
Distributed Learning of Neural Networks
with One Round of Communication

Mike Izbicki1 and Christian R. Shelton2

1 Claremont McKenna College, Claremont, CA, USA
mike@izbicki.me

2 UC Riverside, Riverside, CA, USA
cshelton@cs.ucr.edu

Abstract. The optimal weighted average (OWA) is an algorithm for
distributed learning of linear models. It achieves statistically optimal
theoretical guarantees with only a single round of communication [3].
This paper introduces the non-linear OWA (NOWA) algorithm, which
extends the linear OWA into the non-linear setting of neural networks.
Due to the difficulty of proving theoretical results in this more complex
setting, NOWA loses the theoretical guarantees of the OWA algorithm.
Nevertheless, we show that NOWA works well empirically. We follow an
evaluation procedure introduced by McMahan et. al. [16] for federated
learning and show significantly improved results on a simple MNIST
baseline task.

1 Introduction

Existing distributed learning algorithms fall into one of two categories:
Interactive algorithms require many rounds of communication between ma-

chines. Representative examples include [11, 4, 13, 22, 18, 7]. The appeal of
interactive algorithms is that they enjoy the same statistical performance as
standard sequential algorithms. But, interactive algorithms have three main dis-
advantages. First, these algorithms are slow when communication latency is the
bottleneck. An extreme example occurs in the federated learning environment
proposed by [16], which uses cell phones as the computational nodes. Recent
work in this setting has studied how to only communicate between nodes when
doing so would proveably decrease loss [7]. Second, these algorithms require spe-
cial implementations. They are not easy for non-experts to implement or use,
and in particular they do not work with off-the-shelf statistics libraries provided
by (for example) Python, R, and Matlab. Third, because of the many rounds of
communication, any sensitive information in the data is likely to leak between
machines.

Non-interactive algorithms require only a single round of communication.
Each machine independently solves the learning problem on a small subset of
data, then a master machine merges the solutions together. These algorithms
solve all the problems of interactive ones: they are fast when communication

2 M. Izbicki, C. Shelton

is the main bottleneck; they are easy to implement with off-the-shelf statistics
packages; and they are robust to privacy considerations. The downside is worse
statistical performance. A growing body of work analyzes the popular naive
averaging merging procedure under special conditions [14, 20, 21, 17, 19], and
develops more robust merging procedures [23, 12, 10, 1, 5, 6]. All of these esti-
mators are either statistically sub-optimal or have computationally intractable
merge procedures.

The optimal weighted average (OWA) [3, 2] is a recently proposed non-
interactive estimator with statistically optimal guarantees. OWA’s merge pro-
cedure uses a second round of optimization over a tiny fraction of the data.
Because the fraction of data is small, it presents negligible computational bur-
den, but OWA is still able to achieve the optimal sequential statistical error
rates in the non-interactive setting. The downside of OWA is that it only works
for linear models. In this paper, we develop an algorithm called NOWA that
extends OWA into the nonlinear setting. The next section introduces OWA in
the original linear setting, and then Section 3 describes the NOWA extension.
Section 4 shows preliminary experiments with NOWA on the MNIST dataset.
We see that the standard naive averaging algorithm commonly used in federated
learning performs significantly worse in this simple task than NOWA.

2 Warmup: The Linear OWA

2.1 Problem Statement

Let Y ⊆ R be the space of response variables, X ⊆ Rd be the space of covariates,
andW ⊆ Rd be the parameter space. We assume a linear model where the loss of
data point (x, y) ∈ X ×Y given the parameter W ∈ W is denoted by `(y,x>W).
We define the true loss of parameter vector W to be L∗(W) = E `(y;x>W), and
the optimal parameter vector W ∗ = arg minW∈W L∗(W). We do not require
that the model be correctly specified, nor do we require that ` be convex with
respect to W . Let Z ⊂ X ×Y be a dataset of mn i.i.d. observations. Finally, let
r :W → R be a regularization function (typically the L1 or L2 norm) and λ ∈ R
be the regularization strength. Then the regularized empirical risk minimizer
(ERM) is

Ŵ erm = arg min
W∈W

∑
(x,y)∈Z

`(y,x>W) + λr(W). (1)

Assume that the dataset Z has been partitioned onto m machines so that each
machine i has dataset Zi of size n, and all the Zi are disjoint. Then each machine
calculates the local ERM

Ŵ erm
i = arg min

W∈W

∑
(x,y)∈Zi

`(y,x>W) + λr(W). (2)

Notice that computing Ŵ erm
i requires no communication with other machines.

Our goal is to merge the Ŵ erm
i s into a single improved estimate.

Neural Networks with One Round of Communication 3

To motivate our OWA merge procedure, we briefly describe a baseline pro-
cedure called naive averaging :

W ave =
1

m

m∑
i=1

Ŵ erm
i . (3)

Naive averaging is simple to compute but has only limited theoretical guarantees.
Recall that the quality of an estimator Ŵ can be measured by the estimation
error ‖Ŵ −W ∗‖2, and we can use the triangle inequality to decompose this error
as

‖Ŵ −W ∗‖2 ≤ ‖Ŵ − E Ŵ‖2 + ‖E Ŵ −W ∗‖2. (4)

We refer to ‖Ŵ − E Ŵ‖2 as the variance of the estimator and ‖E Ŵ −W ∗‖2 as
the bias. McDonald et al. [14] show that the W ave estimator has lower variance
than the estimator Ŵ erm

i trained on a single machine, but the same bias. Zhang

et al. [20] extend this analysis to show that if Ŵ erm
i is a “nearly unbiased esti-

mator,” then naive averaging is optimal. But Rosenblatt and Nadler [17] show
that in high dimensional regimes, all models are heavily biased, and so naive
averaging is suboptimal. All three results require ` to be convex in addition to
other technical assumptions. The OWA estimator relaxes these assumptions and
achieves better error bounds.

2.2 The Full OWA

To motivate the OWA estimator, we first present a less efficient estimator that
uses the full dataset for the second round of optimization. Define the matrix
Ŵ : Rd×m to have its ith column equal to Ŵ erm

i . Now consider the estimator

Ŵ owa,full = Ŵ V̂ owa,full, (5)

where
V̂ owa,full = arg min

V ∈Rm

∑
(x,y)∈Z

`
(
y,x>ŴV

)
+ λr(ŴV). (6)

Notice that Ŵ owa,full is just the empirical risk minimizer when the parameter
space W is restricted to the subspace Ŵowa = span{Ŵ erm

i }mi=1. In other words,

the V̂ owa,full vector contains the optimal weights to apply to each Ŵ erm
i when

averaging. Figure 1 shows graphically that no other estimator in Ŵowa can have
lower regularized empirical loss than Ŵ owa,full.

2.3 The OWA Estimator

The OWA estimator uses fewer data points in the second round of optimization.
Recall that in a linear model, the amount of data needed is proportional to the
problem’s dimension. Since the dimension of the second round is a fraction m/d
smaller than the first round, only an m/d fraction of data is needed for the same
accuracy.

4 M. Izbicki, C. Shelton

Ŵ erm

W aveŴ erm
1 Ŵ erm

2

Ŵ owa,full

Ŵ owa

`(y,x>W) + λr(W)

Ŵowa

Fig. 1. Ŵ owa,full is the estimator with best loss in Ŵowa, and Ŵ owa is close with high
probability.

Formally, let Zowa be a set of m2n/d additional data points sampled i.i.d.
from the original data distribution. Thus the total amount of data the OWA
estimator requires is mn+m2n/d. Whenever m/d ≤ 1, this expression simplifies
to O(mn), which is the same order of magnitude of data in the original problem.
The OWA estimator is then defined as

Ŵ owa = Ŵ V̂ owa, (7)

where

V̂ owa = arg min
V ∈Rm

∑
(x,y)∈Zowa

`
(
y,x>ŴV

)
+ λr(ŴV). (8)

OWA’s merge procedure is more complicated than the naive averaging merge
procedure, but still very fast. Notice that the projected data points x>Ŵ have
dimensionality m << d, and there are only m2n/d of them. Because the opti-
mization uses a smaller dimension and fewer data points, it takes a negligible
amount of time. Izbicki and Shelton [3] show an experiment where the first round
of optimizations takes about a day, and the second optimization takes about a
minute.

3 The Non-linear OWA (NOWA)

The intuition of the NOWA algorithm is that we apply the OWA algorithm
to each layer of a neural network independently. Unfortunately, the notation is
much messier in this scenario due to the need to keep track of many indices.

3.1 Problem Setting

We now extend our notation to include neural networks with multiple hidden
layers. In particular, we continue to use subscripts to denote different machines
(and let i range over the machines), but we also introduce superscripts to denote
different network layers (and let j range over the layers).

Neural Networks with One Round of Communication 5

Formally, assume our network architecture has p layers. For each layer j ∈
{1, ..., p}, there is an associated dimension d(j) ∈ N, activation function σ(j) :

Rd(j) → Rd(j)

, and weight matrix W (j) : Rd(j)×d(j−1)

. The input to the network

is a vector x ∈ Rd(0)

. The output of layer j is then recursively given by

f (j)(x) : Rd(j)

=

{
x j = 0

σ(j)(W (j)f (j−1)(x)) j > 0
(9)

and f (p)(x) is the final output of the network. In supervised learning problems,

we are given a dataset Z ⊂ Rd(0) × Rd(p)

with mn data points, and our goal is
to solve

Ŵ erm = arg min
W

∑
(x,y)∈Z

`(y, f (p)(x)) + λr(W), (10)

where ` is the loss function and r is the regularization function. We divide Z
into m disjoint smaller datasets {Z1, ..., Zm} each with n points. Each dataset
Zi is transfered to processor i, which solves the local learning problem

Ŵ erm
i = arg min

W

∑
(x,y)∈Zi

`(y, f (p)(x)) + λr(W). (11)

Each machine solves (11) without communicating with other machines using
any optimizer appropriate for the network architecture and data. Our goal is to
develop a merge procedure that combines the Wa local parameter estimates into
a single global parameter estimate with small loss.

3.2 The Merge Procedures

In this non-linear setting, the naive averaging merge procedure for the jth layer
is given by

W ave,(j) =
1

m

m∑
i=1

Ŵ erm,(j)
i. (12)

Google’s recent federated learning architecture uses naive averaging to merge
models together that have been independently trained on users’ cellphones [16].

We will define an improved merge procedure based on a weighted average of
the local parameter estimates. This requires some tensor notation. for each layer

j in the network, we define the 3rd-order tensor W stacked(j) : Rm×Rd(j)×Rd(j−1)

,

where the (a, b, c)th component of W stacked(j) is defined to be the (b, c)th com-

ponent of Ŵ erm,(j)
i. In words, W stacked(j) is the 3rd-order tensor constructed by

stacking the local parameter estimates Ŵ erm,(j)
a along a new axis. We also de-

fine the function contract : (Rm,Rm×Rd(j)×Rd(j−1)

)→ Rd(i)×Rd(j−1)

to be the
tensor contraction along the first dimension. That is, if V : Rm, then the (b, c)th

component of contract(V,W stacked(j)) is equal to
∑m

a=1 V (a)Ŵ erm,(j)
a(b, c). In

particular, if each component of V equals 1/m, then contract(V,W stacked(j)) =
1
m

∑m
a=1 Ŵ

erm,(j)
a = W ave,(j).

6 M. Izbicki, C. Shelton

 0.93

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 1 2 4 8 16 32 64 128

number of machines (m)

cl
a
ss

ifi
ca

ti
o
n

a
cc

u
ra

cy

W ave

W owa, |Zowa| = 500

W owa, |Zowa| = 5000

Fig. 2. The performance of the naive averaging estimator used in McMahan et al. [16]
is constant as we add more machines, but the performance of the NOWA estimator
increases.

In our non-linear optimal weighted average (NOWA) merge procedure, we
first construct the modified neural network

fmod,(j)(x) : Rd(j)

=

{
x j = 0

σ(j)(Wmod,(j)fmod,(j−1)(x)) j > 0
(13)

where

Wmod,(j) = contract(V (j),W stacked(j)). (14)

We then select a small subset of the data Zowa (i.e. |Zowa| << |Z|) and train the
network fmod over only the parameters V (j). That is, we solve the optimization
problem

V owa = arg min
V

∑
(x,y)∈Zowa

`(y, fmod,(p)(x)) + λr(V). (15)

The parameter matrices W owa
i = contract(V owa,(j),W stacked(j)) can then be

used in the original neural network. Intuitively, we need only a small number of
data points in the optimization of (15) because the number of parameters is sig-
nificantly smaller than in the original optimization (10). That is, the dimension
of V owa is much less than the dimension of Ŵ erm. When the network contains
no hidden layers, then the NOWA procedure reduces to the OWA procedure
described above.

Neural Networks with One Round of Communication 7

4 Experiments

McMahan et al. [16] evaluated the naive averaging merge procedure on the
MNIST dataset, and we perform a similar experiment here. We train the LeNet
neural network [9] provided by TensorFlow’s standard tutorial using the Adam
optimizer and dropout. We performed no hyperparameter tuning and simply
used the default hyperparameters provided by TensorFlow.

We perform our experiment using a cluster of 128 machines. MNIST contains
a training set 55,000 data points, and each machine receives a subset of the
data containing either 429 or 430 data points. The 10 class labels are evenly
distributed throughout the original training set, but we made no effort to ensure
they were evenly distributed throughout the subsets. That means on average,
each machine has access to only 43 examples from each class, but most machines
will have significantly fewer examples for some classes. Under such an extreme
paucity of data, it is unlikely for a single machine to be achieve high classification
accuracy.

Figure 2 shows the classification accuracy as the number of machines used
varies from 2 to 128. (Each experiment is repeated 5 times, and the average
is shown.) Since the number of data points per machine is fixed, adding more
machines adds more data, so we should expect the classification accuracy to
increase for a good merge procedure. We see that the NOWA algorithm signifi-
cantly outperforms naive averaging. The NOWA algorithm does not perform as
well as the oracle network trained on all the data (which has > 0.99 accuracy).
This is because of the difficulty of the local learning problems, which average
only 42 instances of each class.

5 Discussion

The original papers on federated learning [8, 15, 16] perform several rounds of
naive averaging to improve performance. In each round, the average from the
previous round is used to initialize the optimization of each worker node. This
procedure can easily be extended to use the NOWA merge procedure instead of
naive averaging. Since NOWA’s weighted averaging procedure performs better
than naive averaging in a single round, a multi-round version of NOWA will
likely perform better than a multi-round version of naive averaging. The second
round of optimization used in NOWA is particularly negligible in the federated
setting because this optimization can be performed in the data center on dedi-
cated machines. Therefore, using NOWA in a federated setup would provide no
additional burden to the node machines, which are typically severely computa-
tionally limited devices like cell phones.

References

1. Jun Han and Qiang Liu. Bootstrap model aggregation for distributed statistical
learning. NeurIPS, 2016.

8 M. Izbicki, C. Shelton

2. Mike Izbicki. Divide and Conquer Algorithms for Faster Machine Learning. PhD
thesis, UC Riverside, 2017.

3. Mike Izbicki and Christian R. Shelton. Distributed learning of non-convex linear
models with one round of communication. ECML-PKDD, 2019.

4. Martin Jaggi, Virginia Smith, Martin Takác, Jonathan Terhorst, Sanjay Krishnan,
Thomas Hofmann, and Michael I Jordan. Communication-efficient distributed dual
coordinate ascent. In NeurIPS, 2014.

5. Michael I. Jordan, Jason D. Lee, and Yun Yang. Communication-efficient dis-
tributed statistical inference. arXiv preprint arXiv:1605.07689, 2016.

6. Michael Kamp, Mario Boley, Olana Missura, and Thomas Gärtner. Effective par-
allelisation for machine learning. In NeurIPS, 2017.

7. Michael Kamp, Linara Adilova, Joachim Sicking, Fabian Hüger, Peter Schlicht,
Tim Wirtz, and Stefan Wrobel. Efficient decentralized deep learning by dynamic
model averaging. In ECML-PKDD. Springer, 2018.

8. Jakub Konečnỳ, H Brendan McMahan, Felix X Yu, Peter Richtárik,
Ananda Theertha Suresh, and Dave Bacon. Federated learning: Strategies for
improving communication efficiency. arXiv preprint arXiv:1610.05492, 2016.

9. Yann LeCun et al. Lenet-5, convolutional neural networks.
10. Jason D Lee, Qiang Liu, Yuekai Sun, and Jonathan E Taylor. Communication-

efficient sparse regression. JMLR, 18(5), 2017.
11. Mu Li, David G Andersen, and Jun Woo Park. Scaling distributed machine learning

with the parameter server. In OSDI, 2014.
12. Qiang Liu and Alexander T Ihler. Distributed estimation, information loss and

exponential families. In NeurIPS, 2014.
13. Chenxin Ma, Virginia Smith, Martin Jaggi, Michael I Jordan, Peter Richtárik,

and Martin Takáč. Adding vs. averaging in distributed primal-dual optimization.
ICML, 2015.

14. Ryan McDonald, Mehryar Mohri, Nathan Silberman, Dan Walker, and Gideon S
Mann. Efficient large-scale distributed training of conditional maximum entropy
models. In NeurIPS, 2009.

15. H. Brendan McMahan, Eider Moore, Daniel Ramage, and Blaise Agüera y Arcas.
Federated learning of deep networks using model averaging. CoRR, 2016.

16. H. Brendan McMahan, Eider Moore, Daniel Ramage, Seth Samson, and
Blaise Agüera y Arcas. Communication-efficient learning of deep networks from
decentralized data. 2017.

17. Jonathan D Rosenblatt and Boaz Nadler. On the optimality of averaging in dis-
tributed statistical learning. Information and Inference, 5(4), 2016.

18. Virginia Smith, Simone Forte, Ma Chenxin, Martin Takáč, Michael I Jordan, and
Martin Jaggi. Cocoa: A general framework for communication-efficient distributed
optimization. JMLR, 18, 2018.

19. Shusen Wang. A sharper generalization bound for divide-and-conquer ridge regres-
sion. AAAI, 2019.

20. Yuchen Zhang, Martin J Wainwright, and John C Duchi. Communication-efficient
algorithms for statistical optimization. In NeurIPS, 2012.

21. Yuchen Zhang, John C Duchi, and Martin J Wainwright. Divide and conquer
kernel ridge regression. In COLT, 2013.

22. Shen-Yi Zhao, Ru Xiang, Ying-Hao Shi, Peng Gao, and Wu-Jun Li. Scope: Scalable
composite optimization for learning on spark. AAAI, 2017.

23. Martin Zinkevich, Markus Weimer, Lihong Li, and Alex J Smola. Parallelized
stochastic gradient descent. In NeurIPS, 2010.

	Distributed Learning of Neural Networkswith One Round of Communication

