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Abstract

A Neyman-Scott process is a special case of
a Cox process. The latent and observable
stochastic processes are both Poisson pro-
cesses. We consider a deep Neyman-Scott
process in this paper, for which the building
components of a network are all Poisson pro-
cesses. We develop an efficient posterior sam-
pling via Markov chain Monte Carlo and use
it for likelihood-based inference. Our method
opens up room for the inference in sophisti-
cated hierarchical point processes. We show
in the experiments that more hidden Poisson
processes brings better performance for likeli-
hood fitting and events types prediction. We
also compare our method with state-of-the-
art models for temporal real-world datasets
and demonstrate competitive abilities for both
data fitting and prediction, using far fewer
parameters.

1 INTRODUCTION

Point processes have attracted attention due to their
ability to model the temporal and spatial patterns of
event data. They have been applied to various fields,
e.g., finance (Bauwens & Hautsch, 2009), neuroscience
(Perkel et al., 1967), and cosmology (Stoica et al., 2014).
The Poisson process is one of the most commonly used
models. The intensity of a Poisson process describes
the expected number of events per unit time or space
and is independent of the events elsewhere.

We usually do not have any prior knowledge of the
functional form of the intensity function. A common
strategy is to assume the intensity function itself is a
latent stochastic process. By introducing this latent
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process, we introduce dependence between the expected
number of events at different times or places. With this
strategy, we have a class of point processes called Cox
processes (Cox, 1955). Typical examples for the latent
stochastic process are Poisson processes (Neyman &
Scott, 1958), Cox processes (Adams, 2009), Strauss
processes (Yau & Loh, 2012), and Gaussian processes
(Adams et al., 2009).

In this paper, we consider a special class of Cox pro-
cesses, Neyman-Scott processes (N-SPs) of order larger
than one (Neyman & Scott, 1958), which we call deep
Neyman-Scott processes (DN-SPs). Neyman and Scott
first described univariate DN-SPs in 1958; they were
trying to model the distribution of galaxies in the Uni-
verse. Each building block of the univariate DN-SPs is
a Poisson process. Taking univariate DN-SPs of order
two as an example, one Poisson process generates the
centers of some superclusters, consisting of galaxy clus-
ters. In turn, each galaxy cluster generates its own set
of points, galaxies, from a Poisson process centered the
cluster center. The advantage of the DN-SPs compared
to the other Cox processes is that they have the ability
to build deep hierarchical models where each compo-
nent in the system is a point process. Further, unlike
Hawkes processes (Hawkes, 1971) and similar temporal
processes, DN-SP processes do not enforce a temporal
or causal “direction,” and thus also encompass spatial
and spatio-temporal processes.

N-SPs of order of one have been well studied in the
literature. Møller & Waagepetersen (2003) discuss
posterior sampling algorithms and inference methods
for univariate N-SPs based on the Metropolis-Hastings
(M-H) (Metropolis et al., 1953; Norman & Filinov, 1969;
Hastings, 1970) and spatial birth-and-death (SB&D)
(Kelly & Ripley, 1976; Ripley, 1977; Baddeley & Møller,
1989). Linderman et al. (2017) consider a sequential
Monte Carlo sampler for a multivariate (not deep) N-SP,
but without giving a functional form for the proposal.
Williams et al. (2020) give a collapsed Gibbs posterior
sampling algorithm for a univariate (not deep) N-SP.
However, little attention has been given to DN-SPs
(order greater than one) due to the difficulty in the



Deep Neyman-Scott Processes

z1,0 z1,1

θ(2,0)→(1,0) θ(2,0)→(1,1)

z2,0

x0

θ(1,0)→(0,0)

x1

θ(1,1)→(0,1)

z1,0 z1,1

θ(2,0)→(1,0) θ(2,0)→(1,1)

z2,0

x0

θ(1,0)→(0,0)

x1

θ(1,1)→(0,1)

Figure 1: Illustration of Model Sampling: (left) forward sampling & (right) posterior sampling.

complex posterior sampling and inference. The only
existing work we have found is from Andersen et al.
(2018), which employs a moment-based inference for
photoactivated localization microscopy. Although the
moment-based inference is computationally easy, some
constant parameters for the estimation of the moments
have to be tuned manually, and it is not able to estimate
the posterior intensity surface of the unobservable point
processes.

To the best of our knowledge, we are the first to give
a posterior sampling algorithm and a likelihood-based
inference method for multivariate DN-SPs with experi-
ments for real-world data. In this paper, we first con-
struct a temporal multivariate DN-SP in one dimension
in Sec. 2. Then in Sec. 3, we present an efficient poste-
rior sampling via Markov chain Monte Carlo (MCMC)
and use it for inference. We give competitive experi-
ments results for real-world data compared with MTPP
(Lian et al., 2015), the neural Hawkes process (Mei &
Eisner, 2017), the self-attentive Hawkes process (Zhang
et al., 2020a), and the transformer Hawkes process
(Zuo et al., 2020) in Sec. 4. While our experiments are
for temporal point processes, our inference method can
also be applied to general spatial point processes as
discussed in Sec. 3.1.

2 DEEP NEYMAN-SCOTT
PROCESSES

In this section, we review temporal point processes
and introduce our DN-SPs. Different from the N-SPs
given by Neyman & Scott (1958), our DN-SPs are
multivariate (events can be marked or labeled).

Temporal Point Processes A temporal point pro-
cess (TPP) (Daley & Vere-Jones, 2003) is a random pro-
cess with a realization as a sequence of events {ti}mi=1,
where each time point ti ∈ R≥0 and ti < ti+1,∀i.

Definition 1 (conditional intensity function). The
conditional intensity function (CIF) of a TPP is defined
as

λ(t) = lim
∆t→0

Pr(One event in [t, t+ ∆t] | Ht)
∆t

,

where Ht is an element in a filtration {Ht}t≥0.

TPPs are completely characterized by their CIFs as
they determine the distributions of the numbers of
events as Bernoulli random variables at each infinites-
imal interval. As a special case for TPPs, a homo-
geneous Poisson process (HPP) has a constant CIF
λ0 > 0. At each infinitesimal interval [t, t + ∆t], the
probability of one event is λ0 ·∆t.

Deep Neyman-Scott Processes To build DN-SPs,
we will stack TPPs in a hierarchical manner s.t. the
distributions of the CIFs as random processes are con-
trolled by the TPPs on higher layers.

Each observed data point x is a collection of sequences
{xk}K0

k=1 = {{t0,k,j}
m0,k

j=1 }
K0

k=1, where xk is the sequence
of the kth type of event (or events with the kth mark
in a discrete-marked TPP) and t0,k,j is the time of
the jth event of this type. (The 0 indicates this is an
observation event at the bottom layer of the model.)
For each data point x, there are L hidden layers of
TPPs Z = {Z1, . . . ,ZL}, with Z` = {Z`,k}K`k=1. K` is
the number of hidden processes at level `, and Z`,k
is a TPP. Z`,k and Z`+1,j are connected by a kernel
function φθ(`+1,k)→(`,j)

(·), whose functional form will be
given later.

Generative Model Semantics We first draw sam-
ples from the TPPs on the top layer. These TPPs are
assumed to be HPPs. The CIF for ZL,k is a constant
function

λL,k(t) = µk, where µk > 0.
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Figure 2: The Structure of A DN-SP

Next, we draw samples for each hidden TPPs condi-
tional on the TPPs in the layer immediately above.
The CIF for Z`,k conditional on Z`+1 is

λ`,k(t) =

K`+1∑
i=1

∑
t`+1,i,j

φθ(`+1,i)→(`,k)
(t− t`+1,i,j), (1)

where z`+1,i = {t`+1,i,j}
m`+1,i

j=1 is a realization for
Z`+1,i.

As an example, Fig. 1 demonstrates the distributions
of the events for a DN-SP with two hidden layers.
The left figure is for forward sampling and the right
one is for posterior sampling. For forward sampling,
three events are drawn from Z2,0. The dashed lines
indicate the positions of the three events on the top
layer. The plots for the other TPPs are the densities
and rug plots of the samples drawn conditioned on
z2,0. For posterior sampling, the samples for x0 and
x1 are collected and fixed from the forward sampling.
Then we draw posterior samples for the other TPPs
conditional on x0 and x1 and plot their densities and
rug plots as well. Note the modes of the posterior
distribution for z2,0 recover the positions of the prior
events for z2,0 in forward sampling.

Fig. 2 gives the general structure of a DN-SP similar to
a graphical model, where each node represents a TPP,

θ(`+1,∗)→(`,k) = [θ(`+1,i)→(`,k)]
K`+1

i=1 , and a sample node
for z`,k is enlarged.

Conditioned on Z`+1, Z`,k is a Poisson process whose
CIF at each time interval is independent of the CIF at
the other time intervals, and the number of events at
each time interval follows the Poisson distribution.

The time interval for each hidden TPP is set to be the
same as the evidence and no edge effects are considered
in our model.

Evidence Likelihood The observed data are as-
sumed to be drawn conditioned on the hidden TPPs
on the lowest hidden layer in a manner analogous to
those of the layers above. That is, the intensity for xk,
λ0,k(t), is as in Eq. 1 where ` = 0.

The Kernel Function For a TPP, it is reasonable
to make the kernel function be zero for negative inputs
(i.e., to be “causal”) and converge to 0 as t goes to
infinity (the influence of the events will eventually dis-
appear). The sole constrain is that the sum appearing
in the intensity function (Eq. 1) should always be non-
negative. We also want the kernel function to be as
flexible as possible with only a few parameters, so we
choose a gamma kernel such that

φθ(x) =

{
p · βα

Γ(α)x
α−1e−βx, for x > 0, p, α, β > 0,

0, for x ≤ 0,

where θ = {p, α, β} and Γ(α) is the gamma function.
The gamma kernel asymptotes to 0 as x→∞. More-
over, with the varying parameters, the gamma kernel
can either be monotonically decreasing or have a uni-
modal shape, which provides flexibility.

3 INFERENCE

Typical ways to estimate the parameters include
Bayesian inference and maximum likelihood estima-
tion (MLE). Bayesian inference requires the posterior
sampling for the parameters (see Appx. D for more de-
tails), but in our case it becomes too slow to be feasible
if we have many parameters. For more efficient infer-
ence, we adopt Monte Carlo expectation-maximization
(MCEM) (Wei & Tanner, 1990) as an indirect way to
maximize the marginal likelihood. Different from the
ordinary EM, the expected value of the log-likelihood
is approximated by a Monte Carlo method in the ex-
pectation steps. Posterior samples of the hidden TPPs
are required for the estimation of the expected values.

The posterior sampling for a hidden TPP is not trivial
as it involves the sampling for an unbounded number
of variables and the posterior stochastic processes of
TPPs are not TPPs anymore. Instead, the posterior
stochastic processes of TPPs are spatial point processes
(SPPs). Unlike TPPs, SPPs do not have a natural
ordering in space to define a filtering, hence the CIFs
are not well-defined. In order to better describe a
SPP, we need to provide a different type of conditional
intensity function for an SPP:
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Definition 2 (Papangelou conditional intensity func-
tion (Papangelou, 1974)). The Papangelou conditional
intensity function (PCIF) is defined as

λP(t) = lim
∆t→0

Pr(One event in B∆t(t) | [N\B∆t(t)])

∆t
,

where B∆t(t) = [t, t+∆t], N = [Z,x] is the whole set of
hidden TPPs and the evidence, and [N\B∆t(t)] is the
information of the point processes N outside B∆t(t).

Different from a CIF, which is only conditional on
the history, a PCIF is conditional on the whole space.
For a Poisson process, PCIF is equivalent to CIF as
the probability to have an event at any infinitesimal
interval is independent of the time or location.

The PCIF for our model is given in Prop. 1. See
Appx. A for more details.

Proposition 1. The PCIF for the posterior point pro-
cess of Z`,k is

λP;`,k(t) =λ`,k(t)

K`−1∏
i=1

(
exp

(
−Φ(`,k)→(`−1,i)(T − t)

)
∏

t`−1,i,j>t

λ′`−1,i(t`−1,i,j , t)

λ`−1,i(t`−1,i,j)

)
, (2)

where λ′`−1,i(x, t) = λ`−1,i(x)+φ(`,k)→(`−1,i)(x−t) and

Φ(`,k)→(`−1,i)(x) =
∫ x

0
φθ(`,k)→(`−1,i)

(τ)dτ .

From Prop. 1, we can see that the PCIF at time t is not
only controlled by the events on layers `+ 1 through
λ`,k(·), but controlled by the events on layers ` and

`− 1 through {λ`−1,i(·)}
K`−1

i=1 .

3.1 MCMC

As the PCIF has complex correlations both within and
between nodes, it is hard to directly do posterior sam-
pling for the hidden TPPs. Considering the simplest
case, if we only have one hidden layer, our model just
becomes a multivariate N-SP. In the SPPs community,
SB&D is more popular than M-H possibly due to its
simplicity and efficiency (Geyer & Møller, 1994; Clif-
ford & Nicholls, 1994; Møller & Waagepetersen, 2003).
Unfortunately, the sufficient condition for the conver-
gence of SB&D is not satisfied in our case, and it is
an open question of whether SB&D converges for our
model. We provide more details in Appx. E. Thus,
we devised a different Markov chain equipped with
auxiliary variables that converges quickly to the true
posterior distribution. Compared with a naive MCMC
sampler which just re-samples all the hidden events
from homogeneous Poisson processes every time as the
proposal, our posterior sampling is much more efficient
due to the help of auxiliary variables.

Remark. Our MCMC can be applied to non-casual
kernels (i.e., the kernels can be functions which have
non-zero values in the whole space, like a Gaussian
function) and SPPs with any dimensions, not only
temporal DN-SPs. No matter how we choose the kernel,
the detailed balance and ergodicity conditions are still
satisfied, and thus the MCMC sampler still converges
to the posterior distribution.

3.1.1 Virtual Events

Similar to prior work (Rao & Teh, 2011a, 2013; Qin
& Shelton, 2015; Shelton et al., 2018), we add virtual
events as auxiliary variables for our MCMC sampler.
They work by providing the candidates for the real
events of the hidden TPPs, and they do not contribute
to any intensity functions. With the help of the vir-
tual events, we only need to search for the real events
where the virtual events appear, instead of the whole
space. We explore all possible real event locations by
resampling virtual events.

For each data point x, there are L layers of virtual TPPs
(VPPs) Z̃ = {Z̃1, . . . , Z̃L} aligning with the hidden real
point processes (RPPs) Z, where Z̃` = {Z̃`,k}K`k=1 with

Z̃`,k as a virtual TPP. The CIF for Z̃`,k conditioned
on Z`−1 is

λ̃`,k(t̃) = µ̃`,k+

K`−1∑
i=1

∑
t`−1,i,j

φ̃θ̃(`−1,i)→(`,k)
(t`−1,i,j−t̃) (3)

where µ̃`,k ≥ 0 is the base rate, φ̃θ̃(`−1,i)→(`,k)
(·) is the

virtual kernel function, which we assume is a gamma
kernel. Note that φ̃θ̃(`−1,i)→(`,k)

(t`−1,i,j − t̃) evolves in

the opposite direction to φθ(`+1,i)→(`,k)
(t − t`+1,i,j),

which we will rationalize later. However, the intensity
of virtual events at layer ` depends on the real events
at layer `− 1, not the virtual events there.

3.1.2 Complete Likelihood

The complete likelihood for the joint RPPs and VPPs
for a data point is

p(x,Z=z, Z̃=z̃) = p(zL)

L−1∏
`=0

p(z` | z`+1)p̃(z̃`+1 | z`),

(4)
where

p(zL) =
∏KL
k=1 p(zL,k),

p(z` | z`+1) =
∏K`
k=1 p(z`,k | z`+1),

p̃(z̃` | z`−1) =
∏K`
k=1 p̃(z̃`,k | z`−1) .

The likelihood of zL,k is

p(zL,k) = exp (−µL,kT )µ
mL,k
L,k ,
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Figure 3: Examples For Sampler Moves. Represents a Real Event. Represents a Virtual Event.

where mL,k is the number of events drawn from ZL,k.

The likelihood of z`,k for 0 ≤ ` ≤ L− 1 is

p(z`,k|z`+1)=exp

( ∑
t`,k,j≤T

log λ`,k(t`,k,j)−
∫ T

0

λ`,k(t) dt

)
.

(Here and for the rest of the paper, we let z0,k be xk.)

The likelihood of z̃`,k for 1 ≤ ` ≤ L is

p̃(z̃`,k|z`−1)=exp

( ∑
t̃`,k,j≤T

log λ̃`,k(t̃`,k,j)−
∫ T

0

λ̃`,k(t) dt

)
.

3.1.3 Sampler Moves

During the sampling process, we first select a hid-
den TPP uniformly and then apply a move selected
randomly from the following three types with a pre-
determined probability distribution. See Fig. 3 for
illustration. More details can be found in Appx. B.

Move 1: Re-sample virtual events. This move re-
samples the virtual events for a VPP. The dimen-
sionality of the sample space is changed after each
re-sampling. But the determinant of the Jacobian ma-
trix, introduced as the correction for the changes of
variables in reversible-jump MCMC (Green, 1995), is 1,
since the new variables are independent of the current
virtual events of the Markov chain. The acceptance
probability is always 1 for this move.

Move 2: Flip. We uniformly pick an event from the
union of the samples from the RPP and the VPP, and
then propose to change the type for that event. If the
type of the picked event is real, we propose to flip it to
be a virtual event, and vice versa.

Move 3: Swap. One event is picked uniformly from the
samples for each of the RPP and the VPP. Then we
propose to swap the types of these two events, i.e., the
real event becomes a virtual event and vice versa.

Suppose the proposals for the changes are to adjust
the events in z`,k and z̃`,k to become the events in z′`,k
and z̃′`,k. Then the likelihood ratio is

P =
p(z′`,k|z`+1)p̃(z̃′`,k|z`−1)

p(z`,k|z`+1)p̃(z̃`,k|z`−1)
· p(z`−1|z′`)p̃(z̃`+1|z′`)
p(z`−1|z`)p̃(z̃`+1|z`)

,

where p(z`−1 | z`) =
∏K`−1

k=1 p(z`−1,k | z`), and p̃(z̃`+1 |
z`) =

∏K`+1

k=1 p̃(z̃`+1,k | z`).

The ratio for the proposal probability is 1 for both
Move 2 and Move 3. So the acceptance probability for
Move 2 and Move 3 is min(1,P · 1).

It is necessary to have Move 3 to help accelerate mixing
even though Move 2 seems to already include the ability
to swap through two consecutive flips. However, often
there is a real event that has large positive contribution
to the likelihood in Eq. 4. If we propose to flip this
event to a virtual event, the likelihood ratio P would
be very small, hence this real event would stay in a
same place for a long time. Similarly, flipping a virtual
event first would be unlikely.

With these three sampler moves, we address the form
of the VPP intensity functions in Eq. 3:

1. The intensity functions for the VPPs are only con-
trolled by the RPPs on the lower layers. This
allows us to sample the VPPs directly and effi-
ciently, using the inversion method (Çinlar, 2013)
in Move 1, to push the information “upwards.”

2. The virtual events tend to appear more at the
places where the probability is high to have a real
event. In particular, events at higher levels tend
to proceed those at lower levels. So it is natural to
have virtual kernel functions that evolve with time
in the reverse direction to the real kernel functions.
The true posterior of the upper level (conditioned
on the lower level) is not so simple, but this is a
good approximation for the proposal.

3. The base rates µ̃`,k help accelerate the mixing for
the point processes not directly connected to the
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evidence. Without them, an upper layer can be
“starved” for virtual events (necessary to allow the
addition and movement of real points) if a lower
layer has few real events.

3.1.4 Update Virtual Kernels Parameters

Because we want the distribution of the proposed vir-
tual events to be as close as possible to the posterior
distribution of the real events, we would like to max-
imize the likelihood of the parameters for the VPPs
assuming the posterior samples for the real events are
drawn from the VPPs. That is, we adjust the sampler
to make it more efficient by tuning the parameters of
the VPPs (as the sampler is valid across different VPP
parameters).

As the number of events usually varies significantly for
different evidence samples, we assume the base rates
µ̃n,L,i and µn,i on the top layer are different for each
data point xn, where n represents the data index.

Let z
(1)
n , . . . , z

(S)
n be the posterior samples from the

distribution p(Zn | xn;µn,θ), where µn = [µn,i]
KL
i=1

are the parameters of the HPPs on the top layer and

θ =
[
θ(`+1,∗)→(`,∗)

]L−1

`=0
are the parameters of the kernel

functions. Given the log-likelihood of the parameters
of the VPPs w.r.t the real events

˜llh
(
θ̃, µ̃n; xn, zn

)
=

L∑
`=1

˜llh(`−1,∗)→(`,∗);xn,zn

where

˜llh(`−1,∗)→(`,∗);xn,zn

=

K∑̀
k=1

( ∑
tn,`,k,j≤T

log λ̃n,`,k(tn,`,k,j)−
∫ T

0

λ̃n,`,k(t)dt

)
.

The update rules are

µ̃n ←µ̃n +
r̃

SN

S∑
s=1

∇µ̃n
˜llh
(
θ̃, µ̃n; xn, z

(s)
n

)
, (5)

θ̃ ←θ̃ +
r̃

SN

N∑
n=1

S∑
s=1

∇θ̃
˜llh
(
θ̃, µ̃n; xn, z

(s)
n

)
, (6)

where

µ̃n =
[
[µ̃n,`,k]

L
`=1

]K`
k=1

,

θ̃ =

[[[
θ̃(`−1,i)→(`,j)

]K`−1

i=1

]K`
j=1

]L
`=1

,

N is the number of data points, and r̃ > 0 is the step
size for optimizing. See Appx. C.1 for the gradient.

3.2 MCEM

MCEM iteratively applies the following two-step pro-
cess until the parameters for the RPPs converge.

Step 1. Generate posterior samples z
(1)
n , . . . , z

(S)
n from

the distribution p(Zn | xn;µn,θ).

Step 2. Update the parameters. Given the log-
likelihood function of the parameters of the RPPs w.r.t
the real events

llh(θ,µn; xn, zn)

= log

(
KL∏
i=1

p(zn,L,i) ·
L−1∏
`=0

K∏̀
i=1

p(zn,`,i | zn,`+1)

)
, (7)

the update rules for the parameters are

µn ← arg max
µn

{
1

S

S∑
s=1

llh(θ,µn; xn, z
(s)
n )

}
, (8)

θ ← θ +
r

SN

N∑
n=1

S∑
s=1

∇θllh(θ,µn; xn, z
(s)
n ), (9)

where N is the number of data points and r > 0 is the
step size for optimizing. See Appx. C.2 for the gradient
and maximization formula.

Full maximization is utilized for µn in Eq. 8, and ascent-
based MCEM (Caffo et al., 2005) is used for θ in Eq. 9.
When the sample size S goes to infinity and we up-
date the parameters as in Eq. 9, the expected value of
the log-likelihood in Eq. 7 increases at each iteration
with probability converging to 1 (Caffo et al., 2005).
The general theory for the convergence of MCEM has
not been well-established. Different senses and differ-
ent approaches for the convergence analysis are given
by Neath et al. (2013). We tried various settings for
MCEM and choose the one that is stable and compu-
tationally efficient. Adam (Kingma & Ba, 2015) was
utilized for the optimization of the parameters of the
kernel and virtual kernel functions. Notice that we
are not changing the parameters for the real or virtual
kernels during MCMC sampling. The posterior sam-
ples for the real events are collected from the MCMC
sampler after it reaches convergence. Pseudo-code is
given in Appx. F.

4 EXPERIMENTS

The code is available online at https://github.com/
hongchengkuan/Deep-Neyman-Scott-Processes.

4.1 Architectures

We constructed hierarchical models as in Fig. 4. Black
horizontal arrows are point processes. Gray arrows are

https://github.com/hongchengkuan/Deep-Neyman-Scott-Processes
https://github.com/hongchengkuan/Deep-Neyman-Scott-Processes
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Figure 4: n-hidden

model connections. For the 1-hidden model, we only
have one layer of hidden TPPs and there is only one
TPP in total on the top layer. The hidden TPP is
connected to all the types of events in the evidence.

For the 2-hidden model, we have the one hidden TPP
on layer 1 for each type in the evidence with a single
connection between matched hidden- and observed-
TPPs, i.e., φθ(1,i)→(0,j)

(·) = 0 if i 6= j. There is also only
one hidden TPP on the top layer, which is connected
to all hidden TPPs on layer 1.

The n-hidden model can be constructed by adding more
hidden layers for each type similarly. More details
about training, testing, and prediction are given in
Appx. G. For each dataset, the best result is shown in
bold and underlined, the runner-up in bold.

4.2 Synthetic Data Experiments

We use synthetic data to illustrate the modeling power
of multiple layers. The synthetic data are generated
from DN-SPs with differing numbers of hidden layers
and 2 event types. They are divided into training and
test sets. Then we apply our models with different
number of hidden layers to train and test the synthetic
datasets. The log-likelihood per event, time prediction
root mean squared error (RMSE) and type prediction
accuracy for the test set are shown in Table 1. The left-
most column represents the different depths we use to
generate synthetic data and the right 3 columns are the
results when we use different model depths for training
and testing. For log-likelihood (which our model is
trained for), increasing depth helps, particularly up
to the depth of the data. Accuracy and RMSE have
similar behavior.

4.3 Real-world Data Experiments

We compare our DN-SP to four currently popular
continuous-time event modeling methods: MTPP (Lian
et al., 2015), the neural Hawkes process (NHP) (Mei &
Eisner, 2017), the self-attentive Hawkes process (SAHP)

(Zhang et al., 2020a), and the transformer Hawkes pro-
cess (THP) (Zuo et al., 2020). MTPP combines Gaus-
sian processes and piecewise-constant intensity models
(Gunawardana et al., 2011), while the other baselines
are based on neural networks. The datasets we use
are retweets, earthquakes, and homicides. The details
for these datasets can be found in Appx. G.1. Each
dataset is split into training, validation, and test sets
randomly five times. We report the mean values with
the standard deviations shown in parentheses. Vali-
dation is used to tune the hyperparameters and early
stopping for all the datasets for NHP, SAHP and THP.
For DN-SPs, validation is only used for early stopping
for retweets dataset, as we only use mini-batch gra-
dient ascent for retweets. Batch gradient ascent and
termination based on training are used for earthquakes
and homicides. For MTPP, each task corresponds to
a type in our experiments. The model parameters of
MTPP are fixed across different sequences and each
sequence has their own variational parameters. We use
forward sampling to do the prediction for MTPP in a
similar way as in Appx. G.4.

The results in Table 2 indicate that our model achieves
competitive results compared to the baselines. We have
the best RMSE for earthquakes and homicides, the
best accuracy for earthquakes, and the best likelihood
for retweets and homicides. The likelihood for the
earthquakes dataset is only a little worse than SAHP
and THP. Note that our model only needs to fit tens of
parameters during training, compared to the hundreds
of thousands parameters needed for the neural networks.

It is also notable that the 2-hidden is better than 1-
hidden in terms of likelihood and accuracy while, for
RMSE, 2-hidden is worse than 1-hidden consistently. It
indicates that separate hidden TPPs for each type does
increase the power to fit the evidence. The RMSE of
the 1-hidden model is not maintained when increasing
model capacity to the 2-hidden model, because we are
fitting to likelihood which is related but different than
RMSE. Note that on the homicides data, our RMSE
error for both 2-hidden and 1-hidden are significantly
better than those of prior work.

We also ran the real-world experiments for both a fully
connected model and a model with more than 2 hidden
layers. The likelihood, RMSE, and accuracy were not
improved, because the single top layer is sufficient to
correlate events across the different types. The time
complexity analysis can be found in Appx. G.5.

5 RELATED WORK

Neural Networks Recent work uses neural net-
works to directly model the CIF for a TPP, e.g., recur-
rent neural networks (Du et al., 2016; Mei & Eisner,
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Table 1: Synthetic Experimental Results

Synthetic Datasets Model Log-likelihood RMSE Accuracy

2-hidden

1-hidden −0.006 1.048 0.722

2-hidden 0.286 0.942 0.760

3-hidden 0.301 1.010 0.762

4-hidden 0.304 1.189 0.757

3-hidden

1-hidden 0.528 0.731 0.782

2-hidden 0.822 0.611 0.812

3-hidden 0.835 0.613 0.814

4-hidden 0.831 0.670 0.809

4-hidden

1-hidden 1.177 0.411 0.820

2-hidden 1.458 0.409 0.845

3-hidden 1.464 0.391 0.846

4-hidden 1.466 0.391 0.846

Table 2: Real-world Experimental Results

Datasets Model Log-likelihood RMSE(×104) Accuracy

Retweets

MTPP −13.44(0.18) 1.64(0.03) 0.36(0.00)
NHP −6.12(0.03) 1.64(0.03) 0.48(0.01)
SAHP −4.38(0.17) 1.60(0.04) 0.51(0.03)
THP −4.63(0.03) 1.54(0.03) 0.61(0.00)

1-hidden −4.15(0.07) 1.60(0.03) 0.48(0.00)
2-hidden −3.54(0.15) 1.69(0.07) 0.57(0.00)

Earthquakes

MTPP −10.45(0.09) 0.20(0.01) 0.52(0.00)
NHP −8.70(0.08) 0.20(0.01) 0.39(0.01)
SAHP −8.29(0.25) 0.16(0.01) 0.56(0.03)
THP −8.13(0.05) 0.20(0.01) 0.61(0.01)

1-hidden −8.45(0.05) 0.15(0.01) 0.61(0.01)
2-hidden −8.43(0.06) 0.16(0.01) 0.60(0.01)

Homicides

MTPP −18.15(1.40) 23.14(3.41) 0.20(0.02)
NHP −21.93(0.93) 23.13(3.42) 0.18(0.03)
SAHP −14.02(0.33) 23.13(3.42) 0.19(0.02)
THP −14.87(0.63) 23.13(3.42) 0.26(0.03)

1-hidden −11.68(0.20) 17.40(2.68) 0.25(0.01)
2-hidden −10.78(0.11) 17.73(2.84) 0.25(0.02)

2017) and self-attention mechanism (Zuo et al., 2020;
Zhang et al., 2020a). Omi et al. (2019) model the cu-
mulative hazard function. And, some others attempt
to model the conditional distribution of the inter-event
times (Mehrasa et al., 2019; Shchur et al., 2020). All
of these methods assume the latent space is determin-
istically identified by a neural network, which lacks
the natural flexibility induced by the randomness of a
stochastic process. Most critically, a large number of
parameters is generally required.

Gaussian Processes (GP) Modulated Point Pro-
cesses Others have constructed GP-modulated point
processes with the assumption that the intensity func-
tions are smooth (e.g. Møller et al., 1998; Kottas, 2006;
Kottas & Sansó, 2007; Adams et al., 2009; Rao & Teh,

2011b; Gunter et al., 2014; Samo & Roberts, 2015;
Lloyd et al., 2015; Donner & Opper, 2018; Aglietti
et al., 2019). However, the intensity functions can ex-
perience sudden changes upon events arrivals, e.g., a
big earthquake can dramatically increase the probabil-
ity to have a small earthquake in the near future. And
the integral of the intensity function is not available in
a closed form, requiring approximations in its compu-
tation. Others have imposed GP priors on the CIFs of
Hawkes processes (Zhou et al., 2019; Zhang et al., 2019,
2020b; Zhou et al., 2020), which assume the sudden
changes can only happen at the times of the observed
events. All of these GP-modulated models are not able
to be stacked to construct a deep model built solely
with point processes.
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Piecewise-constant Intensity Model (PCIM)
Another line of work it to use a PCIM (Gunawardana
et al., 2011) or other variants (Weiss & Page, 2013;
Lian et al., 2015). The history of events is embedded
into a piecewise-constant function, which is the inten-
sity function itself or some other function that can
output the intensity. The size of time windows for the
calculation of the piecewise-constant function needs to
be pre-determined.

6 CONCLUSION

We build a deep Neyman-Scott process (DN-SP) and
use it to model real-world event sequences. Different
from the existing methods for Cox processes, we are
able to stack point processes in a hierarchical manner
and do not assume the intensity function is smooth in
the space. We propose and test an efficient MCMC pos-
terior sampling algorithm for DN-SPs. Virtual events
as auxiliary variables help accelerate the mixing of our
Markov chains. With the fast posterior sampling, we
are able to do inference for large datasets. Our encour-
aging experiments results suggest that it is promising
to build a deep model with point processes. Future
research directions include constructing more compli-
cated kernels, designing variational inference algorithm,
and generalizing the DN-SPs into more general spaces.
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Supplementary Material:
Deep Neyman-Scott Processes

A POSTERIOR PCIF

Lemma 1 (Kallenberg (1984)). The PCIF for a point process Ξ defined on S with density f is

λP(t) =
f(ξ ∪ {t})
f(ξ)

, t ∈ S\ξ,

with ξ as a realization of Ξ and a/0 = 0 for a ≥ 0.

Proposition 1. The PCIF for the posterior point process of Z`,k is

λP;`,k(t) = λ`,k(t)

K`−1∏
i=1

(
exp

(
−Φ(`,k)→(`−1,i)(T − t)

) ∏
t`−1,i,j>t

λ′`−1,i(t`−1,i,j , t)

λ`−1,i(t`−1,i,j)

)
, (10)

where λ′`−1,i(x, y) = λ`−1,i(x) + φ(`,k)→(`−1,i)(x− y) and Φ(`,k)→(`−1,i)(x) =
∫ x

0
φθ(`,k)→(`−1,i)

(τ)dτ .

Proof. The p.d.f to have an event at time t for Z`,k is

p(t,x, z1, . . . , z`−1, z`/{t}, z`+1, . . . , zL) = p(zL)p(zL−1 | zL) · · · p(x | z1),

where z`/{t} means there is no event at time t for Z`,k.

If there is no event at time t, the p.d.f conditional on the information of the point processes except time t is

p(x, z1, . . . , z`−1, z`/{t}, z`+1, . . . , zL) = p(zL)p(zL−1 | zL) · · · p(z`/{t} | z`+1) · · · p(x | z1).

Thus, according to Lemma 1, the posterior PCIF to have an event at time t is

λP;`,k(t) =
p(t,x, z1, . . . , z`−1, z`/{t}, z`+1, . . . , zL)

p(x, z1, . . . , z`−1, z`/{t}, z`+1, . . . , zL)

=
p(z`/{t} ∪ {t} | z`+1)

p(z`/{t} | z`+1)

= λ`,k(t)

K`−1∏
i=1

(
exp

(
−Φ(`,k)→(`−1,i)(T − t)

) ∏
t`−1,i,j>t

λ′`−1,i(t`−1,i,j , t)

λ`−1,i(t`−1,i,j)

)
.

B SAMPLER MOVES

Recall

P =
p(x, z′, z̃′)

p(x, z, z̃)
=
p(z′`,k | z`+1) · p̃(z̃′`,k | z`−1)

p(z`,k | z`+1) · p̃(z̃`,k | z`−1)
· p(z`−1 | z′`) · p̃(z̃`+1 | z′`)
p(z`−1 | z`) · p̃(z̃`+1 | z`)

,

where

p(z`−1 | z`) =

K`−1∏
k=1

p(z`−1,k | z`),

p̃(z̃`+1 | z`) =

K`+1∏
k=1

p̃(z̃`+1,k | z`).
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B.1 Re-sample Virtual Events

Suppose we want to re-sample the virtual events for Z̃`,k, the proposal probability is

q(z̃`,k | z`−1) = p̃(z̃`,k | z`−1),

and the integrated detailed balance equation is∫
A

∫
A′
p(x, z, z̃)q(z̃′`,k | z`−1)α(z̃`,k, z̃

′
`,k)dz̃′`,kdz̃`,k

=

∫
A

∫
A′
p(x, z′, z̃′)q(z̃`,k | z`−1)α(z̃′`,k, z̃`,k)dz̃′`,kdz̃`,k,

where z̃`,k ∈ A and z̃′`,k ∈ A′.

The proposal probability ratio is

Q =
q(z̃`,k | z`−1)

q(z̃′`,k | z`−1)
=
p̃(z̃`,k | z`−1)

p̃(z̃′`,k | z`−1)
.

The likelihood ratio is

P =
p(x, z′, z̃′)

p(x, z, z̃)
=
p̃(z̃′`,k | z`−1)

p̃(z̃`,k | z`−1)
.

The absolute value of the determinant of the Jacobian is

J =

∣∣∣∣∣∂(z̃′`,k, z̃`,k)

∂(z̃′`,k, z̃`,k)

∣∣∣∣∣ = 1.

So the acceptance probability is
α(z̃`,k, z̃

′
`,k) = P · Q · J = 1.

B.2 Flip a Virtual Event to a Real Event

Suppose we want to flip a virtual event t̃`,k,j to a real event t`,k,m`,k+1.

The number of events for the current state and the proposed state is m`,k + m̃`,k. The probabilities to pick t̃`,k,j
and t`,k,m`,k+1 are both 1/(m`,k + m̃`,k), as the total number of events does not change. Hence, the proposal
probability ratio is

Q =
1/(m`,k + m̃`,k)

1/(m`,k + m̃`,k)
= 1.

The likelihood ratio is

Pv =
λ`,k(t̃`,k,j)

λ̃`,k(t̃`,k,j)
· p(z`−1 | z′`) · p̃(z̃`+1 | z′`)
p(z`−1 | z`) · p̃(z̃`+1 | z`)

=
λ`,k(t̃`,k,j)

λ̃`,k(t̃`,k,j)

·
K`−1∏
i=1

(
exp

(
−Φθ(`,k)→(`−1,i)

(T − t̃`,k,j)
) ∏t`−1,i,j>t̃`,k,j

λ′`−1,i(t`−1,i,j , t̃`,k,j)∏
t`−1,i,j>t̃`,k,j

λ`−1,i(t`−1,i,j)

)

·
K`+1∏
i=1

(
exp

(
−Φ̃θ̃(`,k)→(`+1,i)

(t̃`,k,j)
) ∏

t̃`+1,i,j<t̃`,k,j
λ̃′`+1,i(t̃`+1,i,j , t̃`,k,j)∏

t̃`+1,i,j<t̃`,k,j
λ̃`+1,i(t̃`+1,i,j)

)
,

where Φ̃θ̃(`,k)→(`+1,i)
(x) =

∫ x
0
φ̃θ̃(`,k)→(`+1,i)

(τ)dτ , λ′`−1,i(x, y) = λ`−1,i(x) + φθ(`,k)→(`−1,i)
(x− y), and λ̃′`+1,i(x, y) =

λ̃`+1,i(x) + φ̃θ̃(`,k)→(`+1,i)
(y − x).

So the acceptance probability is
α = min(1,Pv).
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B.3 Flip a Real Event to a Virtual Event

Suppose we want to flip a real event t`,k,j to a virtual event t̃`,k,m̃`,k+1.

Similar to Section B.2, the proposal probability ratio is Q = 1.

The likelihood ratio is

Pr =
λ̃`,k(t`,k,j)

λ`,k(t`,k,j)
· p(z`−1 | z′`) · p̃(z̃`+1 | z′`)
p(z`−1 | z`) · p̃(z̃`+1 | z`)

=
λ̃`,k(t`,k,j)

λ`,k(t`,k,j)

·
K`−1∏
i=1

(
exp

(
Φθ(`,k)→(`−1,i)

(T − t`,k,j)
) ∏t`−1,i,j>t`,k,j

λ′`−1,i(t`−1,i,j , t`,k,j)∏
t`−1,i,j>t`,k,j

λ`−1,i(t`−1,i,j)

)

·
K`+1∏
i=1

(
exp

(
Φ̃θ̃(`,k)→(`+1,i)

(t`,k,j)
) ∏

t̃`+1,i,j<t`,k,j
λ̃′`+1,i(t̃`+1,i,j , t`,k,j)∏

t̃`+1,i,j<t`,k,j
λ̃`+1,i(t̃`+1,i,j)

)
,

where λ′`−1,i(x, y) = λ`−1,i(x)− φθ(`,k)→(`−1,i)
(x− y), and λ̃′`+1,i(x, y) = λ̃`+1,i(x)− φ̃θ̃(`,k)→(`+1,i)

(y − x).

So the acceptance probability is
α = min(1,Pr).

B.4 Swap a Real Event and a Virtual Event

Suppose we want to flip a virtual event t̃`,k,j to a real event t`,k,m`,i+1 and we also want to flip a real event t`,k,j
to a virtual event t̃`,k,m̃`,k+1.

The probability to pick t̃`,k,j and t`,k,j is 1/m`,k · 1/m̃`,k, the same for the probability to pick the real and virtual
events in the reverse move. Thus, the proposal probability ratio is Q = 1.

The likelihood ratio is
P = Pv · Pr .

So the acceptance probability is
α = min(1,P).

C OPTIMIZATION

C.1 Derivatives w.r.t the Parameters for VPPs

For simplicity, we omit the data index n. The likelihood of the parameters for the VPPs w.r.t the real events is

˜llh =

L∑
`=1

K∑̀
k=1

( m̃`,k∑
j=1

log λ̃`,k(t`,k,j)−
∫ T

0

λ̃`,k(t)dt

)
,

where ∫ T

0

λ̃`,k(t)dt = µ̃`,kT +

K`−1∑
i=1

m`−1,i∑
j=1

Φ̃θ̃(`−1,i)→(`,k)
(t`−1,i,j).

The integral of the virtual kernel function is

Φ̃θ̃(`−1,i)→(`,k)
(t) =

∫ t

0

φ̃θ̃(`,i)→(`+1,k)
(τ)dτ =

∫ t

0

p̃
β̃α̃

Γ(α̃)
τ α̃−1e−β̃τdτ = p̃

1

Γ(α̃)
γ(α̃, β̃t)

with p̃ = p̃(`−1,i)→(`,k), α̃ = α̃(`−1,i)→(`,k), β̃ = β̃(`−1,i)→(`,k).
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The partial derivative of ˜llh w.r.t µ̃`,k is

∂µ̃`,k
˜llh =

m̃`,k∑
j=1

1

λ̃`,k(t`,k,j)
− T.

In the following section, we use θ̃ to denote θ̃(`−1,∗)→(`,k).

The partial derivative of ˜llh w.r.t p̃ is

∂p̃ ˜llh =∂p̃

( m̃`,k∑
j=1

log λ̃`,k(t`,k,j)−
K`−1∑
i=1

m`−1,i∑
j=1

Φ̃θ̃(t`−1,i,j)

)

=

m̃`,k∑
j=1

∂p̃φθ̃θ̃
(t`,k,j)

λ̃`,k(t`,k,j)
−
K`−1∑
i=1

m`−1,i∑
j=1

∂p̃Φ̃θ̃θ̃
(t`−1,i,j),

where

∂p̃φθ̃(t) =
β̃α̃

Γ(α̃)
tα̃−1e−β̃t, ∂p̃Φ̃θ̃(t) =

1

Γ(α̃)
γ(α̃, β̃t).

The partial derivative of ˜llh w.r.t α̃ is

∂α̃ ˜llh =

m̃`,k∑
j=1

∂α̃φθ̃(t`,k,j)

λ̃`,k(t`,k,j)
−
K`−1∑
i=1

m`−1,i∑
j=1

∂α̃Φ̃θ̃(t`−1,i,j),

where

∂α̃φθ̃(t) =p̃
(β̃t)α̃−1 ln(β̃t)Γ(α̃)− (β̃t)α̃−1Ψ(α̃)Γ(α̃)

Γ2(α̃)
β̃e−β̃t = p̃(β̃t)α̃−1 ln(β̃t)−Ψ(α̃)

Γ(α̃)
β̃e−β̃t,

∂α̃Φθ̃(t) =p̃

(
−Ψ(α̃)

Γ(α̃)
γ(α̃, β̃t) +

1

Γ(α̃)

∂γ(α̃, β̃t)

∂α̃

)

=p̃

(
−Ψ(α̃)

Γ(α̃)
γ(α̃, β̃t) +

1

Γ(α̃)

∂(Γ(α̃)− Γ(α̃, β̃t))

∂α̃

)

=p̃

(
− Ψ(α̃)

Γ(α̃)
γ(α̃, β̃t) +

1

Γ(α̃)
·
(

Ψ(α̃)Γ(α̃)− ln(β̃t)Γ(α̃, β̃t)− β̃t · T (3, α̃, β̃t)
))

,

and T (m, s, x) is a special case of the Meijer G-function

T (m, s, x) = Gm,0m−1,m


0, 0, · · · , 0︸ ︷︷ ︸

m−1

s− 1,−1, · · · ,−1︸ ︷︷ ︸
m

∣∣∣∣∣∣∣∣x
 .

However, it is expensive and numerically unstable to directly calculate Meijer G-function, so we use the first
order finite difference to approximate the derivative.

The partial derivative of ˜llh w.r.t β̃ is

∂β̃
˜llh =

m̃`,k∑
j=1

∂β̃φθ̃(t`,k,j)

λ̃`,k(t`,k,j)
−
K`−1∑
i=1

m`−1,i∑
j=1

∂β̃Φ̃θ̃(t`−1,i,j),

where

∂β̃φθ̃(t) = p̃/Γ(α̃)tα̃−1(α̃β̃α̃−1e−β̃t − β̃α̃e−β̃tt) = p̃/Γ(α̃)tα̃−1β̃α̃−1e−β̃t(α̃− β̃t) ,

∂β̃Φθ̃(t) = p̃
1

Γ(α̃)

∂γ(α̃, β̃t)

∂β̃
= p̃

1

Γ(α̃)
(β̃t)α̃−1e−β̃t · t .

We use softplus function to make sure the parameters are all positive.
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C.2 Maximization and Derivatives w.r.t the Parameters for RPPs

The likelihood of the parameters for Zn w.r.t the real events is

llh =

L∑
`=0

K∑̀
k=1

(mn,`,k∑
j=1

log λn,`,k(tn,`,k,j)−
∫ T

0

λn,`,k(t)dt

)
,

where ∫ T

0

λn,L,k(t)dt = µn,kT ,

∫ T

0

λn,`,k(t)dt =

K`+1∑
i=1

mn,`+1,i∑
j=1

Φθ(`+1,i)→(`,k)
(tn,`+1,i,j) for 0 ≤ ` ≤ L− 1 .

The maximizing value for µn,L,k is

µn,L,k =
mn,L,k

T
.

The functional forms for the derivatives of the other parameters of the kernel functions are the same as the forms
for VPPs.

D FULL BAYESIAN INFERENCE

For simplicity, we use θ to denote all of the hyperparameters. We need sample θ from the posterior distribution

p(θ | x, z) =
p(x, z,θ)

p(x, z)
.

Each time we uniformly select a hyperparameter θ from θ and the acceptance ratio is

A = min(α, 1),

where

α =
p(θ′ | x, z)q(θ′ → θ)

p(θ | x, z)q(θ → θ′)
=
p(θ′)p(x, z | θ′)q(θ′ → θ)

p(θ)p(x, z | θ)q(θ → θ′)
,

θ′ is the proposal, and θ is the current value.

We assume the prior distributions for each parameter is Gamma distribution, and use h to denote the shape, c to
denote the scale, then

p(θ) = Gamma(θ;h, c),

q(θ′ → θ) = Gamma(θ;h, θ′/h),

q(θ → θ′) = Gamma(θ′;h, θ/h),

and

α =(
((((

((((1/(Γ(h)ch)(θ′)h−1 exp(−θ′/c) · 1/
(
�
��Γ(h)(θ′/h)h

)
��
�θh−1 exp(−θ/(θ′/h)) · p(x, z | θ′)

((((
(((1/(Γ(h)ch)θh−1 exp(−θ/c) · 1/ (�

��Γ(h)(θ/h)h)��
��(θ′)h−1 exp(−θ′/(θ/h)) · p(x, z | θ)

=
θh exp(−θ′/c− θ/(θ′/h)) · p(x, z | θ′)
(θ′)h exp(−θ/c− θ′/(θ/h)) · p(x, z | θ)

.

E SPATIAL BIRTH-AND-DEATH ALGORITHM

We attempt to construct a spatial birth-death process to simulate the posterior distribution of hidden TPPs. We
need to construct two proposals: birth and death. We use a birth to add an event and a death to delete an event.
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Spatial birth-and-death (Preston, 1977) is a continuous-time Markov process. The detailed balance equation is

p(z`,k | x)b(z`,k, t) = p(z`,k ∪ {t} | x)d(z`,k ∪ {t}, t), (11)

where b(z`,k, t) is the birth rate to add a new event at time t to the current hidden events set z`,k and d(z`,k, t) is
the death rate for removing an event with time t.

A common way to determine the birth rate b(z`,k, t) is to make it proportional to the PCIF as in Eq. 2 and the
death rate to be a constant number (Ripley, 1977; Baddeley & Møller, 1989; Møller, 1989). However, it would be
very hard to calculate the total birth rate exactly, as it would require an integral of the product terms in Eq. 2. If,
instead, we try to find an upper bound for the PCIF and then use thinning to get the samples for birth process,
it would have far too many attempted jumps rejected for the birth stage.

Similar to Lieshout et al. (2002), we can make the birth rate to be

b(z`,k, t) = µ̃`,k +

K`−1∑
i=1

∑
t`−1,i,j>t

φ̃θ̃(`−1,i)→(`,k)
(t`−1,i,j − t). (12)

The only difference from Lieshout et al. (2002) is we divide the birth rate by λ`,k(·) and the birth rate not only
depends on the evidence, but also depends on the posterior samples.

To satisfy the detailed balance Eq. 11, the death rate d(z`,k ∪ t, t) needs to be

d(z`,k ∪ t, t) =
b(z`,k, t)

λP;`,k(t)

=
µ̃`,k +

∑K`−1

i=1

∑
t`−1,i,j>t

φ̃θ̃(`−1,i)→(`,k)
(t`−1,i,j − t)

λ`,k(t)
∏K`−1

i=1

(
exp

(
−Φ(`,k)→(`−1,i)(T − t)

)∏
t`−1,i,j>t

λ′`−1,i(t`−1,i,j ,t)

λ`−1,i(t`−1,i,j)

) , (13)

where λ′`−1,i(x, y) = λ`−1,i(x) + φθ(`,k)→(`−1,i)
(x− y).

The total birth rate is

β(z) =
∑
`,k

∫ T

0

b(z`,k, t)dt =
∑
`,k

µ̃`,kT +

K`−1∑
i=1

∑
t`−1,i,j

Φ̃θ̃(`−1,i)→(`,k)
(t`−1,i,j)

 , (14)

and the total death rate is

δ(z) =
∑
`,k

∑
j

d(z`,k, t`,k,j)

 .

Open problem: Does the SB&D with the birth rate as in Eq. 12 and the death rate as in Eq. 13 converge to an
invariant distribution?

The SB&D given in Lieshout et al. (2002) is guaranteed to converge to an invariant distribution as it satisfies a
sufficient condition that the total birth rate is bounded from above and the total death rate is bounded from
below. However, the total birth rate in Eq. 14 is finite but not bounded in our case, which violates the sufficient
condition satisfied in Lieshout et al. (2002). Please refer to Møller & Waagepetersen (2003) for more details.

Therefore, we cannot guarantee this method will converge, and instead use the MCMC method in the main
section of this paper.



Deep Neyman-Scott Processes

F INFERENCE ALGORITHM

Algorithm 1 MCEM for DN-SPs

Input: data {xn}, model M
Initialization: base rates {µn}, kernel parameters θ, virtual base rates {µ̃n}, virtual kernel parameters θ̃,
initial states for Markov chains.
repeat

z
(1)
n , . . . , z

(S)
n ∼ p(Zn | xn;µn,θ) by MCMC

Maximize base rates based on Eq. 8
Use Adam to optimize Eqs. 9, 5, and 6

Record z
(S)
n as the initial state for the Markov chain

until the expected log-likelihood in Eq. 7 get converged

G EXPERIMENTS DETAILS

G.1 Datasets

Retweets (Zhao et al., 2015) The retweets dataset collected sequences of tweets streams. Each sequence
contains the times and types for some follow-up retweets. We use the same dataset as used in NHP. The retweets
are grouped into three types (small, medium and large) according to the number of followers of the users who
owned the retweets.

Earthquakes (NCEDC, 2014; BDSN, 2014; HRSN, 2014; BARD, 2014) We collected the times and magnitudes
for earthquakes between 01/01/2014 00:00:00 and 01/01/2020 00:00:00 in the region spanning between 34.5◦ and
43.2◦ latitude and between −126.00◦ and −117.76◦ longitude. If the magnitude of a earthquake is smaller than 1,
we classify it as a small earthquake, otherwise a large earthquake.

Homicides (COC) This dataset contains the times for homicides that occurred at five contiguous districts
(007-011) with the most homicides in Chicago from 01/01/2001 00:00:00 to 01/01/2020 00:00:00. The type for an
event is the district where the homicide occurred. The terms of use can be found at https://www.chicago.gov/
city/en/narr/foia/data_disclaimer.html.

The number of types, the number of total events and the number of sequences for each dataset are summarized in
Table 3.

Table 3: Datasets Statistics

Datasets # types # events
# sequences

train validation test

Retweets 3 2610102 20000 2000 2000
Earthquakes 2 156743 209 53 53
Homicides 5 3956 6 2 2

G.2 Training and Testing

The probabilities of the moves for Move 1, Move 2, and Move 3 are 0.2, 0.6, and 0.2 respectively. We train the
models using Algorithm 1 to get the parameters of the kernel and virtual kernel functions.

During testing, the parameters of the kernel functions and virtual kernel functions are fixed. We update the base
rates according to Eqs. 8 and 5. The posterior samples for RPPs are collected to calculate the expectation of the
log-likelihood per event. For each sequence in the evidence, there is an event at the end. To better capture the
last event, we assume there is a synthetic real event for each hidden TPP at the end. This synthetic real event is
only involved with the calculation of the intensity functions for the VPPs.

https://www.chicago.gov/city/en/narr/foia/data_disclaimer.html
https://www.chicago.gov/city/en/narr/foia/data_disclaimer.html
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G.3 Likelihood

For a neural network, the CIF has a parametric form λfΘ(x)(t) determined by a function fΘ and the data x. The
parameters Θ for fΘ are learned during training. For testing, the CIF λfΘ(x)(t) is determined by the testing data
x and fΘ. The log-likelihood is logP (x | λfΘ(x)(t)).

For a DN-SP, Θ, the parameters for the kernels, are learned during training, and fully specify P (Z | x). We use a
random function fΘ to determine the CIF. The distribution of fΘ(x) is fully determined by P (Z | x), and thus is
fully determined by Θ and x. We calculate the expected value of the log-likelihood EfΘ(x)[logP (x | λfΘ(x)(t))] =
EZ∼P (Z|x)[logP (x | Z)] to compare with the baselines.

We do not compare the marginal log-likelihood logEZ∼P (Z)[P (x | Z)] of our model with the log-likelihood of the
neural-network-based models because there are no efficient methods for estimating this expectation, as “forward
sampling” with P (Z) is prohibitively inefficient and samples from P (Z | x), which our method is designed to
generate, cannot be used (as the importance sampling ratio weight cannot be calculated).

Similarly, it is difficult to calculate the marginal likelihood for MTPP and the log-likelihood for MTPP is the
evidence lower bound per event.

To address the difference in likelihood calculations across methods, we also provide two additional metrics:
predictive accuracy and root mean squared error, which are handled in exactly the same fashion for all methods
(see Appx. G.4).

G.4 Prediction

For prediction, each method predicts the time and type of the next event, conditioned on all events prior to it.
This process is repeated for every event in the testing data (slowly increasing the conditioning set for each new
prediction).

Instead of calculating an infinite integral as in NHP and SAHP, or using an additional layer of a neural network
as in THP, we simply do forward sampling to predict the time and type for the next future event, as we have an
explicit formula for the intensity.

We predict the time for the next future event from the beginning to the end. After we get to the convergence
of our Markov chain, we draw the samples for the next future event ei = (ti, ki) conditional on the current
state of the Markov chain. Suppose the samples for the next future event ei conditional on the history
Hi−1 = {(t1, k1), (t2, k2), (t3, k3), · · · , (ti−1, ki−1)} are (t1i , k

1
i ), (t

2
i , k

2
i ), . . . , (t

S
i , k
S
i ), where {tji}Sj=1 are the times

of the samples for the future event ei and {kji }Sj=1 are the types of the future event ei. The prediction for the

future event time is t̂i = 1
S
∑S
j=1 t

j
i and the type prediction is k̂i = arg maxk∈{1,...,K0}

∑S
j=1 1k(kji ), where 1k(kji )

is the indicator function which is equal to 1 iff k = kji . Then we calculate the root mean squared error (RMSE)
for the time prediction and accuracy for the type prediction.

After the prediction for ei, we use the current state of the Markov chain for Hi−1 as the initial state for the
Markov chain for Hi and run the Markov chain until convergence. Then we predict the time and type for the
event ei+1 conditional on Hi the same as how we predict the event ei.

G.5 Time Complexity

The time complexities for flip, swap, and resampling for a single event in MCMC are O(1), constant irrespective of
any values (amount of data, parameter values, length of time, etc). A full analysis of the MCMC time complexity
would require bounding the number of steps necessary (by mixing time arguments, usually). As with almost all
other non-trivial MCMC inference methods, we do not have such a bound.

Intuitively, a model with more hidden layers has much larger search space for the events from a posterior
distribution and it should take more time to get fully mixed. And we have observed experimental results to
support our intuition. As shown in Table 4, the 2-hidden models take more time to get fully mixed than 1-hidden
models.

The experiments are trained on a cluster with multiple CPU cores. The number of CPU cores ranges from 8 to
64.
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Table 4: Training Time in Hours

Datasets Model Time

Retweets
1-hidden 12.0
2-hidden 108.5

Earthquakes
1-hidden 0.8
2-hidden 22.3

Homicides
1-hidden 1.1
2-hidden 14.0

H LIMITATIONS

• The current gamma kernel function is simple, restricting the ability to model more complex data. In the
future, we can try to design more complex kernels.

• We only have experiments for temporal point processes and no edge effects are taken into account here.
However, a SPP is not constrained to one dimensional space. SPPs can exist in Euclidean spaces with any
finite dimensions and non-Euclidean spaces, like spheres and torus. Our next step would be to apply our
method to more general SPPs.

I NEGATIVE SOCIETAL IMPACTS

Our model may be used to predict people’s behavior from the data tracked by smart phones or other wearable
devices. Such predictions regarding when people are away from their residence, visiting a medical facility, or at
work could be used for theft, medical rate increases, or overbearing workplace monitoring. Anonymization and
privacy-preserving algorithms could be used to mitigate such risks.
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