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ABSTRACT OF THE DISSERTATION

Dimensionality Reduction Algorithms With Applications toCollaborative Data and Images

by

Guobiao Mei

Doctor of Philosophy, Graduate Program in Computer Science
University of California, Riverside, August 2008

Dr. Christian R. Shelton, Chairperson

General dimensionality reduction techniques play important roles in various fields in ma-

chine learning. As a well studied problem, many existing algorithms have achieved wide

success in specific fields. In this work, we view this problem from a different viewpoint.

We first focuses on collaborative data, which consist of ratings relating two distinct sets

of objects: users and items. Much of the work with such data focuses on filtering: predicting

unknown ratings for pairs of users and items. In this work, wepropose a well-structured

Bayesian network to model the collaborative data, and employ loopy belief propogation to

estimate parameters of the network and perform filtering tasks. In addition, we are interested

in the problem of visualizing the information in the collaborative data. Given all of the

ratings, our task is to embed all of the users and items as points in the same Euclidean space.

We would like to place users near items that they have rated (or would rate) high, and far away

vi



from those they would give low ratings. We pose this problem as a real-valued non-linear

Bayesian network and employ Markov chain Monte Carlo and expectation maximization to

find an embedding. We present a metric by which to judge the quality of a visualization.

We then extend the visualization framework to images, specifically to embed images.

Embedding images into a low dimensional space has a wide range of applications: visualiza-

tion, clustering, and preprocessing for supervised learning. Traditional dimension reduction

algorithms assume that the examples densely populate the manifold. Image databases tend

to break this assumption, having isolated islands of similar images instead. Here we extend

our framework to achieve the embedding goal of preserving local image similarities based on

their scale invariant feature transform (SIFT) vectors. Wemake no neighborhood assump-

tions in our embedding. Our algorithm can also embed the images in a discrete grid, useful

for many visualization tasks.
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Chapter 1

Introduction

When shopping online, would it not be great if the website could recommend the right items

for us? Or if we have rated some movies1, would it not be helpful if they could give us a

graphical display of both movies and people, so that we can navigate easily for more movies

we may be interested in, and see what our friends like? Also, consider the situation that we

have a collection of personal photographs which are abundant and disordered, would it not

be nice if we had an automatic tool to generate a layout of the images so that similar ones

lie close to each other, allowing us to navigate through the photos more easily and with more

fun?

This dissertation works to provide solutions to the above tasks. We first introduce the

problem of collaborative filtering in Section 1.1, then the problem of visualization of collab-

orative data in Section 1.2, and finally give a brief introduction to image embedding problem

1For examplehttp://www.imdb.com.
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in Section 1.3. In our work, all the three problems are solvedwith similar frameworks and

techniques. They all fall into the more general class of dimensionality reduction techniques.

1.1 Collaborative Filtering

Our work starts with looking into a special kind of data, namely collaborative data. Col-

laborative data, which are composed of correlatedusersand items, are abundant: movie

recommendations, music rankings, and book reviews, for example. They can be very useful

to make accurate recommendations to users about which itemsthey might favor. This prob-

lem is generally recognized as collaborative filtering, andwe try to tackle the problem with

a novel graphical model based approach.

Collaborative data can be found in many places involving users and items. Here we

give a more detailed introduction to them with the example ofBoardGameGeek2 (BGG),

a well-known board game rating and recommendation website.The first major component

of collaborative data are users. In BGG, users refers to the registered accounts with the

website. The other component of collaborative data are items: board games in the case of

BGG. Without loss of generality, users and items are identified by single integers IDs. They

are correlated by the ratings between them. Each user can rate a subset of the items (games)

that he or she has played or is familiar with. BGG has integer ratings with10 the highest

score. Figure 1.1 shows sample rating breakdown for the game“Die Macher” as of the date

of this dissertation.
2http://www.boardgamegeek.com
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Figure 1.1: Sample rating breakdown for the game “Die Macher” from BGG

Typical collaborative data contain a small set of “popular”items with lots of ratings, and

a large subset of items with only a few ratings. Similar trends also happen to the users. In

general, the overall rating density (average percentage ofgames each user has rated) is less

than 0.5% in BGG. Figure 1.2 shows the available ratings for top 500 users and top500

games.

Collaborative filtering is the task of providing useful information of what items people

might like or dislike, based on items they have previously rated. Collaborative filtering can

help us suggest new items a user might be interested in, help users navigate items according

to their preferences, or reconstruct data by predictions. Collaborative filtering is equivalently

the task of predicting missing ratings for any user based on his or her existing ratings and

3
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Figure 1.2: Top rated users and games for BGG. Black dots indicate the existence of a rating
of the corresponding user and game.
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other users’ ratings. It is call “collaborative” because for prediction, we not only take into

account the users own ratings, but also other users’ preferences.

In this work, we try to model collaborative data with Bayesian networks. In the collab-

orative data, we havem usersU = {U1, U2, . . . , Um} andn itemsG = {G1, G2, . . . , Gn}.

We setδij = 1 if there is a ratingrij from Ui toGj , otherwise setδij = 0. We assume that

ratings are discrete.

We assume that there is some hidden characteristic variablerepresenting the personal

preferences of each user, and similarly some hidden property variable representing the prop-

erties of each item. Letui be the corresponding variable for userUi, and likewisegj is the

property variable for itemGj . We further assume that the ratingrij is solely dependent on

the latent variablesui andgj: onceui andgj are given,rij is independent of other ratings in

the data. Figure 1.3 shows a sample problem of collaborativefiltering with three users, three

items, and binary ratings.

We explain in detail of our approach to employ Bayesian network learning and infer-

ence algorithms to perform collaborative filtering in Chapter 3, with some essential Bayesian

network knowledge introduced in Appendix A.

1.2 Visualization of Collaborative Data

In addition to predicting missing ratings, we might like to visualize the data. Spatial layouts

may potentially increase interest in exploration and to aidin finding information. The visual-

5



Figure 1.3: Sample collaborative filtering problem with binary ratings.
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ization problem of collaborative data is new to the researchliterature. We extensively explore

the approach and analysis for this problem in this work.

Using all the ratings, the visualization problem is to extract the intrinsic similarities or

dissimilarities between all the users and items involved, and represent them graphically. This

has a wide range of applications, for example guided on-lineshopping. Traditional stores

allow for easy browsing by physically walking up and down theaisles and visually inspect-

ing the store’s contents. Such browsing is not easy on-line.Amazon.com, for instance, has

thousands of items in many categories. While collaborativefiltering allows an on-line seller

to recommend a list of objects that the buyer might also like,it does not supply a good way

of browsing an on-line collection in a more free-form fashion. We propose building an em-

bedded graph of all the items using the collaborative ratingdata, and allowing the shopper to

zoom in on a portion of the graph and scroll around as he or she searches for items of interest.

If constructed well, nearby items will also be of interest tothe shopper and local directions

in the space will have “meaning” to the user. Spatial layoutshave been shown in the past to

increase interest in exploration and to aid in finding information [Chennawasin et al., 1999].

We assume aD-dimensional Euclidean space, which we call theembedded space(for

most computer interfaces,D = 2). Each user or item is represented by a point in this space.

Intuitively, if two user (or item) points are near each otherin the embedded space, the two

users (items) are likely to have similar preferences (properties). In the same manner, the

closer a user point is to an item point in the embedded space, the higher the rating the user

has given (or would give) the item.

7



No previous algorithms have approached the problem of visualizing collaborative infor-

mation. Here we initiate this problem and propose an approach. Many visualization problems

are “soft” in nature and it is difficult to compare alternative methods. For this task, we in-

troduce a simple evaluation criterion which is natural and allows for numeric comparisons of

possible visualizations. We explain the details of our method in Chapter 4.

1.2.1 Connection with Dimensionality Reduction

Our proposed visualization of collaborative data problem imposes a new perspective view

for the data. It is essentially a dimensionality reduction problem for the specially organized

collaborative data, with possibly missing feature values (ratings), and usually with high di-

mensionality (total number of users or items).

This also suggests that our framework may well be applicableto general dimensionality

reduction tasks. If we convert the raw input data into some type of collaborative data, we

can apply our algorithm to perform the embedding. More importantly, our approach not only

embeds the input data, it also co-embeds features in the sameembedded space.

1.3 Embedding Images

The collaborative visualization framework can be applied to other seemingly unrelated do-

mains, image embedding for an example. By representing images with sets of features,

images can be embedded into a Euclidean space with a similar method.

8



Such image embeddings can have a wide range of applications.Image search engines

are one obvious example. Often a good portion of the proposedimages for a query are not

related to the desired goal of the user. By embedding the images, the user can more quickly

find the set of interest. As a consequence, searching resultswill be much improved. With the

abundance of digital photography, many households have thousands of images stored on their

home computers without a suitable method for searching them. Graphic visualization of the

entire database can be a great aid in allowing quick and easy retrieval of desired photographs.

More generally, embedding images into a low dimensional space has a wide range of other

applications: visualization, clustering, and pre-processing for supervised learning.

Traditional dimension reduction algorithms assume that the examples densely populate

the manifold. Image databases tend to break this assumption, having isolated islands of

similar images instead. In this work, we propose a novel approach that embeds images into

a low dimensional Euclidean space, while preserving local image similarities based on their

scale invariant feature transform (SIFT) vectors, which are first introduced in [Lowe, 2003].

We make no neighborhood assumptions in our embedding. Our algorithm can also embed the

images in a discrete grid, useful for many visualization tasks. We demonstrate the algorithm

on images with known categories and compare our accuracy favorably to those of competing

algorithms.

We modify the framework proposed for visualization of collaborative data to suite for the

need of image embedding. The goal is similar to the visualization problem: to put images

into some Euclidean space so that each image lies close to similar other images, while far

9



apart from those with large distinctions. It is essentiallya dimension reduction problem for

images. We give the details of our algorithm in Chapter 5.

1.4 Summary

We propose an approach to solve the collaborative filtering,visualization, and image embed-

ding problems listed above. We give detailed formulation ofthe problems and present our

algorithms in the following chapters.

10



Chapter 2

Background

In this chapter, we introduce the background of our work, andlist some of the related work.

We first introduce the problem of dimensionality reduction in Section 2.1. We then show

some of the most popular existing algorithms for the problem. In Section 2.2 we introduce the

problem of collaborative filtering. We show how this problemis essentially a dimensionality

reduction problem with missing data components.

2.1 Dimensionality Reduction Algorithms

Dimensionality reduction (DR) is one of the most widely usedproblems in the machine

learning field. In short, it is the problem of finding low dimensional structure of given high

dimensional data.

Formally, assume the input data consists ofn points{x1, x2, . . . , xn}, each pointxi is aD

dimensional vector,i.e. xi ∈ R
D. The problem of dimension reduction is to find a mapping

11



φ such thatyi = φ(xi), whereyi ∈ R
d is ad (usually much smaller thanD) dimensional

vector andyi best “represents”xi. We hereafter useX, aD × n matrix consisting of all the

data points as columns to denote the entire input data. Likewise, we useY, ad×n matrix to

denote the corresponding output.

We also use the term “embedding” to represent the problem of dimensionality reduction,

especially for the case of smalld. Intuitively, it is the problem of embedding the high di-

mensional raw dataxi into a low dimensional space where the results are easily viewable.

We refer to the targetRd space as theembedded space. Note that it is difficult to present a

universal view of what a good embedding is. Different applications will have different ways

of interpreting what is a good representation of the original data.

Dimensionality reduction is useful in many domains in the machine learning literature.

In supervised learning, for example [Fukumizu et al., 2004], where training dataxi are given

along with a labelyi indicating their categories, the task is to train a classifier f such that

when a previously unseen testing data pointx is given,f(x) predicts the class label. When

the data points have many dimensions, it is both time consuming and often inaccurate to

train the classifier directly on the raw data. Pre-processing data points with dimensionality

reduction algorithms is not only suitable, but also necessary in many cases.

In general, the dimensionality reduction problem only focuses on the relative positioning

of the input data. Without loss of generality, in this section we assume that the data points

have zero empirical mean.i.e.
∑

i xi = 0. This can be easily achieved by computing the

empirical mean of given input data points and subtracting itfrom the original data points:

12



xi ⇐ xi − 1
n

∑

j xj .

Dimensionality reduction algorithms fall into two categories: linear and non-linear. We

briefly discuss both in the remainder of this section.

2.1.1 Linear Algorithms

Linear dimensionality reduction algorithms seek to find a linear transformation for the input

data such that some criterion is met. In particular, they tryto find aD × d matrix W such

thatyi = φ(xi) = W
⊤xi is the embedding. Or in other wordsY = W

⊤
X.

Principal Component Analysis

Principal component analysis (PCA) is one of the most widelyused linear dimensionality

reduction algorithm. In 1901 Karl Pearson presented this algorithm. The goal of PCA is to

project the data while preserving the greatest variance.

More formally, letw1 be a unit vector along which to project the original data to. PCA

seeks for

w1 = arg max
‖w‖=1

∑

i

(w⊤xi)
2 .

Recursively, once we have obtained the firstk−1 such projection vectors, thek-th projection

vector is

wk = arg max
‖w‖=1

∑

i

(w⊤(xi −
k−1
∑

j=1

wjw
⊤
j xi))

2 .

In [Pearson, 1901], the author also showed that the solutionfor PCA is just an eigen-

13



value decomposition problem for the covariance matrix of input dataX. Let C = XX
⊤

be theD × D empirical covariance matrix ofX. Let w1, w2, . . . , wd be thed eigenvec-

tors of C with largest eigenvalues. Then the solution of PCA for the data X is given by

W = [w1, w2, . . . , wd]. The embedding is given by

Y = W
⊤
X .

Multi-Dimensional Scaling

Multidimensional scaling (MDS) is another well known linear dimensionality reduction al-

gorithm. It is first introduced in [Torgerson, 1952]. LetSij = ‖xi − xj‖ be the Euclidean

distance between the pointsxi andxj in the originalRD space, andTij = ‖yi−yj‖ be the dis-

tance in the embeddedRd space between the two points. A good embedding should preserve

the distance well: close points in the original space shouldremain close in the embedded

space, and vice versa.

MDS seeks to minimize the objective function

∑

i,j

ψ(Sij − Tij) .

Most of the time the functionψ is set to be the square of the argument. In this case, the

objective function of MDS becomes
∑

ij(Sij − Tij)
2.

There is a closed form solution for MDS whenψ is the square function, as shown in
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[Cox and Cox, 2001]. LetPij = ‖xi − xj‖2, and defineB = −HPH
2

, whereHij = δij − 1
n
.

Hereδij = 0 unlessi = j, in which caseδij = 1. The objective function is minimized if the

embeddingY is set to the topd eigenvectors of the matrixB.

Further research [Williams, 2001] showed that PCA and MDS should produce identical

embedding given the same input data if MDS uses the square function forψ. So we can view

MDS as a generalization of PCA.

2.1.2 Nonlinear Algorithms

Linear dimensionality reduction algorithms work well for input data lying in a regular hyper-

plane. However, in many cases the data points lie in a structured manifold. Applying linear

transformations for dimensionality reduction produces a poor representation of the data. We

introduce some of the most popular nonlinear embedding algorithms in the following text.

Locally Linear Embedding

In [Roweis and Saul, 2000], the authors present locally linear embedding (LLE). As a non-

linear embedding algorithm, LLE assumes that the nearby points (local neighbors) in the

original space should remain neighbors in the embedded space. In particular, the embedding

of a point should be able to be linearly reconstructed from its local neighbors (points with

smallest Euclidean distances) in the original space.

The LLE algorithm has two phases. The first step is to compute the reconstructing

weights for each of the data points by its neighbors. The reconstruction cost to be mini-
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mized is defined as

ǫ(W) =
∑

i

|xi −
∑

j

Wijxj |2 .

They only consider reconstructingxi from its neighbors, so they enforceWij = 0 whenxj

is not in the neighbor set ofxi. To get rid of the scaling freedom, they further require that

∑

j Wij = 1.

The second phase of the algorithm is to use the local weightsW to generate the embed-

dingY such that the following cost function is minimized:

Φ(Y) =
∑

i

|yi −
∑

j

Wijyj |2 .

To remove the rotational freedom in the final embedding, theyfurther require

∑

i

yi = 0

∑

i

[yiy
⊤
i ] = I

Minimizing both cost functions results in an eigenvector decomposition problem of a

gram matrix defined in [Saul and Roweis, 2003]. The computational cost of LLE is similar

to that of MDS.
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Isomap

In [Tenenbaum et al., 2000] the authors presentIsomap, another nonlinear embedding al-

gorithm. The idea of Isomap is that the distance between two points in the original space

should not just be computed as the Euclidean distance. Instead, it should be the shortest sum

of distances along a path consisting of points near each other.

They first construct a connectivity graphG, with nodesX = {x1, x2, . . . , xn}. An edge

betweenxi andxj exists ifxj is one of theK nearest neighbors ofxi. Then they compute

the distance between any two pointsxi andxj to be the shortest distance of the nodesxi and

xj in the graphG. Finally they run MDS on the distance defined above.

Semi-Definite Embedding

Semi-definite embedding (SDE), or maximum variance unfolding (MVU) is another popular

nonlinear dimensionality reduction technique. It was firstpresented in

[Weinberger and Saul, 2006].

Similar to Isomap, the idea of SDE is to build a connectivity graphG, with nodesX =

{x1, x2, . . . , xn}. They connect each nodexi with its K nearest neighbors. The constraints

imposed by SDE preserve the lengths and angles of these edgesduring embedding. To reduce

the complexity of having to dealing with the angles, they further add an edge between any

two neighbors of a pointxi, if it did not already exist.

Similar to LLE, to produce a unique embedding, they further require the embedding result

to be centered at origin:
∑

i yi = 0. The constraint-preserving embedding leads to a semi-

17



definite programming (SDP) problem and can be solved with many existing SDP solvers.

2.1.3 Other Dimensionality Reduction Algorithms

Dimensionality reduction has been researched and developed for a long time, and there are

many other algorithms available.

In [Scholkopf et al., 1998], the authors introduced Kernal PCA, which uses a Kernel

function (matrix) to implicitly map raw data vectors into some feature space and then per-

form PCA there. The resulting embedding is thus a non-linearprojection of the data. In

[Donoho and Grimes, 2003], the authors propose Hessian LLE (hLLE). hLLE adapts the

LLE method but adjust the reconstruction weightW to minimize the Hessian operator. This

method is designed for some non-convex data sets.

2.2 Collaborative Filtering Algorithms

There are many existing collaborative filtering algorithmsfocusing on the task of prediction.

[Breese et al., 1998] classifies the approaches into two major categories:memory basedand

model based. Memory based collaborative filtering algorithms make predictions according

to all the existing preferences stored beforehand, while model based algorithms first try to

learn the parameters of a particular model for the existing user preferences, and then make

predictions according to the learned model. [Sarwar et al.,2001] has an exploration of many

item-based algorithms.
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2.2.1 Eigentaste

[Goldberg et al., 2001] propose Eigentaste (ET). It has two phases: offline and online. It

treats the entire rating matrix as a high dimensional space and employs principal component

analysis for dimensionality reduction during the offline phase. It projects the users into a

low dimensional space and then partitions the embedded space into sets of users and uses

the maximally rated items in a given set as predictions during the online phase. While this

algorithm does place the users in a geometric space, it does not place the items in the same

space, and it requires that there be a set of items (thegauge set) which every user has rated.

This is a severe restriction because not all collaborative data will have this property.

2.2.2 Co-occurrence Data Embedding

Co-occurrence data have been used to produce embeddings of two classes of objects in the

same space. CODE [Globerson et al., 2005] is one such recent example. It tries to embed

objects of two types into the same Euclidean space based on their co-occurrence statistics.

Unfortunately, collaborative filtering data are usually given as ratings and not co-occurrence

statistics. Even if we take the ratings to be proportional tothe corresponding co-occurrences

(an unjustified assumption), we still have missing statistics (which cannot be taken to be

zero). Co-occurrence algorithms do not currently deal withsuch missing values.
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2.2.3 Other Collaborative Filtering Algorithms

Collaborative filtering has attracted a good amount of research in the past years. Many other

algorithms exist in the literature.

In [Hofmann and Puzicha, 1999], the authors use a probabilistic latent space model to

model users’ preferences as convex combinations of preference factors, and employ approx-

imate EM algorithm to learn the model.

Some of the filtering methods have a “geometric” flavor. [Pennock et al., 2000] propose

a collaborative filter based on personality diagnosis. Theyassociate each user with a vector

Rtrue, indicating the true rating of this user for every item in thesystem. The actual rating

is assumed to be a random variable drawn from a Gaussian distribution with mean equals to

the corresponding element of that item in the user’sRtrue vector. If there is a missing rating,

the correspondingRtrue element is a uniform random variable.

In [Pavlov and Pennock, 2002] the authors developed a maximum entropy approach for

collaborative filtering. The algorithm is especially suitable for dynamic stream collaborative

data. They view the items as clusters based on the user accesspatterns, and make predictions

that minimizes the probability of crossing cluster boundaries.

[Melville et al., 2002] presented content-based collaborative filtering that incorporates

components from both content-based methods for recommendation systems and collabora-

tive filtering algorithms. They introduce an effective framework for performing high quality

recommendations. They first use a content-based predictor to enhance the user data, and then

provide recommendations through other collaborative filtering algorithms.

20



[Hofmann, 2004] introduced a model-based algorithm which relies on a statistical mix-

ture model involving latent class variables. They gave a constant time prediction approach

once the model for discovering user communities and prototypical interest profiles is learned.

In [Miller et al., 2004], the authors presented PocketLens,a distributed collaborative fil-

tering algorithm that overcomes the limitation of traditional algorithms such as non-portable

and user privacy issues. PocketLens is designed to run in a peer-to-peer environment.

One major problem for collaborative filtering is the sparsity in the data. Often the rat-

ings in the collaborative data are insufficient to identify similarities in users and items.

[Huang et al., 2004] proposed an algorithm that makes use of an associative retrieval frame-

work to overcome the sparsity limitation. The basic idea of associative retrieval is to build a

graph or network model of users and items for the collaborative data, by exploring the transi-

tive associations among the users and items, information ofimproved quality can be retrieved

through this graph model.

Similar to principal component analysis (PCA) we discussedin the previous section,

maximum margin matrix factorization (MMMF) algorithms arealso widely used as a dimen-

sionality reduction algorithm, and it can be extended for collaborative filtering problems.

Traditional MMMF algorithms use a semi-definite programming (SDP) solvers to handle

problems on matrices of dimensionality up to a few hundred. In [Rennie and Srebro, 2005]

the authors investigated a gradient-based optimization method for MMMF and applied the

algorithm on large (sparse) collaborative data and achieved good empirical accuracy.

[Leung et al., 2006] presented a collaborative filtering framework based on fuzzy associ-
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ation rules and multiple-level similarity (FARAMS). FARAMS takes advantages of product

similarities in taxonomies to handle the sparsity of the collaborative data, and use fuzzy as-

sociation rule mining to improve competitive prediction quality. In [Leung et al., 2007] they

presented cross-level association rules (CLARE) to address the cold-start problem (new user

has to make many ratings before filtering is effective) in collaborative filtering.

In [Banerjee et al., 2007], the authors presented a partition co-clustering1 formulation for

matrix approximation. [George and Merugu, 2005] applied the same framework to the prob-

lem of collaborative filtering. They designed incremental and parallel versions of the co-

clustering algorithm and applied on users and items in the collaborative data. The algorithm

they presented is efficient and suitable for real-time dynamic evolving data, with comparable

accuracy but lower computational cost.

In summary, as a problem with wide applications, collaborative filtering has been studied

for long. However, none of the listed algorithm directly usethe same Bayesian network

structure to model the entire data. We propose our frameworkwith experiments to show

empirical results in Chapter 3.

1Co-clustering is the technique of clustering both rows and columns of two-dimensional data matrices.
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Chapter 3

Collaborative Filtering

In this chapter, we present an approach to the well studied collaborative filtering problem.

We use a large scale Bayesian network [Pearl, 1988], a popular graphical model frame-

work, to model the collaborative data. In our framework, users and items in the collaborative

data are represented by latent characteristic values, which correspond to two sets of nodes in

the graphical model. Ratings are viewed as observed evidence.

This chapter is organized as following. We first show how to model collaborative data

as a complex Bayesian network in Section 3.1. We then demonstrate how to estimate the

parameters using approximate inference algorithms in Section 3.3. In Section 3.2 we show

how to perform collaborative filtering once we have the graphical model and the learned

parameters. We show how this model can be further extended with additional information in

Section 3.5.
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3.1 Modeling Collaborative Data

A Bayesian network is one of the most popular graphical models to describe a joint distribu-

tion over a set of random variables. The conditional independencies between the variables

are compactly encoded by the structure of the network, and the joint distribution can be fac-

tored, most of the time, compactly into the product of the setof factors associated with the

variables. We give more introduction on Bayesian networks in Appendix A.

We havem usersU = {U1, U2, . . . , Um} andn itemsG = {G1, G2, . . . , Gn}. We set

δij = 1 if there is a ratingrij from Ui toGj , otherwise setδij = 0. We assume that ratings

are discrete. We further assume that there is a hidden characteristic variable representing the

personal preferences of each user, and similarly a hidden property variable representing the

properties of each item. Letui be the corresponding variable for userUi, and likewisegj is

the property variable for itemGj. We further assume that the ratingrij is solely dependent

on the latent variablesui andgj: onceui andgj are given,rij is independent of other ratings

in the data.

It is natural to model the collaborative data as a Bayesian network. For each userUi, we

add it as a node in the Bayesian network structureG, and similarly for each itemGj. For

each existing ratingrij , i.e. δij = 1, we add a nodeRij into G, and makeUi andGj be the

parents ofRij . A sample Bayesian network structure for3 users and2 items with5 ratings is

shown in Figure 3.1.

Eventually we get a very large Bayesian network structure with all the users, items and
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Figure 3.1: Sample Bayesian network structure for collaborative filtering.
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ratings as nodes, where each rating node has exactly two parents indicating the corresponding

user and item for this rating.

3.1.1 Model Explanations

The proposed model structure assumes the users and items areindependent before the ob-

serving the ratings. We also assume that the posterior jointdistribution of users and items

given all the ratings can be factored into production of marginal posteriors of users and items.

We explain this in detail in Section 3.3. The distribution ofa rating should only depend on

the latent properties of the corresponding item and the preference of the user. The entire

structure correlates the distribution of these latent useror item properties via the set of rating

observations.

To take a concrete example, letU be a set of game players, andG be a set of games.

Assume that the latent variableu andg are both binary. Assume thatui = 0 means the user

Ui likes two-player games andu = 1 means the user likes multi-player games. Similarly,

assume thatgj = 0 means the gameGj is a two-player game, andgj = 1 means it’s a

multi-player game. Assume that the ratings are also binary variables: 0 means “dislike”,

and 1 means “like”. It is often the case thatui will tend to rategj higher if they “match”.

Hence one reasonable conditional probability distribution (CPD) for this family is shown in

Table 3.1.

26



Ui Gj Rij = 0 Rij = 1
0 0 0.1 0.9
0 1 0.9 0.1
1 0 0.8 0.2
1 1 0.05 0.95

Table 3.1: Sample CPD for collaborative filtering problem.

3.1.2 Parameter Tying

It is reasonable to make the assumption that the CPD for the family of Rij is the same for

all i andj. In another words, all the CPDs forP (Rij | Ui, Gj) share the same parameters

throughout the entire Bayesian network. For example, as long as someone likes multi-player

games, and some game is a two-player one, then he will probably not like the game. There is

no need to distinguish who someone is, or which game it is by analogy. Similarly, we make

the assumptions that the priorsP (Ui) for all users are also shared with the same parameters,

and the same forP (Gj).

The characteristics of parameter tying is essential for estimating in this type of models,

with complex but well formed structures. The entire data is essentially one instance for all

the rating variables for this huge Bayesian network. There is no way to learn each indi-

vidual CPDs of ratings or prior distribution of user (item) preferences. Once we tie all the

corresponding parameters, we have a more compact way of deriving sufficient statistics of

individualuser-rating-itemfamilies and estimate the global CPD as an averaged conditional

probability of all the rating families. We give more explanation on this in Section 3.3.

Given the Bayesian network structure constructed in this way, the only parameters we
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Parameter Meaning
θu Prior for allui

θg Prior for all gj

θr|u,g Conditional probability of ratingrij givenui andgj

Table 3.2: Parameters for the Bayesian network structure.

need consist of parameters in Table 3.2. We denote them byΘ.

3.2 Collaborative Filtering

One of the key problems in collaborative filtering is predicting missing ratings. We denote

R = {Rij | δij = 1} to be the set of all existing ratings. The filtering problem inour

framework is essentially the query problem:

P (rij | R),whereδij = 0. (3.1)

Once we have the parametersΘ, we can use inference algorithms to obtain the posteriors

P (ui | R) andP (gj | R) for all users and items. Additionally, from the structure ofthe

Bayesian network model,rij is conditionally independent of all other variables givenui and

gj. Equation 3.1 can thus be rewritten as

P (rij | R) =
∑

ui,gj

P (rij | ui, gj)P (ui, gj | R) ≈
∑

ui,gj

θr|ui,gj
P (ui | R)P (gj | R) .

The joint posteriorP (ui, gj | R) is very difficult to compute, and we use loopy belief
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propagation (LBP) [Murphy et al., 1999] to compute its approximation represented by the

last approximation in Equation 3.2. Detailed explanation of this is in Section 3.3.2. Any

prediction task becomes simply a look-up in the posteriors of users and items, and a multi-

plication with the CPDθr|u,g.

3.3 Parameter Estimation

The structure of the Bayesian network is given by our problemsetting, and the parameter

estimation problem is to find

Θ∗ = arg max
Θ

P (Θ | R).

In the case that the parameters have uniform priors, this estimation is the same as maxi-

mum likelihood. The maximum likelihood estimation is givenas

Θ∗ = arg max
Θ

P (R | Θ). (3.2)

The likelihood function in the above equation can further factor into the product of indi-

vidual θr|u,g parameters and the posteriorsP (ui | R; Θ) andP (gj | R; Θ). We will omit Θ

in the future equations.

P (R) =
∑

i

∑

j

∏

i

P (ui | R)
∏

j

P (gj | R)
∏

i,j:δij=1

P (rij | ui, gj). (3.3)
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ESS meaning
M̄u[x] expected number of times thatui = x
M̄g[y] expected number of times thatgj = y
M̄r|u,g[z, x, y] expected number of times thatRij = z whenui = x andgj = y

Table 3.3: Expected sufficient statistics for collaborative data.

3.3.1 Expectation Maximization for Collaborative Data

In the case of collaborative data, we only observe ratings, but never the latent user or item

properties. As a standard way of learning parameters from partially observed data, we use the

expectation maximization (EM) algorithm [Dempster et al.,1977] to estimate the parameters.

In our problem, we will use loopy belief propagation as the inference method to be used in

the “E step”. We will discuss more about this in the next section. To estimate the parameters

θu, θg andθr|u,g, the expected sufficient statistics (ESS) we need are listedin Table 3.3.

M̄u is a vector of components̄Mu[x] of all latent user characteristicx. M̄u[x] is the total

expected number of times in all users whose characteristic isx. Similar definitions hold for

M̄g[y] andM̄r|u,g[z, x, y].

M̄u[x] =
∑

i

P (ui = x | R)

M̄g[y] =
∑

j

P (gj = y | R)

M̄r|u,g[z, x, y] =
∑

i

∑

j

P (r = z, u = x, g = y | R)

The overall learning algorithm is shown in Algorithm 1.
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Algorithm 1 Θ⇐EM(R, EMiter, LBPiter)
Inputs: R: collaborative data,EMiter: EM iterations,LBPiter: LBP iterations
Outputs Θ: learned parameters

// Set initial parameters.
For allui, gj andi, j s.t. δij = 1:
Setθu = Dirichlet(1, 1, . . . )
Setθg = Dirichlet(1, 1, . . . )
for z ∈ { all possible ratings} do

Setθr|u,g[r = z] ∼ Dirichlet(1, 1, . . . )
end for
for k = 1 toEMiter do

// E step
[U,G]⇐ LBP(R,Θ, LBPiter)
M̄u[x]⇐

∑

i ui[x]
M̄g[y]⇐

∑

j gj [y]
// This depends on the loopy assumption thatP (u, g | R) ≈ P (u | R)P (g | R)

M̄r|u,g[z, x, y]⇐
∑

i,j:rij=z ui[x] · gj [y]
// M step

Updateθu[x]⇐ M̄u[x]/
∑

k M̄u[k] for all x
Updateθg[y]⇐ M̄g[y]/

∑

k M̄g[k] for all y
Updateθr|u,g ⇐ M̄r|u,g[z, u, g]/

∑

k M̄r|u,g[k, u, g] for all z, u, g
end for
ReturnΘ = {θu, θg, θr|u,g}.
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3.3.2 Loopy Belief Propagation

The core algorithm in the expectation step is inference. We need to compute the posterior

P (ui | R) andP (gj | R) for all ui andgj .

Exact inference algorithms are intractable here due to the complex structure. We choose

loopy belief propagation (LBP) [Murphy et al., 1999] here toperform the inference for sev-

eral reasons: first, when LBP has converged, we can get posterior distribution for all users

and items together. Second, LBP is faster in comparison withsampling methods for our

problem. Detailed information on LBP and related factor manipulation algorithms is shown

in Appendix A.

We construct the cluster graph as following: keep the original Bayesian network struc-

ture, and turn the directed arcs into undirected, and then change theRij nodes intoUi, Gj

compound clusters. The initial potentials for theUi andGj clusters are all set toθu andθg,

respectively. The potential forUi, Gj compound cluster is set toP (ui, gj | rij) ∝ P (rij |

P (ui, gj)P (ui)P (gj). Message passing follows the directions of either “converging” or “dis-

patching”. The detailed algorithm is shown in Algorithm 2.

3.4 Experiments

We test our algorithm on some real world collaborative data,and compare the prediction

accuracy and regression errors with other popular methods.
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Algorithm 2 [U,G]⇐ LBP(R,Θ, LBPiter)
Inputs: R: collaborative data,Θ: model parameters,LBPiter: maximum number of
iterations
Outputs U,G: the posterior ofP (ui | R) andP (gj | R) for all ui andgj

// Construct the cluster graph.
For allui, gj andi, j s.t. δij = 1:
Set factorπui

= θu, µui
= 1

Set factorπgj
= θg, µgj

= 1
Set factorπui,gj

= 1
Z
θr|u,g[r = rij]θuθg, whereZ =

∑

u

∑

g θr|u,g[r = rij]θuθg

// Belief propagation.
for k = 1 toLBPiter do

For allui, gj andi, j s.t. δij = 1:
// Converging direction.

Computeψui
= πui

/µui

Computeψgj
= πgj

/µgj

Updateµui
= πui

, µgj
= πgj

Updateπui,gj
= πui,gj

· ψui
· ψgj

// Dispatching direction.
Computeψui

=
∑

g πui,gj
/µui

Computeψgj
=

∑

u πui,gj
/µgj

Updateµui
=

∑

g πui,gj
, µgj

=
∑

u πui,gj

Updateπui
= πui

· ψui

Updateπgj
= πgj

· ψgj

end for
ReturnU = {πui

} for all ui, G = {πgj
} for all gj .
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3.4.1 Experiments Setup

To test the performance of our graphical model representation on collaborative data, we use

the real world data set BGG fromhttp://BoardGameGeek.com/. The BGG data contains

10538 users and 14333 board games. Ratings are sparse, only 642847 exist (0.45%). All the

ratings are integers from 0 to 10.

We use cross validation to test the prediction accuracy. Forcollaborative filtering, it is

not a trivial problem to split the data for training and testing. Unlike traditional tasks, for

collaborative filtering, predicting a missing rating for any user inevitably involves retrieving

other users’ ratings as well as his or her own ratings. Simplysplitting entire data into training

and testing parts based on user and item IDs will not work for filtering: we will have no

information to predict ratings for new items in the testing set.

Instead, we use the testing structure as shown in Figure 3.2.We need a subset of the data

for learning the parameters for the model. In our settings, we choose a subset of usersŨ and

gamesG̃ to hide from training (i.e. we train on all the ratings except those from̃U and toG̃).

For testing, we need further information from some of the hided ratings. In Figure 3.2, we

learnΘ from C. We then construct a new Bayesian network over the ratings inB with the

parameters learned. Note that the ratings inA are always hidden. After running LBP on the

newly constructed Bayesian network, we have the marginal distribution of all the users and

items. We then use these quantities along with the learnedθr|u,g parameters learned fromC

to perform filtering tasks for the ratings inA.

We first test with binary predictions. All ratings are converted to either 0 or 1, based on

34



Figure 3.2: Learning and testing structure.

the average rating of each user. For each user, we compute themean of all his ratings, and

convert any rating above or equal to that value to 1, and others to 0. Prediction accuracy is

used to evaluate the performance.

Root Mean Square Error

We use root mean square error (RMSE) as the metric to evaluatethe prediction quality.

RMSE =

√

∑

i,j:ui,gj∈PartA

∑

k P (rij = k | RB; Θ)(k − Rij)2

∑

i,j:ui,gj∈PartA 1
(3.4)

Experimental Data Sets

For part C, where we learn parametersΘ from, we construct a subset of data with500 users

and500 games with highest rating densities. We randomly pick 50 users and 50 items to
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form part B for the testing phase. Among which we further randomly pick 20 users and 20

items to form part C, the ratings of which are used for the finalcross validation accuracy.

3.4.2 Results

Figure 3.3 shows the prediction accuracy of part B and A together as a function of the number

of EM iterations. The accuracy tends to converge after around iteration 12, so we do not show

the entire figure.

Figure 3.4 shows the testing accuracy against linear regression results and a constant

prediction base line. The results are averaged across 10 independent experiments with the

same settings1.

The constant predicting base line for each experiment is just to predict all 0 or all 1

whichever is more frequent in the data. The linear regression method is shown in detail in

the next section.

Linear Regression

We first fill each missing ratingrij with average rating ofui. This results in full rating

matrix. To predict the missing ratingrij using linear regression, for each itemgk, let xk =

[r1k, . . . , r(i−1)k, r(i+1)k, . . . , rmk]
⊤, i.e.xk is the vector containing all the ratings forgk except

1With different randomly chosen users and items in part B and C.
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Figure 3.3: Binary prediction accuracy of B+A against EM iterations.

from ui. We then use linear regression to find

[

ŵi, b̂i

]

= arg min
w,b

∑

k

(w⊤
xk + b− rik)

2

The predicted rating is then given by

r̂ij = ŵ
⊤
i xj + b̂i .
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Figure 3.4: Testing accuracy of Bayesian network, linear regression, and constant prediction.
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Figure 3.5: RMSE of testing Part A against cardinality ofU andG.

Cardinality of the Latent Vectors

For binary prediction tasks, it turns out that the cardinality of u andg is not very important

in terms of the final prediction results. Here we set both of them to 2.

We use the parameters learned from part C at EM iteration 100.We randomly pick 20

user IDs and 20 game IDs within the covered part B region to form part A. We then predict

all the ratings for part A using the learned parameters and other ratings given in part B. For

each of the experiments, we ran 10 independent experiments and report the average errors.

We set the cardinality of bothu andg from 2 to 10.

We then tested the RMSE as we change the cardinality ofU andG from 2 to 10. Fig-

ure 3.5 shows the result. It is clear from the results that as long as the cardinality ofU andG

exceeds 2, it does not affect much to the final testing RMSE.
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3.5 Model Extension

It is often the case that additional information, such as text description of the items, is avail-

able along with the ratings. The BGG data set comes with game descriptions for most of the

games. It will be helpful if we can make use of the informationto boost the filtering accuracy.

With the Bayesian network model, we can easily extend this model to incorporate additional

information. We make this idea concrete through the exampleof text usage.

3.5.1 Model Setup

To incorporate text information into our Bayesian network model, we use the standard “bag-

of-words” model [Lewis, 1998] from text retrieval.

We choose theK most useful words to use in the model:W1,W2, . . . ,WK . We will

discuss how to choose these words later. We then define binaryrandom variableswjk for all

Gj andWk such thatwjk = 1 iff Wk appears in the description ofGj . These are sub-units of

the Bayesian network shown as following in Figure 3.6. The entire Bayesian network looks

like Figure 3.7.

We add additional parametersθw. Denoteθw[g] = [P (w1 | g), P (w2 | g), . . . , P (wK |

g)]. All existing learning and inference algorithms still workin a similar way. For example,

during loopy belief propagation, we need to additional passthe messages between word

indicators and the game nodes. In comparison to the LBP method discussed in previous

section, we just add an additional message passing procudure between thew nodes and their
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Figure 3.6: Bayesian network with text nodes.

Figure 3.7: Bayesian network with text nodes.
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correspondingg nodes in the Bayesian network structure.

3.5.2 Word Selections

There are too many distinct words in the whole text corpus forthe Bayesian network model.

In the BGG data, the number of different words is around 20000even after applying the Porter

stemming algorithm [Porter, 1980]. It is not only computationally expensive to incorporate

all of them into the Bayesian network model, but may also leadto over-fitting.

Neither the most frequent words nor the least frequent wordsare representative enough

to be chosen as key words. We chose the words with the highest mutual information (MI)

[Shannon, 1948] with the game typeg:

MI(wk, g) = −E[logP (wk)]−E[logP (g)] + E[logP (wk, g)].

The mutual information between two distributionsP andQ indicates how much we know

aboutQ once we observe a sample fromP . Here in this problem, intuitively we want to

choose the words that give us maximal information about the games.

Once we have the belief propagation results without the text, we have access to an initial

posterior distribution of the gamesP (g | R). Because the word indicators are also given

as evidence, it is straightforward to compute the expected entropy betweenP (g | R) and

P (wk). Figure 3.8 shows the most frequent words (left) and words with the largest mu-

tual information (right). It is clear that the words with higher mutual information are more
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meaningful for distinguishing game types.

3.5.3 Results

We ran the same binary prediction experiments as described in the previous section, except

that now we added in the game description and extended the Bayesian network model ac-

cordingly. The results are shown in Figure 3.9.

The result shows that with the text information incorporated into the Bayesian network

model, we achieve higher prediction accuracy.
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Figure 3.8: Most frequent words in BGG (left) and words with highest mutual information
(right).
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Figure 3.9: Binary prediction accuracy of Bayesian networkmodel with and without text
information, along with linear regression and constant prediction results.
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Chapter 4

Visualization of Collaborative Data

The filtering problem, as discussed in Chapter 3, obviously plays an important roll in ma-

nipulating collaborative data. Much of the prior work has been in the area of collaborative

filtering. However, no previous algorithms have approachedthe problem of visualizing col-

laborative information. Here we initiate this problem and propose an approach.

4.1 Problem Formulation

We follow some of the notation conventions of the previous chapter. LetU = {u1, u2, . . . , um}

andG = {g1, g2, . . . , gn} be the sets of all users and items, respectively. Without ambiguity,

we will useui to refer both to thei-th user and to the corresponding point in the embedded

space for that user. We use the same notation forgj. We defineδ to indicate whether a user
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has rated an item.

δij =























1 if ui ratedgj

0 the rating ofui of gj is not available

Let rij be the rating ofui of gj if δij = 1. Here we normalize all the ratings to the range

[0, 1] (i.e. 1 is the highest rating, and 0 is the lowest). LetR = {rij | δij = 1}. We further

denoteGi = {gj | δij = 1} andU j = {ui | δij = 1}. Gi is the set of all the items thatui

rated, andU j is the set of all the users that ratedgj.

The visualization problem is to find an embedding of all the pointsU andG in a Euclidean

space we call theembedded space. The embedding should be one in which the distance

between a user and an item is related to the corresponding rating.

We construct a Bayesian network for the collaborative with the same structure as we

used in Chapter 3: all the users, items and existing ratings are represented as nodes in the

network, and each rating node has the corresponding user anditem nodes as its parents in the

structure of the Bayesian network. The difference is that, for the task of visualization, each

user or item node corresponds to the embedded position of thepoint, and hence is a real-

value multivariate random variable. Also, the conditionalprobability distribution, in analogy

to θr|u,g in the filtering tasks, is no longer just a simple table. It becomes a function mapping

the position of user and item nodes into the distribution of target rating. We will give detailed

introduction to our framework and solution in the followingtext.
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In the embedded space, we assume eachui andgj are random variables drawn indepen-

dently from prior distributionsPu(ui) andPg(gj). We introduce a rating functionf : ℜ+
0 7→

[0, 1], which maps the distance between two points (a user and an item) in the embedded

space to a real value on[0, 1]: the expected rating for the two points.f(x) is a monotonically

non-increasing function,f(0) = 1, andf(∞) = 0. Intuitively, two points with a smaller

mutual distance should have a higher expected rating. At this point, we will assume that the

rating functionf(x) is given. Later, we will show how this function can be learnedfrom

data. The actual ratingrij between two pointsui andgj in the embedded space is a random

variable drawn from a distributionPf(rij | ui, gj) with meanf(‖ui − gj‖).

Given all the ratings,R, as evidence and the rating function,f , our task is to put all the

user pointsU and item pointsG into the embedded space so that the likelihood of observed

ratingsR is maximized. That is, we want to find theU andG points that maximize the

posterior:

[U∗, G∗] = arg max
U,G

P (U,G | R) (4.1)

= arg max
U,G

∏

i,j|δij=1

Pf(rij | ui, gj)
∏

i

Pu(ui)
∏

j

Pg(gj) .

P (U,G,R) is a real-valued Bayesian network in which each user and itemvariable has

no parents and each rating variable has two parents (one userand one item). The ratings are

given as evidence and the task is to determine the most probable joint assignment to the user

and item variables given the ratings.
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4.1.1 Gaussian Assumptions

We assume that all the distributions are from the Gaussian family. To be specific,

Pu = N (0,Σu)

Pg = N (0,Σg)

Pf (rij | ui, gj) = N (f(‖ui − gj‖), σr) .

HereN (µ,Σ) is a Gaussian distribution with meanµ and covariance matrixΣ. Note that

while these distributions are all normal, the functionf is non-linear and therefore the result-

ing joint distribution is not a Gaussian.

4.2 Parameter Estimation

It is intractable to compute the posterior in Equation 4.1 directly. We use Markov chain

Monte Carlo sampling.

4.2.1 Metropolis-Hastings Algorithm

In particular, we use the Metropolis-Hastings (MH) algorithm [Metropolis et al., 1953], which

was extended to graphical models [Jordan and Weiss, 2002]. Given a graphical model over

the random variablesX = {x1, x2, . . . , xN}, assume a target distributionπ overX. For each

variablexi, there is an associated proposal distributionQxi
: the distribution of new samples
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for that variable.

Given a current assignment toX, MH randomly picks a variablexi and tries to replace

its value with a new samplex′i drawn from the proposalQxi
. LetY = X − {xi}.

Thetransition gain ratiofor changing the samplexi to x′i is defined as

T Q(xi�x
′
i) =

Qx′

i
(xi)π(Y, x′i)

Qxi
(x′i)π(Y, xi)

. (4.2)

The probability of accepting this new samplex′i is

A(xi�x
′
i) = min

{

1, T Q(xi�x
′
i)

}

. (4.3)

Using the local independencies of the graph, this can be decomposed into a set of local

probabilities, shown in the following text.

MH Algorithm for Embedding

In our visualization problem,π is the posterior distribution ofU andG givenR (Equa-

tion 4.1). Initially, we sample fromPu for everyui and sample fromPg for everygj . This

jointly form a single starting sample (a joint assignment toU andG) for our MCMC method.

We use a a special form of sampler for the proposal procedure.Each time we only sample

a change for one existing node. The proposal distribution isagain set to Gaussian to ease the

computation.

We use proposal distributionsQui
for the nodeui andQgj

for the nodegj. We set the
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proposal distributions to be Gaussians with means at the previous embedded position:

Qui
= N (ui,Σ

′
u)

Qgj
= N (gj,Σ

′
g) .

If we choose the nodeui to be sampled, we drawu′i fromQui
, and then compute the ac-

cept ratio for this change according to Equation 4.3. DenoteU−i = {u1, . . . , ui−1, ui+1, . . . , um}

Using the local independence properties, the transition gain ratio with respect to the rating

functionf is given by

T Q
f (ui�u

′
i) =

Qu′

i
(ui)π(U−i, u

′
i)

Qui
(u′i)π(U−i, ui)

=
Qu′

i
(ui)Pu(u

′
i)

∏

j∈Gi Pf(rij | u′i, gj)
∏

k 6=i

∏

j∈Gk Pf (rkj | uk, gj)

Qui
(u′i)Pu(ui)

∏

j∈Gi Pf(rij | ui, gj)
∏

k 6=i

∏

j∈Gk Pf (rkj | uk, gj)

=

Qu′

i
(ui)Pu(u

′
i)

∏

j∈Gi

Pf(rij | u′i, gj)

Qui
(u′i)Pu(ui)

∏

j∈Gi

Pf(rij | ui, gj)
(4.4)

Similarly, the transition gain ratio for an item node,gj is

T Q
f (gj�g

′
j) =

Qg′j
(gj)Pg(g

′
j)

∏

i∈Uj

Pf(rij | ui, g
′
j)

Qgj
(g′j)Pg(gj)

∏

i∈Uj

Pf(rij | ui, gj)
. (4.5)

We repeat the above resampling phase until the process has mixed. The stationary distri-

bution of this procedure is the true posteriorP (U,G | R).
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4.2.2 Simulated Annealing

Recall that we want thearg maxU,G P (U,G | R). The Metropolis-Hastings algorithm will

give us joint samples ofU andG, drawn from that posteriorP (U,G | R). To get the samples

that maximize the posterior, we modify the standard MH algorithm along the lines of the

simulated annealing (SA) algorithm [Kirkpatrick et al., 1983].

In particular, we modify Equation 4.2 to add an annealing temperature,β:

T Q(xi�x
′
i) =

Qx′

i
(xi)π(Y, x′i)

β

Qxi
(x′i)π(Y, xi)β

The transition gain ratios of equations 4.4 and 4.5 are then

T Q
f (ui�u

′
i) =

Qu′

i
(ui)

[

Pu(u
′
i)

∏

j∈Gi

Pf(rij | u′i, gj)

]β

Qui
(u′i)

[

Pu(ui)
∏

j∈Gi

Pf(rij | ui, gj)

]β

T Q
f (gj�g

′
j) =

Qg′j
(gj)

[

Pg(g
′
j)

∏

i∈Uj

Pf(rij | ui, g
′
j)

]β

Qgj
(g′j)

[

Pg(gj)
∏

i∈Uj

Pf(rij | ui, gj)

]β

The added temperature factorβ grows gradually from1 to∞. Initially β = 1, and this

method is the same as the standard Metropolis-Hastings algorithm. Asβ grows, the simulated

annealing algorithm penalizes changes resulting in lower likelihoods; the algorithm tends to

only climb uphill in the posterior distribution.
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4.2.3 Learn the Rating Function

Until now, we have assumed that the rating functionf was known. However, we would like

this function to adapt to the collaborative data.

It would be straight-forward to selectf from a family (for example the exponential,

f(x) = e−λx). However, the actual rating function may have a very different shape. In-

stead we note that all collaborative datasets of which we areaware have a finite number of

values for the ratings. Many are binary (“like” or “do not like”) and others are based on a

five- or ten-point scale. Continuous, real-valued ratings are seldom used. We therefore letf

be a step function with discrete quantizations. A sample example of such a rating function is

shown in Figure 4.1.

We discretizef into K quantizations. LetΘ = {θi | i = 1, . . . , K} be the set ofK

splitting points in sorted order, withθK = ∞. Given the set of splitting pointsΘ, the rating

function is1:

f(x; Θ) = 1− i

K
, if θi ≤ x < θi+1 .

From Equation 4.1 and our Gaussian assumptions, we have

P (U,G | R) ∝
∏

i,j|δij=1

Pf(rij | ui, gj) ∝ exp(−1

2

∑

i,j|δij=1

(rij − f(‖ui − gj‖))2)

The proportionality is satisfied because during the estimation of the rating function, we fix

all the user and item points.

1Assumeθ0 = 0.
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Figure 4.1: Discretization of rating function.
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To maximize the above posterior distributionP (U,G | R) with respect tof (represented

by Θ, the problem is not transformed to:

Θ∗ = arg min
Θ

∑

i,j|δij=1

E[(f(‖ui − gj‖; Θ)− rij)
2] , (4.6)

where the expectation is with respect to the posterior distribution overU andG. This for-

mulation is equivalent to maximizing the probability of theratings; the squared error in the

above equation comes directly from the Gaussian assumptionregarding the distributionPf .

We use the expectation maximization (EM) algorithm [Dempster et al., 1977] to learn the

rating function. We initially setΘ = Θ0, a random starting point that meets our requirements

for f .

The E-step employs MH to sample from the expectations in Equation 4.6 using the rating

functionfk = f(·; Θk) at thek-th iteration.

The M-step updatesΘk+1 based on the generated sample configurations of the embedded

space (which approximate the expectations of Equation 4.6). Using all theui andgj points,

the optimal rating function is updated according to Equation 4.6. LetN be the number of

terms in the summation of Equation 4.6 (one for each rating for each sample). The M-step

optimization can be done efficiently (and exactly) inO(NK) time using dynamic program-

ming.

Before updating the rating function in the M-step, we renormalize all the points in the

embedding space. Due to our assumptions thatPu andPg are fixed Gaussian distributions
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with zero mean and that we have the freedom to changef , if the above procedure were run

without modification, all the points would collapse together toward the origin. Consequently,

the learned rating function would have splitting points with smaller and smaller values. We

fix this by a simple normalization step that scales and translates the points to reset the mean

of all of the points to the origin and the variance of their positions to one. Note that this is

not a general “whitening” step in that we only multiply the points by a scalar, not a matrix.

4.2.4 The Algorithm

To put everything together, the overall algorithm in our approach is listed in Algorithm 3.

The parameters of this algorithm arels (the number of samples used for estimating the ex-

pectation),lb (the number of samples necessary for the MCMC process to converge),ǫ (the

amount by which to increaseβ), and the variances of the Gaussian distributions.

4.3 Experiments and Results

We discuss our three datasets, our methodology for comparison, and then compare our algo-

rithm to three others.

4.3.1 Algorithm Initialization

Because we are learning the rating functionf , the absolute positions of the embedded points

will not affect our approach directly. Rather, the relativepositions of the points matter. There-
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Algorithm 3 [U,G]⇐Embed-Graph(R,D)
Inputs: R: rating matrix,D: embedding dimensionality
Outputs: U andG: embedded points

β ⇐ 1
Pu ⇐ N (0,Σu), Pg ⇐ N (0,Σg)
Sample{ui ∼ Pu}mi=1

Sample{gj ∼ Pg}nj=1

Qui
⇐ N (ui,Σ

′
u), Qgj

⇐ N (gj,Σ
′
g)

Pf(rij | ui, gj)⇐ N (f(‖ui − gj‖), σr)
f ⇐ f(·; Θ0)
repeat

// E-Step:
S ⇐ ∅
for k = 1 to lb + ls do

Randomly pick a pointxi from samples in[U,G]
if xi is a user pointui then

Sampleu′i ∼ Qui

ui ⇐ u′i with probabilityAf(ui�u
′
i)

else ifxi is an item pointgj then
Sampleg′j ∼ Qgj

gj ⇐ g′j with probabilityAf(gj�g
′
j)

end if
if k > lb then // burn in for lb iterations

Add (U,G) to S // Save lastls iterations
end if
[U,G]⇐normalize([U,G])

end for
β ⇐ (1 + ǫ)β

// M-Step:
f(·; Θ)⇐learned rating function usingS

until The current sample[U,G] is stable
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fore, the overall scale ofΣu andΣg do not affect the result.

In particular, for all the three datasets, we setΣu,Σg,Σ
′
u andΣ

′
g each to be the identity

matrix. We setσr = 0.25 for SAT, σr = 0.1 for MovieLens, andσr = 0.05 for BGG. These

values directly reflect the discretization of the rating scores. Our informal tests show that

the algorithm is not sensitive to these particular numbers and we have made no effort to tune

them.

For the rating functionf , we choose to setΘ0 directly using an M-step from the samples

drawn from their priors. For our experiments, we setls = 2000, lb = 1000, andǫ = 0.02 for

all three datasets.

4.3.2 Experiment Datasets

We test our visualization algorithm on the following data sets.

The SAT dataset contains SAT II subject examination scores for 40 questions chosen

from a study guide of historic questions and 296 users. SAT IIis a standard exam taken by

high school seniors applying to colleges in the United States. All the scores are either0 or

1 (indicating whether the student got the question correct),and there are no missing values.

The 40 questions are from the subjects French, Mathematics,History and Biology. The exam

was administered on-line over the course of one week.

The BGG dataset is the same as the one used in Chapter 3.

Finally, the MovieLens dataset contains ratings from userson a variety of movies. All the

ratings are integers from1 to 5. We picked400 users and50 movies, maximizing the rating
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density. The rating matrix density is41.0% on this subset. This dataset is publicly available

from movielens.umn.edu.

4.3.3 Implementation Issues

We compare our results with locally linear embedding (LLE) [Saul and Roweis, 2003], Eigen-

taste (ET) [Goldberg et al., 2001], and co-occurrence data embedding (CODE)

[Globerson et al., 2005]. None of the algorithms is exactly suited to our problem, so we

discuss our adaptations in this section.

If we consider the rating matrix as a set of points in the high dimensional space, we can

use LLE to embed them into a lower dimensional space. The LLE algorithm requires a full

rating matrixR. This is not available for the MovieLens and BGG datasets. Weuse linear

regression to fill the missing ratings. This method is discussed in Section 3.4.2 in the previous

chapter.

Both LLE and ET can embed either users or items into an Euclidean space. Yet, neither

of them can embed both in the same space. We tried several waysto extend them and to

make them comparable. One straight-forward way is to embed all the user points first into

the space. Then for every item, find all the users who gave it its highest rating, and place this

item at the mean of those users points.

For our results, we used an alternative method, which performed better than the one

above. LetR̂ be the full rating matrix filled in using linear regression. We introduce a

correlation matrixC among alln items. The diagonalCii is set to1. Let Ri be thei-th
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column ofR̂,

Cij =
R⊤

i Rj

‖Ri‖ · ‖Rj‖
.

We then letX = [C R̂⊤] and use LLE or ET to embedX into the target Euclidean space.

The firstn points correspond to the items and the lastm points to the users.

ET only works if there is agauge setof items which all users have rated. However,

in the MovieLens and BGG datasets, no such gauge set exists. Using the above regression

technique to fill in a gauge set results in bad (and misleading) results, so we omitted them

and have only included ET results for the SAT dataset.

The CODE algorithm requires co-occurrence statistics between users and items. The

relationship between co-occurrences and ratings is not clear. However, it is natural to assume

rij is proportional to the probability of the co-occurrence ofui andgj. Intuitively, a higher

rating indicates it is more likely that the user and item “occur” at the same time. We set

the empirical distribution of(u, g) to be proportional to the rating matrix (filled by linear

regression if there are missing ratings). We initialize themappings uniformly and randomly

from the set[−0.5, 0.5]D as the starting point for the optimization.

Our linear regression method for filling in missing values has proven reasonable on the

prediction task, but admittedly it is not the most sophisticated algorithm possible. There-

fore, to distinguish embedding factors from data completion factors, we also ran our MCMC

algorithm on the completed rating matrix from linear regression.

Both our method and CODE have variable running times (numberof EM iterations in our
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case, number of random restarts for CODE). For the results reported here, we gave each 30

seconds of CPU time on a 2.8 GHz processor.

4.3.4 Sample Results

The SAT data was selected because of our ability to extract a “ground truth.” In particular,

we expect that when embedded, the questions from the same subjects should be grouped

together. Figure 4.2 shows the embedding for dimension2 using the simulated annealing

approach (along with the three other approaches).

There are ten questions in each category. We can clearly see that our method clusters all

the French questions tightly together. The same happens forthe Math questions. (There are

eight Math questions that overlap in a small area.) The othermethods do not produce as tight

clusters.

The History and Biology questions do not cluster as well. Further data analysis has shown

that there is very little predictability in the History and Biology questions, so this result is

perhaps not surprising. The French and Math questions tended to test a body of knowledge

that is often retained as a coherent block, where as the History and Biology questions on this

exam tended to test more isolated blocks of knowledge.

Figure 4.2 also shows that the user points and the item pointsintermix more evenly with

our approach. This meets our expectation that for any user, we can always find things they

like or dislike (questions on which they perform well or poorly). In the embedding results

of LLE, ET, and CODE, a large number of user points lie in partsof the graph outside the
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Figure 4.2: 2-Dimensional embeddings for the SAT questionsusing a simulated annealing
version of our MCMC algorithm (top left), local linear embedding (top right), Eigentaste
(bottom left), and CODE (bottom right).
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convex hull of the the question points. This makes it impractical to make recommendations

to those users based on the visualizations.

4.3.5 Evaluation Criteria

There are no prior standard metrics for evaluating the quality of the embedded graph. We

introduceKendall’s tau[Kendall, 1955] as a suitable evaluation criterion. Kendall’s tau is

used to compute the correlation in ordering between two sequencesX andY . It is especially

useful for evaluating the correlation between two sequences that may have many ties.

Given two sequencesX andY of the same length, a pair(i, j), i 6= j is calledconcordant

if the ordering ofXi andXj is the same as the ordering ofYi andYj. By contrast, if the

relative ordering is different, this pair(i, j) is calleddiscordant. If Xi = Xj or Yi = Yj,

then(i, j) is neither concordant or discordant, and it is called anextra xpair orextra ypair,

respectively.

Kendall’s tau is defined as

τ =
C −D

√

C +D + Ey

√
C +D + Ex

(4.7)

whereC is the number of all concordant pairs, andD is the number of all discordant pairs.

Ex andEy are the numbers of extrax pairs and extray pairs.

It is easy to verify thatτ is always between−1 and1. τ = 1 indicates the two sequences

have perfect positive correlation, andτ = −1 indicates perfect negative correlation.τ = 0
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indicates their orderings are independent.

To evaluate the quality of the graph in the embedded space, for each experiment we

randomly selected a set of users,Ū , and items,Ḡ, as testing users and items. All the ratings

between users in̄U and items inḠ were held out for testing and were not used in generating

the embedding.

The embedding algorithms will produce the embedded points for those nodes in̄U and

Ḡ. In order to evaluate the embedding quality, we generate twosequences and compute

Kendall’s tau between them: sequenceX contains the actual ratings between all the pairs

ui ∈ Ū andgj ∈ Ḡ such thatδij = 1, and sequenceY contains the distances between the

correspondingui andgj in the embedded graph.

A good embedding will placeui far from gj if rij is small, and close ifrij is large.

Kendall’s tau for the above two sequences exactly evaluate this correlation. Denoteτ to be

the Kendall’s tau for the sequencesX andY . Negative values ofτ indicate good embeddings,

and we expect the values from embedding algorithms to be smaller than0 (that of a random

embedding).

4.3.6 Experimental Results

We ran our MCMC algorithm both with and without simulated annealing, along with LLE,

ET and CODE. We randomly selected one quarter of the users andone quarter of the items

for testing (̄U andḠ from above). We randomly selected other users and items to form a

training set (̃U andG̃). All ratings between members of̃G andŨ , G̃ andŪ , andḠ andŨ are
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used for training. As stated previously, the ratings between members of̄G andŪ are used for

testing. It is necessary to include the ratings betweenG̃ andŪ (and likewise between̄G and

Ũ ) in order to connect the test users and items with the training users and items.

Because the existence of the test set, there are always missing ratings in the rating matri-

ces used. We use linear regression to fill those ratings. We also ran the MCMC algorithm on

the same filled data as LLE, ET and CODE used (MCMC-REG in the graphs).

For each dataset size (number of items inG̃), we ran25 independent experiments and

recorded the means and standard deviations across the experiments for all algorithms. Every

algorithm was run on the same set of training and testing sets.

For each of these datasets, Figure 4.3 shows the comparison of our methods to LLE,

ET, CODE, and a random embedding, as a function of the size of the training set. We also

computed an “ideal embedding” value forτ . Because of ties, Kendall’s tau cannot always

reach−1, so we calculate the lowest possible value forτ on the random dataset drawn. This

takes nothing into account except ties and it ishighlyoptimistic and probably not obtainable

at such low dimensions. The optimal values for SAT, BGG, and MovieLens datasets are

approximately−0.63, −0.87 and−0.90 respectively. We ran LLE algorithm with training

size starting at22 for SAT and24 for MovieLens because of matrix inversion problems for

smaller training sizes.

Figure 4.4 shows another experiment with the same evaluation criteria. In this experi-

ment, we fix the testing data as usual, and use all the remaining data for training. The plot

shows Kendall’s tau as a function of the number of dimensionsof the embedding space.
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Figure 4.3: Performance of embedding algorithms on the three datasets as a function of
training set size. Results are for the data sets SAT, BGG and MovieLens from top to bottom.
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Figure 4.4: Performance of embedding algorithms on the three datasets as a function of
embedding dimensions. Results are for the data sets SAT, BGGand MovieLens from top to
bottom.
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4.3.7 Analysis of the Results

From the experiments above, we can see that when the rating matrix is denser, the embed-

ding algorithm achieve better results. Our sampling method, with (MCMC-SA) and without

(MCMC) simulated annealing, outperformed LLE, ET and CODE.None of them were de-

signed with this type of data in mind, so we do not present these results to disparage those

methods, but there were no other methods available to test against. Note that our MCMC

algorithm on linear regression filled data (MCMC-REG) has similar performance to directly

applying our MCMC method on data with missing ratings. This implies that it is not our

regression that is causing the poor results from the other algorithms, but rather their misfit to

this problem. We would also note that our method also seems more stable (smaller variance)

than the other algorithms compared.

On the SAT dataset, which contains full density of ratings, our algorithms show strong

negative Kendall’sτ which indicates good visualization results. In most cases,using simu-

lated annealing helps improve the quality of embedding (compared to “normal” MCMC). As

the training size grows, we have more information on the relations between all the user and

item points, and that leads to better performance for all thealgorithms.

The BGG and MovieLens datasets have many missing ratings andthe ratings values are

more subjective and therefore noisier. Our algorithm is notas competitive with the “ideal”

value for Kendall’s tau, but we feel that this ideal value is wildly optimistic in these settings.

Our algorithm does perform better than random embeddings, LLE, and CODE.
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Chapter 5

Embedding Images

In extension to the visualization of collaborative data, wecan also view this problem as a

dimensionality reduction problem. The rating matrix can beany raw input data matrixX

and our framework discussed in the previous chapter can be used to efficiently embed the

columns ofX into some low dimensional space. It is natural to think aboutimages. They,

too, are high dimensional data. If we can come up with a reasonable processing to transform

the images into collaborative data, we can also embed images.

As is previously discussed in Chapter 1, image embedding problem is to place images

into a Euclidean space or other layout so that similar imageslie close to each other in the

embedding. Most of the time there is additional informationabout the images also available.

In the case of search engines, historic user click counts canbe used for collaborative filtering.

The search engine can record the number of clicks by users, along with their query words. For

personal image collections, time stamps are often useful for correlating similar photographs.
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We listed some dimensionality reduction algorithms in Chapter 2. In general, they work

for image embedding tasks. However, they treat each dimension independently and do not

preserve the image structure. Thus, they produce the same result if the pixels’ locations

were permuted (the same way in each image). We would like to exploit our knowledge of

image structure to boost the embedding quality. There are well developed algorithms for

image feature extraction, in particular the scale invariant feature transform (SIFT) introduced

in [Lowe, 2003]. The SIFT features extracted from images well preserve the image’s “key

points.” Our similarity metric is directly based on the SIFTfeatures.

In Section 5.1 we formulate the image embedding problem formally, and then in Sec-

tion 5.2 we give a detailed explanation of our solution. Additionally, as we show in Sec-

tion 5.2.3, our method can be adapted to non-Euclidean spaces. In particular, we can embed

the images into a grid or table, suitable for visualization.In Section 5.3 we compare the

results of our algorithm with other competing ones with popular image data sets.

5.1 Image Embedding Problem

In previous Chapter 4, we proposed an algorithm that can visualize collaborative data. We

used a real-valued Bayesian network to model the embedded positions of the users and items,

along with the ratings that relating them. In addition, we proposed to use the nonparametric

statistic Kendall’sτ [Kendall, 1955] as a criterion to evaluate the embedding quality.

In this chapter, we adopt the overall structure of the visualization of collaborative data.
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We do not have “users” that have rated the images, but we employ SIFT features in a sim-

ilar role (see Section 5.2). We also simplify the optimization method. Instead of trying to

maximize the posterior distribution of a complex graphicalmodel, we propose to directly

minimize Kendall’sτ .

Scale Invariant Feature Transforms

Scale Invariant Feature Transforms (SIFT) [Lowe, 2003] transform raw images into scale-

invariant local features. Many existing algorithms on supervised and unsupervised image

processing use the SIFT feature sets as their representation for images, for example

[Se et al., 2001] and [Scovanner et al., 2007].

Each image can have a possibly different number of SIFT features, depending on the

number of “points of interest” in the image. Each feature is afixed-length vector describing

the local image patch at a location in the image. SIFT features have their advantages in terms

of describing characteristics of an image. They are robust to scaling and in-plane rotation,

and relative easy to compute and manipulate. Similar imageswill have a significant number

of similar SIFT features, which makes it a suitable representation for image comparison.

Notation

Table 5.1 lists the notation we use in this chapter. Note thatwe useI andK to denote both

images and clusters or their positions in the embedding space if there is no ambiguity.
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I = {I1, I2, . . . , In} set ofn images
S

i = {Si
1, S

i
2, . . . , S

i
ni
} set ofIi’s SIFT features

K = {K1, K2, . . . , Km} set ofm feature clusters (explained
below)

N(Si, j) number of features inSi that belong
toKj

ri
j = N(Si,j)

‖Si‖ portion of features inSi that belong
toKj

di
j = ‖Ii −Kj‖ Distance in the embedding between

Ii andKj

Table 5.1: Notation for image embedding problem.

5.2 Approach

Given a set of imagesI, our task is to embed them into ad-dimensional space. Distances

in this embedded space should capture the image similarity:We want to put similar images

near each other, and dissimilar ones far apart.

We first extract the SIFT features for all the images, and thencluster all features from all

images together intom groups,K. We have found that the end results are fairly stable with

respect to the number of clusters and the clustering algorithm. We usek-means to do this

clustering.

For any imageIi, we then countN(Si, j), the number of features inSi that belong to the

clusterKj. If we divideN(Si, j) by the size ofSi, we have a distribution of “membership”

to the clusterKj for imageIi. So we can considerri
j = N(Si,j)

‖Si‖
as the fractional “vote” ofIi

for Kj .

We view each SIFT cluster as representing a more general feature of an image. In this

way, it is similar to a user from collaborative filtering data. Each image is an item andri
j
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represents how well SIFT clusterKj “describes” imageIi. So, following Chapter 4, we

embed both the images (items) and SIFT clusters (users) in the same space so that SIFT

clusters are near images that they like (have many examples of the feature) and are far away

from those they do not like (do not have the corresponding SIFT features).

Consider the case where we already have a potential embedding, containing image points

and cluster points. Let the images have points{Ii} in that space, and the SIFT feature clusters

have points{Kj}. For any particular imageIi, we can compute its distance to all the cluster

points, which we denotedi
j = ‖Ii−Kj‖. From the SIFT feature clustering, we also have the

membership distributionri
j. Let τ i be Kendall’sτ between these two sequences for imagei,

as computed through Equation 4.7.

Intuitively, the more features from clusterKj contained in the image (i.e. the largerri
j) the

smaller the image’s distance toKj should be in the embedding. So we would like a negative

correlation between the two sequences, or, equivalently, anegative value ofτ i. The smaller

τ is, the better embedding results are. We propose directly minimizing the average Kendall’s

τ for all the images.

5.2.1 Problem Formulation

Denote the average Kendall’sτ of an embedding to be

T (I,K) =
1

n

n
∑

i=1

τ({ri
j}mj=1, {di

j}mj=1) . (5.1)

73



The image embedding problem can now be formulated as

[I∗,K∗] = arg min
I,K

T (I,K) . (5.2)

5.2.2 Simulated Annealing

Exact algorithms to minimize the functionT are not possible due to its combinatorial nature.

Instead, we use simulated annealing [Kirkpatrick et al., 1983]. Minimizing T is equivalent

to maximizing the energy function

f(I,K) = exp(−T (I,K)) . (5.3)

Simulated annealing is already discussed in Chapter 4. Herewe briefly explain how

we use this technique for this problem. We begin with a randomembedding ofI andK.

Samples from a multi-variate Gaussian distribution work fine in practice. At each time step,

we randomly choose a point, either an image or a cluster, to resample. For example, if the

point Ii is picked, we then propose a new pointĨi. For this, we also use a multi-variate

Gaussian proposal distribution centered at the old position Ii. To calculate the change of

the functionT , it is not necessary to recompute the Kendall’sτ for all images; it suffices to

calculate the change for just imagei. Let d̃i
j be the distance between the proposed new point
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Ĩi and any cluster pointKj , then

∆T (Ii → Ĩi) =
1

n

(

τ({ri
j}, {d̃i

j})− τ({ri
j}, {di

j})
)

. (5.4)

Hence we accept this new point with probability

A(Ii → Ĩi) = min{exp(−∆T (Ii → Ĩi)), 1} . (5.5)

The calculations are similar for moving a cluster pointKj. Although all the Kendall’sτ

values may change, we can still update theτ values efficiently. Recall from Equation 4.7,

for each imageIi, only di
j changes, so the values ofC (concordance) orD (discordance) can

change by at most1. If we store the previousC andD values along with the Kendall’sτ for

all the images, we can perform this update efficiently.

We keep iterating this resampling procedure until convergence. Remember that our prob-

lem in Equation 5.2 is to find thearg min of theT function. As is standard in simulated

annealing, we add a temperature parameterβ to the system.β is initially 1, and we let it

grow toward∞.

We only need to change the Equation 5.5 to be

A(Ii → Ĩi) = min{exp(−β∆T (Ii → Ĩi)), 1} . (5.6)

After each resampling, we increaseβ by a small amount. Intuitively, asβ grows larger,
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Figure 5.1: One-dimensional embedding for theshoesobject in the ALOI data set.

Figure 5.2: Euclidean embedding results for a subset of the ALOI data set.

the system is more reluctant to accept resamples leading to largerT values (worse embed-

dings).

5.2.3 Grid-based Image Embedding

The final embedding of the images will inevitably involve much overlap if we plot the images

in their embedded space. If the embedding is simply for dimension reduction as an initial

step of machine learning, this is not a problem. However, it is a problem if visualization is

the desired goal.

Unlike many other dimension reduction algorithms, our framework can be easily adapted

to a “grid-based” approach. We do this by setting the target embedding space to be a grid,
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i.e. each image can be only placed into one of the embedding grid cells. The proposal

distribution for changing an image can be a uniform distribution over all cells, or, more

efficiently, a uniform distribution over the neighbors of the image’s current cell. If there is

already another image that takes the proposed grid position, then the proposed move is to

swapthe two images; otherwise the proposal is tomovethe image position to the new cell.

Everything else in the above algorithm remains the same. We also restrict the SIFT cluster

locations to the grid cells. However, we do not require thereto be at most one per cell. Rather,

the SIFT clusters may coexist on the same cell as we will not bedisplaying them.

Grid-based image embedding is especially suitable for the applications that are targeted

at users instead of machines, for example organizing and visualizing personal photo galleries.

5.3 Experiments and Results

We discuss the data sets we used, show sample embedding results, and compare our algorithm

with other related ones.

5.3.1 Data Sets and Accuracy Metric

We tested the embedding algorithms on two real-world data sets. The Amsterdam Library of

Object Images (ALOI) [Geusebroek et al., 2005] contains images of a set of small objects. It

has images for 1000 objects, each has 72 images taken from different viewing angles. This

data set is noise-free and is relatively easy for unsupervised image embeddings. Caltech101
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[Fei-Fei et al., 2004] is another well-known data set containing 101 categories of (possibly

very different) images. It is a harder data set for image dimension reduction algorithms.

It is usually difficult to numerically evaluate the embedding results. Fortunately we know

the ground-truth category for each image in both data sets weused. We use thek-nearest

neighbors accuracy (kNNA) to evaluate the embedding:

kNNA(Ii) =

∑

Ij∈Nk(Ii)
Category(Ii)=Category(Ij)

k
, (5.7)

whereNk(Ii) is the set of thek nearest neighbors of imageIi in the embedding. The average

kNNA for the embedding is justkNNA =
P

i kNNA(Ii)
P

i 1
.

It is clear that kNNA is always between 0 and 1. Larger averagekNNA values indicate

better embedding quality. Intuitively, a good embedding should place images from the same

category close to each other, and hence boost the kNNA valuesfor all the images. Perfect em-

beddings will have NN accuracy1 for smallk, while random embeddings will have accuracy

around the inverse of the number of categories.

Using kNNA, we compared our simulated annealing embedding (SAE) algorithm with

Isomap, LLE, and SDE. In addition to using the raw pixels as input vectors for Isomap, LLE

and SDE, we also ran those embedding algorithms using the SIFT distributions as the images’

vector representation. This gave the other embedding algorithms the same information as

our embedding algorithm and helps to distinguish the advantages of our algorithm from the

advantages of our representation. The results for their algorithms on SIFT features are shown
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Figure 5.3: Euclidean embedding results for a subset of the Caltech101 data set.

with the label “(SIFT)”.

5.3.2 Sample SAE Embeddings

Figure 5.1 shows a sample embedding of shoe images from the ALOI data set, viewed from

different angles using SAE. We picked 12 evenly spaced images in the derived embedding

from all of the 72 embedded shoe images. It is clear that SAE preserves the pairwise similar-
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ity well in terms of the shoe’s rotation.

Figure 5.2 shows a sample two-dimensional Euclidean embedding for the ALOI data

set. We randomly chose a subset of 6 objects (categories), each with 36 different images.

Figure 5.3 shows similar results for the Caltech101 data set. For this case, we randomly

picked 6 categories, and 20 images for each of the categories. Note that we also show in

the same embedding the positions of the SIFT clusters in circles. The cluster images are

generated directly from the gradient intensities specifiedin the vector. To be specific, the128-

dimensional vector contains8 gradient values for16 subwindows of the window of interest.

We have plotted these values in roughly corresponding positions in a small image.

Figure 5.4 and Figure 5.5 show the results of using a grid-based embedding on the same

data sets. These grid-based SAE embeddings provide a user-friendly image grid. Unlike

the unconstrained Euclidean embeddings of Figure 5.2 and Figure 5.3, there is no overlap

obscuring some of the images. Yet, the images categories still cluster well into different

areas of the space.

5.3.3 kNNA Results

For more quantitative results, we ran SAE, Isomap, LLE and SDE embedding algorithms on

10 randomly chosen objects from the ALOI data set, using 30 images for each object. We set

m = 50 cluster centers for grouping the SIFT features. We stopped the SAE algorithm when

the change inT was below10−6. The embedding dimensionD was set to2. The simula-

tion annealing temperature parameterβ grows with exponent1.001. We then calculated the

80



Figure 5.4: Grid embedding for a subset of ALOI.
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Figure 5.5: Grid embedding for a subset of Caltech101.
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Figure 5.6: kNNA results for ALOI and Caltech101.

kNNA accuracy of the derived embedding for each value of the number of neighborsk. We

ran 10 independent experiments (each run randomly drew different objects), and reported the

average kNNA values for all the algorithms. The results are shown in Figure 5.6.

With the same settings, we ran similar experiments on the Caltech101 data set with 10

randomly chosen categories, each with 30 images. The kNNA results are shown in Figure 5.6.

The images in the Caltech101 data set are of differing sizes.This was not a problem for our

algorithm (SAE), but the other algorithms require the images to be of the same size. For the

other algorithms, we rescaled all images to a canonical 100-by-100 pixel size.

Our algorithm outperform all the listed competing dimensionality reduction algorithms

in terms of kNNA accuracy. Noticeably, although performed on the same SIFT represented

data set as our method, the other algorithms still do not perform as well as ours in either data

sets.
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5.4 Additional Information Sources

Sometimes, there is additional image information available. For example, an image search

engine may have the records of user click counts of images forvarious user queries. Better

embeddings can be expected if our algorithm can take into account this information.

Queries are composed of words, so if we treat words in a similar manner as the SIFT-

feature clusters in the previous section, we can use the corresponding click counts between

images and query words. We get similar “rating” statistics for word-image pairs. We can

employ similar embedding algorithm on this rating information instead of using feature-

image pairs.

5.4.1 Model Extensions

Our true goal is to use both word-image click counts and feature-image pairs to improve the

embedding. In fact, we may have more than two sources of information and more than three

types of objects. We thus extend the previous model to allow for more groups of entities

beyond the original images and clusters. We use the term “rating” to denote a (possibly

incomplete) source of information relating two groups of objects. We allow these ratings

to have weights denoting the strength of our belief in the information. More formally, we

introduce the following notation.
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I = {I(1), I(2), . . . , I(n)} set ofn groups

I(i) = {I1(i), I2(i), . . . , Ini
(i)} all entities in groupi

π(i, j) weight for the ratings betweenI(i) andI(j)

ra
b (i, j) rating betweenIa(i) andIb(j)

Tij(I) average Kendall’sτ for I(i) andI(j)

We then define the global Kendall’sτ as the weighted average of all possibleTij ’s:

T (I) =
∑

j>i|R(i,j)=1

π(i, j)Tij(I) .

Note that whenn = 2, there are two groups of objects, and this is exactly the model we

previously presented.

The task if to minimizeT (I) with respect to all the image positionsI. Similar simulated

annealing algorithms can be used to solve this problem.

5.4.2 Click Counts Incorporation

We also tested the value of our model extensions on the click graph (CG) data set. The

CG data set is collected from the image search engine of Microsoft. It contains six groups

of images: books, mouse, panda, Saturn, shoes, and terrier.There are also click counts

available. The click counts record the number of times usersselected an image after they

issued any particular query to the search engine. We randomly chose72 images for each of

the image groups with180 queries.
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To incorporate the click counts, we make an additional relational group for words. For

any click counts between and imageIi and a queryQq, we add the number of clicks to the

image-word countcij wherewj is a word inQq.

Raw click counts are to some extent ill-formed for direct usage. Some image-word pairs

may have click counts as large as hundreds, while most of the pairs have small click counts.

We use a straight-forward normalization. For each imageIi, we simply normalize all the

click countscij to becij/
∑

j cij for all the words. This turns out to be effective and useful.

Random Walk Smoothing

In [Craswell and Szummer, 2007], the authors introduced an algorithm that uses a random

walk on a Markov chain to model the click counts. We follow their method to smooth the

click information.

Let there ben images, andq query words. We form two stochastic matrices:X andY

such thatXij =
cij

P

j cij
, andYij =

cij
P

i cij
. Let the matrixA be an + q by n + q transition

matrix over both entities (images and query words) such that

Aij =































































s if i = j,

(1− s)Xi,j−n if i ≤ n andj > n,

(1− s)Yj,i−n if i > n andj ≤ n,

0 otherwise.
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Heres is the weight for the Markov chain state’s self-transition probability. The smoothed

click information for any imageIi is computed using a backward random walk oft steps of

this chain,

c̃i = A
t
ei , (5.8)

whereei is a vector of all zeros except for a one at theith position. The resulting̃ci is vector

of sizen + q, and the lastq component of this vector is the smoothed click information for

the imageIi toward all theq query words. We can then use the smoothed click information

with the simulated annealing algorithm for the extended model. For our results, we chose

t = 300 ands = 0.9.

Average Accuracy ink Nearest Neighbors

Given an embedding, for any imageIi, since we know the group of the image, we can simply

count the number of imageski from the same group in itsk nearest neighbors. The em-

bedding accuracy forIi is defined aski

k
. The average accuracy ofk nearest neighbors (NN

accuracy) of the entire system is defined as1
n

∑n

i=1
ki

k
, wheren is the total number of images.

Perfect embeddings will have NN accuracy1 for smallk, while random embeddings will

have accuracy around the inverse of the number of groups.

Spectral Clustering Accuracy

Another way of evaluating the embeddings is to derive clustering results from them. Lete1

be the total number of image pairs that are from the same groupbut clustered in different
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groups, and lete2 be the number of image pairs that are from different groups but clustered

together. The clustering accuracy is defined as1.0− 2(e1+e2)
n(n−1)

.

We use spectral clustering [Ng et al., 2001] as the basis to perform this task. To be spe-

cific, for any embedding, we run spectral clustering based solely on the resulting embedded

locations. We tried different possible spectral clustering parameters, and chose the average

results for that embedding. Graphs plotting the best possible performance for each run were

similar, but more noisy.

Results with Click Counts Information

We set the relative weight between the image-word relation and the image-cluster relation to

be0.2, which means we still concentrate on minimizing the averageτ for the image-cluster

relationships. Nevertheless, we need to minimize the averageτ for image-word relationships

as well, since it also contribute a certain weight to the global average Kendall’sτ value for

the entire system.

Figure 5.7 shows a sample embedding with images from the “panda” category and the

related search keywords.

We compare the NN accuracy and spectral clustering for the CGdata set: without click

information, with smoothed click information, and with un-smoothed click information. The

results are shown in Figure 5.8.

Our algorithm achieves higher accuracy results than any of the other three competing

algorithms. We believe this is for two reasons.
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Figure 5.7: Sample embedding for panda images in CG.
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Figure 5.8: NN accuracy (left) and spectral clustering accuracy (right) of the SA results with
and without the click information.

First, we exploit the nature of images (by using SIFT features) instead of treating all of the

pixels as independent dimensions. When we supply the same SIFT-feature representation to

the other embedding algorithms, their performance increases for the ALOI data set. However,

we still have better performance, so the use of SIFT featuresdoes not entirely explain the

results.

Second, our algorithm is designed to cluster images with similar properties (as opposed

to find parameters of continuous variation). We feel this is the more important difference.

Although our method works for continuous parameter variation (see Figure 5.1) and the

dimensionality reduction algorithms have some success in clustering images (see Figure 5.6),

our algorithm’s strength is in embedding heterogeneous sets of images in which there may

not be any continuous path of images leading from one member of the data set to another.

For example, there is no “axis of variation” that one can varyto generate a natural smooth

set of images from a butterfly image to a cellphone image in theCalTech101 data set. The

butterflies and cellphones occupy disconnected regions of the space of images of interest.
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For many applications on data sets like CalTech101, we thinkthis strength is particularly

important.

Finally, our method has the advantage of being able to generate grid-based embeddings.

For some applications, like user interfaces, this is crucial to the utility of the embedding.

It is clear that by incorporating additional click counts information with images, our

framework can make use of the information and somewhat boostthe testing accuracy.
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Chapter 6

Conclusion

We proposed an approach using Bayesian network to perform collaborative filtering. Empir-

ical results show that our filtering algorithm achieve competative accuracy. Our framework

can be easily adapted to incorporate additional information other than the ratings (for exam-

ple game description in the BGG data).

We also formulated a new problem of visualizing collaborative data. This is a potentially

very useful problem. Not only are on-line databases of user ratings growing, but personal

databases are also becoming more common. We expect the collaborative visualization prob-

lem to be useful in organizing personal music or photographycollections as well as on-line

shopping. We also extended our framework to the domain of image embedding. We gave a

complete solution for automatic image embedding problem.

We have not addressed the computational issues nor the stability of the resulting embed-

ding in this work. Both are important problems for on-line deployment in changing databases.
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Because of the anytime nature of sampling methods and the ease of introducing constraints,

we are hopeful that the solution presented here can be adapted to provide stable and adaptive

solutions.

In summary, we presented our solutions to the related problems of collaborative filtering,

visualization, and image embedding. They share similar framework of viewing the prob-

lems, but each with their own focuses. The methods presentedare automatic, without many

parameters to tune up with different inputs. Also they are quite efficient in practice, which is

essential in some time sensitive application domains.
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Appendix A

Bayesian Networks

Bayesian networks are the most widely used graphical modelsto represent factorized prob-

ability distribution over multiple random variables. We introduce the basic components of a

Bayesian network in Section A.1, and then introduce the two key problems associated with

Bayesian networks: inference (Section A.2) and learning (Section A.3).

A.1 Introduction to Bayesian Networks

A Bayesian networkB is composed of its graphical structureG and its parameter setΘ. G

is always a directed acyclic graph (DAG) over the set of variablesX = {X1, X2, . . . , Xn}.

The variableXi and all its parentsPa(Xi) in G form the scope of familyφXi
. A conditional

probability distribution (CPD)P (Xi | Pa(Xi)) is associated with familyφXi
. The joint
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A B

C

A = 0 A = 1
0.2 0.8

B = 0 B = 1
0.6 0.4

A B C = 0 C = 1
0 0 0.1 0.9
0 1 0.9 0.1
1 0 0.8 0.2
1 1 0.05 0.95

Table A.1: A simple Bayesian network.

distributionP (X) defined by the Bayesian network factors by each individual family

P (X1, X2, . . . , Xn) =

n
∏

i=1

P (Xi | Pa(Xi)) , (A.1)

where ifXi has no parent inG, P (Xi | Pa(Xi)) ≡ P (Xi).

Consider a simple Bayesian network with three random variablesA, B, andC in Ta-

ble A.1. The structure of the network and sample conditionalprobability distributions (CPDs)

are shown in the table. The joint distribution can be thus factored as

P (A,B,C) = P (A)P (B)P (C | A,B). For example, the probabilityP (A = 0, B = 1, C =

1) = P (A = 0)P (B = 1)P (C = 1 | A = 0, B = 1) = 0.2× 0.4× 0.1 = 0.008.
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A.1.1 Independence Assumptions

The structure of a Bayesian network encodes a set of conditional independence assumptions

for the random variables. Analyzing the independence properties can help factorize the joint

distribution into much simpler marginal distributions, which is the key benefit of using graph-

ical models.

Conditional independence assumptions can be determined bythed-separationproperties

of the graph. Two sets of nodesX andY are conditionally independent given a third set of

nodesZ if they ared-separated in the graph structure.d-separation is further defined with

active trails. A trail p from nodeA to nodeB in the graph is a path from the undirected

version of the Bayesian network structure that connects nodeA andB. The trail is active

given Z if A andB are directly connected, or all triplesU − V − W along p meet the

following relevant conditions:

• if U → V →W thenV /∈ Z

• if U ← V →W thenV /∈ Z

• if U → V ←W thenV or any descendant ofV is in Z

X is d-separated fromY givenZ if there exists no active trails from any node inX to any

node inY whenZ is given.d-separation can be computed in linear time using a depth-first

algorithm [Geiger et al., 1990].

We next discuss two key problems for Bayesian networks: inference and learning.
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A.2 Inference for Bayesian Networks

Inference for Bayesian networks is the problem of finding themarginal probability of some

variablesY ⊂ X given some evidencee: P (Y | e). Evidence is the assignment of particular

values to a subset of the variables ofX.

In general, the inference problem is NP-hard. The complexity of the problem is deter-

mined by the Bayesian network structure, and it is exponential in the tree width of the graph1

[Dagum and Luby, 1993]. Nevertheless, in practice, exact inference algorithms such as vari-

able elimination and clique tree algorithms [Huang and Darwiche, 1996] are still very useful

and efficient for smaller networks or Bayesian networks withsimple structures.

Approximate inference algorithms are used when exact inference is intractable or too

costly to use. Sampling algorithms such as importance sampling and Markov chain Monte

Carlo methods such as Metropolis Hastings [Gilks et al., 1996] and Gibbs sampling

[Geman and Geman, 1984] are often used. Direct sampling method is first used in

[Henrion, 1988] for Bayesian networks. In [Fung and Chang, 1989], likelihood weighting

is used to ensure that no sample is rejected. In [Shachter andPeot, 1989] the authors first

presented importance sampling for Bayesian networks.

Loopy belief propagation (LBP) [Murphy et al., 1999] is another widely applicable ap-

proximate inference algorithm. In LBP, it first construct clusters of the Bayesian network

similar to the clique tree algorithm. One major difference is that the resulting cluster graph

need not to be restricted to a tree structure, moreover, the graph can be arbitary and can even

1UnlessP = NP .
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have loops. This relaxation on the cluster graph can lead to much simler clusters. The LBP

algorithm also use similar message passing schemes as the clique tree algorithm, with the

difference in that it may take more than two passes to make theentire graph to converge. In

[Ihler et al., 2005], the details about LBP’s convergence issues and approximation errors are

discussed.

A.3 Learning of Bayesian Networks

Another key problem related with Bayesian networks is learning. More specifically, given a

collection of variable instantiations, the learning problem is to find the most suitable Bayesian

network structure and corresponding parameters that best explains the evidence.

It is often the case that the structure of the Bayesian network is already given. Only the

parameters (CPDs of all the families in the network) need estimation. For fully observed data

(data with instantiations of all the variables), maximum likelihood estimation simply reduces

to counting the number of co-occurrences (called thesufficient statistics) of Xi andPa(Xi),

and then setting the CPD parameters to be the corresponding empirical ratios. For partially

observed data, the expectation maximization (EM) algorithm [Dempster et al., 1977] is usu-

ally used to estimate parameters.

For the case when the structure of the Bayesian network also need to be learned, the

problem becomes very complicated. First, a score function must be used to evaluate the

goodness of a given structure. Second, since there are super-exponential number of possible
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structures, some structural search algorithms should be employed to search over the possi-

ble structures. In [Friedman, 1998], structural expectation maximization (SEM) is proposed

to learn both structure and parameters of a Bayesian networkwhen where is missing data.

[Pernkopf and O’Leary, 2003] presents a floating search approach for learning the network

structure. In [Larraaga et al., 1996], the authors give an approach for structural learning using

genetic algorithms.

A.3.1 Sufficient Statistics

Sufficient statistics (SS) are one of the most important concepts in parameter estimation. SS

are derived directly from observed data, and are sufficient to estimate the model parameters

without the need to refer to the data again.

For example, to estimate the probability of a head when tossing a particular coin, the SS

are the number of times that the coin landed head, and total number of times it has been

tossed. Once we have these numbers, they are sufficient to estimate the required parameters.

When it comes to a problem with partially observed data, we are no longer able to com-

pute the sufficient statistics directly. Instead, we compute the expected sufficient statistics

(ESS) of the partially observed data: the expectation undera particular distribution of SS

among all possible data completions.
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A.3.2 Expectation Maximization

The expectation maximization (EM) algorithm works by repeatedly iterating the following

two phases:

• E step: using current estimation of the modelΘk, compute the expected sufficient

statistics (ESS),

• M step: update the parameter estimation toΘk+1 by using the ESS derived.

By iteratively repeating the EM steps, the likelihood of thedata given the current model

parameters is guaranteed to be non-decreasing. Each iteration of EM will result in a better

model until convergence [Neal and Hinton, 1999]. Although the EM algorithm does not nec-

essarily fall into global maximum of likelihood, in practice, it is quite stable. We usually start

the EM procedure with some randomly chosen initial parameters.

A.3.3 Parameter Estimation for Bayesian networks

For Bayesian networks, the sufficient statistics (SS) needed for estimating its parameters are

described as following. In the case of complete data, we havesamples (instantiations) of

all the variablesX = {X1, . . . , Xn} in the network. For each variableXi, to estimate its

parameterθXi|Pa(Xi), the SS needed isM [Xi = x, Pa(Xi) = u]: total number of times that

Xi is x and its parent takes the valuesu in the entire data. The estimation of the parameter is

θ̂Xi|Pa(Xi)(x | u) =
M [Xi = x, Pa(Xi) = u]

∑

y M [Xi = y, Pa(Xi) = u]
. (A.2)
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For data with missing values, EM algorithm is used. In this case we can no longer de-

rive the SS directly. In the expectation step, we use the current Bayesian network parame-

ters and use inference algorithm to derive the expected sufficient statistics (ESS)̄M [Xi =

x, Pa(Xi) = u]. This step can be costly. In the maximization step, the updating rule is the

same as in Equation A.2.
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