Network Structures for USAPs

Event Embedding Each event e`,i,j = (t`,i,j ,ppid`,i =
∑`−1

w=0Kw + i) consists of the time

t`,i,j and the identifier ppid`,i. Similar to Vaswani et al. (2017); Zuo et al. (2020); Zhang

et al. (2020), we first encode the event time into a dM -dimensional vector pe`,i,j though

positional encoding,

pek`,i,j =


cos(t`,i,j/10000

k−1
dM ), if k is odd,

sin(t`,i,j/10000
k
dM ), if k is even,

where pek`,i,j is the k-th dimension of pe`,i,j .

We also train an embedding matrix Weid ∈ RdM×npp , where npp =
∑L

w=0Kw, for

the identifiers. For each event with identifier ppid`,i, the embedding for the identifier is

Weid · p`,i, where p`,i ∈ Rnpp×1 is a one-hot vector. The (
∑`−1

w=0Kw + i)-th entry of p`,i is 1,

and the other entries are all 0.
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To incorporate the information from both the time and the identifier, the embedding

xe`,i,j of each event e`,i,j can be represented as

xe`,i,j = pe`,i,j +Weid · p`,i.

Self-Attention The parameters of the intensity function λI`,k(t) are determined by all the

events from the point processes which are connected to the point process Z`−1,i. For each

interval (t`−1,i,j−1, t`−1,i,j ], we use self-attention (Vaswani et al., 2017; Zhang et al., 2020;

Zuo et al., 2020) to encode the events in the layer immediately below to a hidden vector,

ha`−1,i,j =

(m`−1,i∑
t=1

f
(
Wq · LayerNorm(xe`−1,i,j),Wk · xe`−1,i,t

)
·
(
Wv · xe`−1,i,t

))

/

m`−1,i∑
t=1

f
(
Wq · LayerNorm(xe`−1,i,j),Wk · xe`−1,i,t

)
, (F.1)

where LayerNorm(·) is a layer normalization (Ba et al., 2016) operation, Wq ∈ Rdk×dM ,

Wk ∈ Rdk×dM , and Wv ∈ Rdv×dM are all linear transformation matrices that transfer the

event embedding vectors to queries, keys and values respectively, and f(x1,x2) = exp(xT1 x2)

is a similarity function to capture the relationship between a query and a key. Notice that

unlike the self-attention adopted in Zhang et al. (2020); Zuo et al. (2020), we not only

consider the influence of the events that happened before the query, but the events that

happened after the query. Because for each hidden point process, the posterior distribution

of the hidden events can be influenced by all the events from the point processes that are

connected to this hidden point process (Proposition 4.1).

Equation F.1 works as a single-head self-attention, we can also concatenate multiple

single-head attentions together to build a multi-head attention Vaswani et al. (2017). We
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can rewrite Equation F.1 as

ha`−1,i,j = Self-Attention(xe`−1,i,j ,Wq,Wk,Wv),

then the multi-head attention version for ha`−1,i,j would be

ha`−1,i,j =Multi-Head-Self-Attention(xe`−1,i,j)

=Concat(head1, · · · ,headh) ·Wo, (F.2)

where headd = Self-Attention(xe`−1,i,j ,W
d
q ,W

d
k ,W

d
v ), W d

q ∈ Rdk×dM , W d
k ∈ Rdk×dM , W d

v ∈

Rdv×dM , and Wo ∈ Rhdv×dM .

Multi-head self-attention can also be stacked into a deep structure, but we do not

have this deep structure in our experiment.

Position-Wise Feed-Forward Layer The hidden vector ha`−1,i,j and the residual xe`−1,i,j

are then fed into a position-wise feed-forward layer with the number of neurons in the hidden

layer as dH , generating the final output for the hidden vector,

h`−1,i,j =
(
WF

2 (GELU(WF
1 (LayerNorm(input)) + bF1 )) + bF2

)
+ input, (F.3)

where input = ha`−1,i,j + xe`−1,i,j , W
F
1 ∈ RdH×dM , bF1 ∈ RdH×1, WF

2 ∈ RdM×dH , bF2 ∈ RdM×1

, and GELU is the Gaussian Error Linear Unit (Hendrycks and Gimpel, 2016).

Output for the Parameters We apply a linear transformation to the final hidden vector

h`−1,i,j to get the kernel parameters,

θI`,k = W θ
`,kh`−1,i,j + bθ`,k,

where W θ
`,k ∈ Rnθ×dM , bθ`,k ∈ Rnθ×1, and nθ is the number of parameters for θI`,k.
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