
Continuous Time Bayesian Networks for Host Level
Network Intrusion Detection

Jing Xu and Christian R. Shelton

Department of Computer Science and Engineering
University of California, Riverside

Riverside, CA 92521, USA
{jingxu,cshelton}@cs.ucr.edu

Abstract. We consider the problem of detecting host-level attacks in network
traffic using unsupervised learning. We model the normal behavior of a host’s
traffic from its signature logs, and flag suspicious traces differing from this norm.
In particular, we use continuous time Bayesian networks learned from historic
non-attack data and flag future event sequences whose likelihood under this nor-
mal model is below a threshold. Our method differs from previous approaches in
explicitly modeling temporal dependencies in the network traffic. Our model is
therefore more sensitive to subtle variations in the sequences of network events.
We present two simple extensions that allow for instantaneous events that do not
result in state changes, and simultaneous transitions of two variables. Our ap-
proach does not require expensive labeling or prior exposure to the attack type.
We illustrate the power of our method in detecting attacks with comparisons to
other methods on real network traces.
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1 Introduction

Network attacks on computers have become a fact of life for network administrators.
Detecting the attacks quickly is important in limiting their scope and destruction. Hu-
mans cannot analyze each and every connection or packet to determine if it might be
part of an attack, so there is a need for an automated system for performing such checks.
In this paper, we look at the problem of detecting such attacks at the host level. Instead
of constructing a detector for the network as a whole, we construct a method that can
be employed at each computer separately to determine whether a particular host has
been compromised. While we lose global information, we gain speed, individual tun-
ing, and robustness. A network under attack may not be able to aggregate information
to a central detector.

We focus on an automatic approach to detection. While human intervention can im-
prove security, it comes at the cost of increased time and effort. We would like a method
that can adapt to the role and usage patterns of the host, while still detecting attacks au-
tomatically.

We approach this problem from the point-of-view of anomaly detection. Attacks
vary greatly and new types of attacks are invented frequently. Therefore, a supervised
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learning method that attempts to distinguish good from bad network traffic based on
historic labeled data is necessarily limited in its scope. Furthermore, the acquisition of
such labeled data is time-consuming and error-prone. By contrast, gathering normal or
good network traffic is relatively simple. It is often possible to designate times when
we can be reasonably certain that no attacks occurred and use all of the data during that
span. For an attack to be successful, it must differ in some way from normal network
traffic. Our goal is to detect such abnormalities.

Our approach differs from previous approaches in a number of key ways. It is adap-
tive and constructed at the host level. It does not treat the packets or connections as
i.i.d. sequences, but respects the ordering of the network traffic. Finally, it does not
model the traffic features as normal or exponential distributions. Many features of net-
work traffic are distinctly non-Gaussian and often multi-modal.

A network flow for a given host machine is a sequence of continuous and asyn-
chronous events. We employ a generative probabilistic model to describe such dynamic
processes evolving over continuous time. Furthermore, these events form a complex
structured system, where statistical dependencies relate network activities like pack-
ets and connections. We apply continuous time Bayesian networks (CTBNs) [1] to the
challenge of reasoning about these structured stochastic network processes. CTBNs
have been successful in other applications [2,3], but have not previously been used for
network traffic modeling.

In Section 2 we relate our method to prior work on this problem. In Section 3
we briefly describe continuous time Bayesian networks. In Section 4 we describe our
CTBN model and its use. In Section 5 we describe our experimental results.

2 Related Work

As a signature-based detection algorithm, we share many of the assumptions of [4].
In particular, we also assume that we do not have access to the internals of the ma-
chines on the networks (which rules out methods like [5] [6] [7] or [8]). However, we
differ in that our approach does not rely on preset values, require human intervention
and interpretation, nor assume that we have access to network-wide traffic information.
Network-wide data and human intervention have advantages, but they can also lead to
difficulties (data collation in the face of an attack and increased human effort), so we
chose to leave them out of our solution.

Many learning, or adaptive, methods have been proposed for network data. Some of
these (for example, [9] and [10]) approach the problem as a classification task which
requires labeled data. [11] profiles the statistical characteristics of anomalies by us-
ing random projection techniques (sketches) to reduce the data dimensionality and a
multi-resolution non-Gaussian marginal distribution to extract anomalies at different
aggregation levels. The goal of such papers is usually not to detect attacks but rather
to classify non-attacks by traffic type; if applied to attack detection, they would risk
missing new types of attacks. Furthermore, they frequently treat each network activity
separately, instead of considering their temporal context.

[12] has a nice summary of adaptive (or statistical) methods that look at anomaly
detection (instead of classification). They use an entropy-based method for the entire
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network traffic. Many of the other methods (such as [13]) use either statistical tests or
subspace methods that assume the features of the connections or packets are distributed
normally. [14] model the language features like n-grams and words from connection
payloads. [15] also uses unsupervised methods, but they concentrate on clustering traffic
across a whole network. Similarly, [16] build an anomaly detector based on Markov
models, but it is for the network traffic patterns as a whole and does not function at the
host level.

[10] is very similar in statistical flavor to our work. They also fit a distribution (in
their case, a histogram modeled as a Dirichlet distribution) to network data. However,
they model flow-level statistics, whereas we work at the level of individual connections.
Additionally, they are attempting network-wide clustering of flows instead of anomaly
detection. [17], like our approach, model traffic with graphical models, in particular,
Naive Bayes networks. But their goal is to categorize network traffic instead of de-
tecting attacks. [18] present a Bayesian approach to the detecting problem as an event
classification task while we only care about whether the host is under attack during an
interval. In addition, they also use system monitoring states to build their model, which
we do not employ.

[19] is very similar to our work. It is one of the few papers to attempt to find attacks
at the host level. They employ nearest neighbor, a Mahalanobis distance approach, and
a density-based local outliers method, each using 23 features of the connections. Al-
though their methods make the standard i.i.d. assumption about the data (and therefore
miss the temporal context of the connection) and use 23 features (compared to our few
features), we compare our results to theirs in Section 5, as the closest prior work. We
also compare our work with [20]. They present an adaptive detector whose threshold is
time-varying. It is similar to our work in that they also rely on model-based algorithms.
But besides the usage of network signature data, they look at host internal states like
CPU loads which are not available to us.

While there has been a great variety of previous work, our work is novel in that it
detects anomalies at the host level using only the timing features of network activities.
We do not consider each connection (or packet) in isolation, but rather in a complex
context. We capture the statistical dynamic dependencies between packets and connec-
tions to find sequences of network traffic that are anomalous as a group. CTBNs are
a natural modeling method for network traffic, although they have not been previously
used for this task.

3 Continuous Time Bayesian Networks

We begin by briefly reviewing the definition of Markov processes and continuous time
Bayesian networks (CTBNs).

3.1 Homogeneous Markov Process

A finite-state, continuous-time, homogeneous Markov process Xt is described by an
initial distribution P 0

X and, given a state space V al(X) = {x1, ..., xn}, an n × n matrix
of transition intensities:
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QX =

⎡
⎢⎢⎢⎣

−qx1 qx1x2 . . . qx1xn

qx2x1 −qx2 . . . qx2xn

...
...

. . .
...

qxnx1 qxnx2 . . . −qxn

⎤
⎥⎥⎥⎦ .

qxixj is the intensity (or rate) of transition from state xi to state xj and qxi =
∑

j �=i qxixj .
The transient behavior of Xt can be described by follows. Variable X stays in state x

for time exponentially distributed with parameter qx. The probability density function
f for Xt remaining at x is f(qx, t) = qx exp(−qxt) for t ≥ 0. The expected time of
transitioning is 1/qx. Upon transitioning, X shifts to state x′ with probability θxx′ =
qxx′/qx.

The distribution over the state of the process X at some future time t, Px(t), can be
computed directly from QX . If P 0

X is the distribution over X at time 0 (represented as
a vector), then, letting exp be the matrix exponential,

PX(t) = P 0
X exp(QX · t).

3.2 Continuous Time Bayesian Networks

[1] extended this framework to continuous time Bayesian networks, which model the
joint dynamics of several local variables by allowing the transition model of each local
variable X to be a Markov process whose parametrization depends on some subset of
other variables U as follows.

Definition 1. A conditional Markov process X is an inhomogeneous Markov process
whose intensity matrix varies as a function of the current values of a set of discrete
conditioning variables U . It is parametrized using a conditional intensity matrix (CIM)
— QX|U — a set of homogeneous intensity matrices QX|u, one for each instantiation
of values u to U .

Definition 2. A continuous time Bayesian network N over X consists of two com-
ponents: an initial distribution P 0

X , specified as a Bayesian network B over X, and a
continuous transition model, specified using a directed (possibly cyclic) graph G whose
nodes are X ∈ X; UX denotes the parents of X in G. Each variable X ∈ X is associ-
ated with a conditional intensity matrix, QX|UX

.

The dynamics of a CTBN are qualitatively defined by a graph. The instantaneous evo-
lution of a variable depends only on the current value of its parents in the graph. The
quantitative description of a variable’s dynamics are given by a set of intensity matrices,
one for each value of its parents.

[21] presented an algorithm based on expectation maximization (EM) to learn pa-
rameters of CTBNs from incomplete data. Incomplete data are sets of partially observed
trajectories D = {σ[1], ..., σ[w]} that describe the behavior of variables in the CTBNs.
A partially observed trajectory σ ∈ D can be specified as a sequence of subsystems
Si, each with an associated duration. The transitions inside the subsystems are wholly
unobserved. A simplest example of incomplete data is when a variable is hidden. In
this case, the observed subsystems are the set of states consistent with the observed
variables.
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Router
Host

49 00:00:01 smtp 2128 25 197.218.177.68 172.16.112.207 0 –
06 00:00:01 smtp 2242 25 172.16.114.148 194.7.248.153  0 –
13 00:00:01 smtp 2129 25 196.227.33.189 172.16.114.148 0 –
0:0:35 ecr/i:r73 - - 17.139.40.11 172.16.114.50 1 smurf
0:0:35 ecr/i:r72 - - 17.139.40.6  172.16.114.50 1 smurf
0:0:35 ecr/i:r71 - - 17.139.40.3  172.16.114.50 1 smurf
0:0:35 ecr/i:r71 - - 17.139.40.17 172.16.114.50 1 smurf
0:0:35 ecr/i:r70 - - 17.139.40.22 172.16.114.50 1 smurf
0:0:35 ecr/i:r66 - - 17.139.40.30 172.16.114.50 1 smurf
0:0:35 ecr/i:r67 - - 17.139.40.13 172.16.114.50 1 smurf
0:0:35 ecr/i:r72 - - 17.139.40.14 172.16.114.50 1 smurf
0:0:35 ecr/i:r68 - - 17.139.40.16 172.16.114.50 1 smurf

Machine Learning
For Network

Intrusion Detection
Learned Model of
Normal Behavior

Anomaly
Detection

!

normal

abnormal

Attack
Processing

Fig. 1. The architecture of the attack detection system. The model is learned from normal traces.
Anomaly detection compares the model to current network traffic. The output is the predicted
labels for each time window.

4 Approach

Figure 4 shows an overview of our host-based network attack detection system. In our
work, we only focus on a single computer (a host) on the network. We use unsupervised
learning to build a model of the normal behavior of this host-based on its TCP packet
header traces, without looking into its system behavioral states like resource usages and
file accesses. Those activities that differ from this norm are flagged as possible intrusion
attempts.

4.1 CTBN Model for Network Traffic

The sequence and timing of events are very important in network traffic flow. It matters
not just how many connections were initiated in the past minute, but also their timing:
if they were evenly spaced the trace is probably normal, but if they all came in a quick
burst it is more suspecious. Similarly, the sequence is important. If the connections were
made to sequentially increasing ports it is more likely to be a scanning virus, whereas
the same set of ports in random order is more likely to be normal traffic. These are
merely simple examples. We would like to detect more complex patterns.

While time-sliced models (like dynamic Bayesian networks [22]) can capture some
of these aspects, they require the specification of a time-slice width. This sampling rate
must be fast enough to catch these distinctions (essentially fast enough that only one
event happens between samples) and yet still long enough to make the algorithm effi-
cient. For network traffic, with long delays between bursts of activity, this is impractical.

As described in Section 3, CTBNs are well suited for describing such structured
stochastic processes with finitely many states that evolve over continuous time. By using
a CTBN to model the network traffic activities, we can capture the complex context of
network behaviors in a meaningful and hierarchical way.

A typical machine in the network may have diverse activities with various service
types (e.g. HTTP, mail server). Destination port numbers describe the type of service a



618 J. Xu and C.R. Shelton

PORT DESCRIPTION
80 World Wide Wed HTTP
139 NETBIOS Session Service
443 HTTP protocol over TLS/SSL
445 Microsoft-DS
1863 MSNP
2678 Gadget Gate 2 Way
1170 AT+C License Manager
110 Post Office Protocol - Version 3

PORT DESCRIPTION
80 World Wide Web HTTP
8080 HTTP Alternate
443 HTTP protocol over TLS/SSL
113 Authentication Service
5101 Talarian TCP
995 pop3 protocol over TLS/SSL
51730 unknown
59822 unknown

Fig. 2. Ranking of the most frequent ports on LBNL dataset (left) and WIDE dataset (right)

H U

P_o

P_i

C

Fig. 3. CTBN port level submodel; the whole model contains 9 of such submodels

particular network activity belongs to. Some worms usually propagate malicious traffic
towards certain well known ports to affect the quality of the services who own the
contact ports. By looking at traffic associated with different ports we are more sensitive
to subtle variations that do not appear if we aggregate trace information across ports.
Figure 2 shows the most popular ports ranked by their frequencies in the network traffic
on the datasets we use (described in more depth later). These services are, to some
extent, independent of each other. We therefore model each port’s traffic with its own
CTBN submodel.

Inside our port-level submodel, we have the fully observed node C — the number
of concurrent connections active on the host — and nodes packet-in Pi and packet-out
Po — the transmission of a packet to or from the host. Pi and Po have no intrinsic
state: the transmission of a packet is an essentially instantaneous event. Therefore they
have events (or “transitions”) without having state. We discuss this further in the next
subsection.

To allow complex duration distributions for the states of variables, we introduce
another two nodes H and U . U is a partially observed variable which we call the mode
whose state indicates whether the model can next send a packet, receive a packet, start
a new connection, or terminate a connection. It therefore has four states, and we limit
the conditional rates of the observed variables (C, Po, and Pi) to be zero if the current
mode differs from the variable’s activity type. Therefore, U is observed when an event
in C, Po and or Pi occurs, but is unobserved between events.

H is a hidden variable that models the internal state and intrinsic features of the
host machine. For the experiments we show later, we let H be a binary process. While
the arrival times for events across an entire CTBN are distributed exponentially (as
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H U

P_o

P_i

C_dec

C_inc

Fig. 4. The equivalent CTBN port level submodel

the entire system is Markovian), once certain variables are unobserved (like H), the
marginal distribution over the remaining variables is no longer Markovian. These nodes
make up the structure shown in Figure 3. The results in this paper are for binary hidden
variables. We feel this model represents a good balance between descriptive power and
tractability.

4.2 Adding Toggle Variables to CTBNs

As mentioned above, the variables Po and Pi do not have state, but rather only events.
To describe such transitionless events, we set Po and Pi to be “toggle variables.” That is,
they have two indistinguishable states. As a binary variable, they have two parameters
for each parent instantiation (the rate of leaving state 0 and the rate of leaving state 1)
and we require these two parameters to be the same. A packet event, therefore, consists
of flipping the state of the corresponding packet variable.

The concurrent connection count variable, C, also poses a slight modeling problem
for CTBNs. As originally presented, CTBNs can only deal with finite-domain variables.
Although most of the operating systems do have a limit on the number of concurrent
connections, this number can potentially be extremely large. Our traffic examples do
exhibit a wide range of concurrent connection counts. We tried quantizing C into fixed
bins, but the results were fairly poor. We instead note that C can only increase or de-
crease by one at any given event (the beginning or ending time of a connection). Further-
more, we make the assumption that the arrival of a new connection and the termination
of an existing connection are both independent of the number of other connections. This
implies that the intensity with which some connection starts (stops) is same as any other
connections. C is thus a random walk constrained to the non-negative integers.

Let Qinc be the intensity for the arrival of a new connection, and Qdec be the intensity
for the termination of a new connection. Let Qchange = Qdec + Qinc. The resulting
intensity matrix has the form:

QC|m =

⎛
⎜⎜⎜⎜⎜⎜⎝

. . .
0 Qdec −Qchange Qinc 0 · · ·
· · · 0 Qdec −Qchange Qinc 0 · · ·

· · · 0 Qdec −Qchange Qinc 0
. . .

⎞
⎟⎟⎟⎟⎟⎟⎠

.
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H

P_o

P_i

C_dec

C_inc

Fig. 5. The extended CTBN port level submodel

Note that the only free parameters in the above matrix are Qinc and Qdec. Therefore,
this model is the same as one in which we replace C with two toggle variables Cinc and
Cdec. Cinc and Cdec operate like Po and Pi above: their exact state does not matter, it
is the transition between states that indicates an event of interest. The model structure
is shown in figure 4.

4.3 An Extended CTBN Model

CTBN models assume that no two variables change at exactly the same instant. How-
ever, we might like U and H to change at the same time. As they both represent abstract
concepts, there is no physical reason why they should not change simultaneously (they
represent different abstract attributes about the machine’s internal state).

The model in Figure 4 has 36 independent parameters.1 Allowing U and H to change
simultaneously requires introducing 24 new parameters: for each of the 8 states for U
and H there are 3 new transition possibilities.

Equivalently, we can use the CTBN model shown in Figure 5 where H now has
8 states. However, this diagram does not demonstrate all of the structure. The toggle
variables (Po, Pi, Cinc, and Cdec) are each allowed to change only for 2 of the states of
H (the two that corresponded to U from the previous model having the correct mode)
and they are required to have the same rate for both of these states.

We have also considered other extensions to the model. For instance, it might be nat-
ural to allow the packet rate to have a linear dependence on the number of connections.
However, in practice, this extension produced worse results. It seems that the rate is
more of a function of the network bandwidth and the currently transmitting application
can generate packets than the number of concurrent connections on a port.

4.4 Parameter Estimation

A CTBN is a homogeneous Markov process over the joint state space of its constituent
variables. Our partially observed trajectory (H is unobserved, U is partially observed)
specifies a sequence of subsystems of this process, each with an associated duration.

1 Each toggle has only 1 because it can only change for one setting of U . An intensity matrix
for U has 12 independent parameters for each of the two values of H and similarly H has 2
independent parameters for each of the four values of U .
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We use the expectation maximization (EM) algorithm to estimate the parameters [21].
In short, this algorithm estimates the posterior distribution over the hidden variables’
trajectories. The sufficient statistics (summaries of the data necessary for learning) de-
pend on the value of the hidden variables. EM calculates their expected value (using
the posterior distribution) and then treats these expected sufficient statistics (ESS) as
the true ones for selecting the parameters that maximize the likelihood of the data. This
repeats until convergence.

The ESS for any variable X in a CTBN are T̄X|U[x|u], the expected amount of time
X stays at state x given its parent instantiation u, and M̄X|U[x, x′|u], the expected
number of transitions from state x to x′ given X’s parent instantiation u.

For our new types of variables (toggle variables) Pi, Po, Cinc and Cdec, we need
to derive different sufficient statistics. They are quite similar so we just take Pi as an
example. Let UPi be its parent U ’s instantiation when event Pi can happen. The ESS we
need are M̄Pi |UPi : the expected number of times Pi changes conditioned on it parent
instantiation UPi . Since event Pi can only occur when U = Upi , the ESS M̄Pi |UPi is
just MPi , the total number of times Pi changes. We also need the total expected amount
of time that packet-in occurred while U = Upi .

In EM, we use the ESS as if they were the true sufficient statistics to maximize the
likelihood with respect to the parameters. For a “regular” CTBN variable X (such as
our hidden variable H and M ), the following equation performs the maximization.

QX |u(x, x′) =
M̄ [x, x′|u]

T̄ [x|u]

For our new toggle variable, i.e. Pi, the maximization is

QPi|u =
MPi

T [U = u]

The above sufficient statistics can be calculated using the exact inference algorithm
of [21].

4.5 Online Testing Using Forward Pass Likelihood Calculation

Once the CTBN model has been fit to historic data, we detect attacks by computing
the likelihood of a window of the data under the model. If the likelihood falls below a
threshold, we flag the window as anomalous. Otherwise, we mark it as normal.

In our experiments, we fix the window to be of a fixed time length, Tw. Therefore, if
the window of interest starts at time T , we wish to calculate p(Y (T, T +Tw) | Y (0, T ))
where Y (s, t) represents the joint trajectory of Cinc, Cdec, Pi, and Po from s to t. This
involves integrating out the trajectories of U and H and can be calculated in an on-line
fashion using the standard forward passing inference algorithm [1].

5 Experiment Results

To demonstrate the effectiveness of our methods, we compare our CTBN models to
three existing methods in the literature on two different real-world network traffic
datasets and with three different attack types.
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5.1 Data Sets

We verify our approaches on two publicly available real-traffic trace repositories: the
MAWI working group backbone traffic [23] and LBNL/ICSI internal enterprise
traffic [24].

The MAWI backbone traffic is part of the WIDE project which collects raw daily
packet header traces since 2001. It collects the network traffic through the inter-Pacific
tunnel between Japan and the USA. The dataset uses tcpdump and some IP anonymiz-
ing tools to record 15-minute traces everyday, and consists mostly of traffic from or to
some Japanese universities. In our experiment, we use the traces from January 1st to
4th of 2008, with 36,592,148 connections over a total time of one hour.

The LBNL traces are recorded from a medium-sized site, with emphasis on char-
acterizing internal enterprise traffic. Publicly released in some anonymized forms, the
LBNL data collects more than 100 hours network traces from thousands of internal
hosts. From what is publicly released, we take one hour traces from January 7th, 2005
(the latest date available), with 3,665,018 total connections.

5.2 Experiment Setup

For each of the datasets, we pick the ten most active hosts. To create a relatively abun-
dant dataset based on the original packet traces, we constructed a training-testing set
pair for each IP address. We use half of the traces as a training set to learn the CTBN
model for a given IP (host). The other traces we save for testing. Since all the traces
contain only normal traffic, we use trace-driven attack simulators to inject abnormal
activities into the test traces to form our testing set. The three types of attack simulators
are an IP Scanner, W32.Mydoom, and Slammer [25]. We select a point somewhere in
the first half of the test trace and insert worm traffic for a duration equal to α times the
length of the full testing trace. The shorter α is, the harder it is to detect the anomaly.

We also scaled back the rates of the worms. When running at full speed, a worm is
easy to detect for any method. When it slows down (and thus blends into the background
traffic better), it becomes more difficult to detect. We let β be the scaling rate (e.g. 0.1
indicates a worm running at one-tenth its normal speed).

For each algorithm (our CTBN algorithm and those below), we compute its score
on consecutive non-overlapping windows of Tw = 50 seconds in the testing set. If the
score exceeds a threshold, we declare the window a positive example of a threat. We
evaluate the algorithm by comparing to the true answer: a window is a positive example
if at least one worm connection exists in the window.

5.3 Other Methods

We compare against the nearest neighbor algorithms used in [19]. Not all of the features
in [19] are available. The features available in our datasets are shown in Figure 6.

Notice that these features are associated with each connection record. To apply the
nearest neighbor method to our window based testing framework, we first calculate the
nearest distance of each connection inside the window to the training set, and assign
the maximum among them as the score for the window.
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# packets flowing from source to destination
# packets flowing from destination to source
# connections by the same source in the last 5 seconds
# connections to the same destination in the last 5 seconds
# different services from the same source in the last 5 seconds
# different services to the same destination in the last 5 seconds
# connections by the same source in the last 100 connections
# connections to the same destination in the last 100 connections
# connections with the same port by the same source in the last 100 connections
# connections with the same port to the same destination in the last 100 connections

Fig. 6. Features for nearest neighbor approach of [19]
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Fig. 7. ROC curves of testing results on IP scanning attack. Top: MAWI. Bottom: LBNL.

We also compare with a connection counting method. As most worms aggregate
many connections in a short time, this method captures this particular anomaly well.
We score a window by the number of initiated connections in the window.

Finally, we employ the adaptive naive Bayes approach of [20], which shows promis-
ing results on similar problems. We also follow the feature selection presented in this
paper, while not all of them are available in our dataset. To train the Naive Bayes
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Fig. 8. ROC curves of testing results on Mydoom attack. Top: MAWI. Bottom: LBNL.

network parameters, we use five available features: the number of new connections
in the previous three windows and the entropy of the number of distinct destination IPs
and ports in the current window. All the features are discretized into six evenly spaced
bins. These features are not exactly the same as those from the nearest neighbor. Each
method was tuned by the authors to work as well as possible, so we try to follow each
of their methodologies as best as possible to give a fair comparison; this includes the
selection of features.

5.4 ROC Curves

Figure 7 compares the ROC curve for our method to those of the other methods for the
IP scanning attack. The curves show the overall performance on the 10 hosts we chose
for each dataset. α represents the fraction of time during which the attack is present and
β represents the speed of the attack. The curves demonstrate that as the attack becomes
more subtle (β is smaller), our method performs relatively better compared with other
methods. Figures 8 and 9 show the same curves but for the Mydoom and Slammer
attacks.
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Fig. 9. ROC curves of testing results on Slammer attack. Top: MAWI. Bottom: LBNL.

Each point on the curve corresponds to a different threshold of the algorithm. Be-
cause attacks are relatively rare, compared to normal traffic, we are most interested in
the region of the ROC curve with small false positive rates.

We note that our method out performs the other algorithms consistently for the
MAWI dataset. For the LBNL dataset, with the Mydoom and Slammer attacks, some
of the other methods have better performance, in particular a simple connection count-
ing method performs the best. We are uncertain of the exact reason, but suspect it may
be due to differences in the traffic type (in particular, the LBNL data comes from en-
terprise traffic). The addition of a hidden variable to our model allows us to model
non-exponential durations. However, the complexity of such a phase-type distribution
depends on the number of states in the hidden variable. If there are not enough states
to model the true duration distribution, the algorithm may end up with an exponential
model (at least for some events). Exponential models do not disfavor (in terms of likeli-
hood) many quick transitions, compared to heavier tailed distributions. This might lead
to worse performance in exactly the same situations where a connection-count method
would work well. We hope to add more hidden states in the future to overcome this
limitation.
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6 Conclusions

We developed a new method for detecting network intrusions in the host level. Rather
than treating packets and connections as i.i.d sequences, we model the network traffic by
a generative probabilistic model that respects the ordering of events. The only features
we used were packet and connection timings. We do not require labeled data, thus vastly
improving the automation of the detection.
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