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Abstract

We address the problem of multi-person data-
association-based tracking (DAT) in semi-crowded
environments from a single camera. Existing tracklet-
association-based methods using purely visual cues (like
appearance and motion information) show impressive
results but rely on heavy training, a number of tuned
parameters, and sophisticated detectors to cope with visual
ambiguities within the video and low-level processing
errors. In this work, we consider clustering dynamics
to mitigate such ambiguities. This leads to a general
optimization framework that adds social grouping behavior
(SGB) to any basic affinity model. We formulate this as
a nonlinear global optimization problem to maximize the
consistency of visual and grouping cues for trajectories in
both tracklet-tracklet linking space and tracklet-grouping
assignment space. We formulate the Lagrange dual and
solve it using a two-stage iterative algorithm, employing the
Hungarian algorithm and K-means clustering. We build
SGB upon a simple affinity model and show very promising
performance on two publicly available real-world datasets
with different tracklet extraction methods.

1. Introduction

We consider grouping dynamics and show that mod-
eling social grouping behavior (SGB) can improve multi-
person data association based tracking (DAT) performance.
The general multi-target tracking problem is to provide the
trajectories and identities of multiple targets in video se-
quences. It is an extensively explored topic in computer
vision for its importance in applications like automated
surveillance, video retrieval system, and human-computer
interaction. DAT (also known as the tracklet-linking prob-
lem) is an emerging category of multi-target tracking which
considers frames over an extended time window. Different
affinity models and optimization methods have been pro-
posed to link conservatively and reliably extracted tracklets
(short tracks) into longer ones to form the final tracking re-
sult. Though not as suitable for time-critical applications,
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Figure 1: An illustration of our approach: Tracklet col-
ors are ground truth and numbers are our social groupings.
We optimize over tracklet-tracklet linkings and tracklet-
grouping assignments to exploit social grouping behavior.

this approach is more useful for other application scenar-
ios since it can more easily handle occlusions and detection
failures. However, due to challenges (mainly from low-
level processing errors) such as imperfect detection, low
resolution, abrupt motion, and illumination and appearance
changes, problems such as false response, track fragmen-
tation, and identity switching still arise. Furthermore, the
optimum provided by optimization methods like the Hun-
garian algorithm is usually sensitive to outliers, so a slightly
bad visual cue or a small change of parameter may lead to
a different solution.

In this work, we look beyond purely visual cues and
model social grouping behavior to mitigate ambiguities in
the tracklet linking problem. When there are few people,
multi-person tracking is a relatively easy task since there
are few occlusions or interactions, but in semi-crowded sce-
narios, there are many grouping behaviors we may utilize
to disambiguate. Sociology and current computer vision re-
search results show that people tend to walk in groups, when
they usually stay close to each other and have similar speeds
and trajectories [18]. So in this work, we not only measure
the quality of the tracklet-tracklet linkings based on visual
cues as in previous work, but we also take the quality of



tracklet grouping into consideration. The main evidence
used to link tracklets is still visual cues, but we provide a
principled way of using social grouping behavior to regu-
larize the solution to prevent outliers from dominating the
tracking result.

We propose a general nonlinear global optimization
framework in the joint tracklet-tracklet linking and tracklet-
grouping assignment space. A simple illustration is shown
in Fig. 1. The contributions and novelty of our work are

e We explicitly consider social grouping behavior to im-

prove data association based tracking. This formula-
tion may be applied to different affinity models, opti-
mization algorithms, and detection methods.

e Our framework is robust to parameters settings and the

basic affinity model and automatically selects the num-
ber of groups.

2. Related work

Multi-target tracking. For multi-target tracking, time-
critical approaches usually use particle filtering algorithms
for state estimation [29] [10] [17]. For less time-critical
tasks, with the help of state-of-art tracklet extraction meth-
ods such as human detector approaches [9] or tracking er-
ror approaches [23], researchers look at extended time peri-
ods and link tracklets to recover full tracks[4][26]. This is
known as DAT or deferred logical inference.

To obtain more reliable affinity scores or linking proba-
bilities between tracklets, [15] learns a discriminative affin-
ity model from a feature pool, boosting of training data from
similar scenes. [12] uses a similar boosting framework but
focuses on the appearance cues. To effectively infer the best
matching given the affinity measurements among tracklets
or detection responses, different optimization methods such
as Linear Programming [ 1], Quadratic Boolean Program-
ming [14], the Hungarian algorithm [20][9], K-shortest path
[5], MWIS[6], set-cover [25], and approximated dynamic
programming[2 1] have been proposed. In this work, we
choose the Hungarian algorithm for simplicity.

[28] and [23] are the most similar to this work. The for-
mer looks beyond pairwise tracklet assignment and consid-
ers motion dependency that restricts abrupt motion change,
but only focuses on the individual track level. The lat-
ter builds upon basic affinity model and consider long-
term dependency. It finds suspicious tracks with high er-
ror rate within themselves after initial matching and does
re-sampling and re-matching, but it also focuses on single
tracks without using other tracks as social context.

Social behavior in tracking. Using pedestrian trajecto-
ries to infer social behavior is not rare, both in the computer
vision and sociology community[8][16]. Recently social
behavior has caught more attention in tracking community.
Typical social factors include a pedestrian’s destination, de-
sired speed, and repulsion from other individuals, as well

as social grouping behavior. [18] proposed a more effective
dynamic model based on such information, [2] uses social
structures to improve tracking in crowded scenarios. [19]
and [27] infer grouping for better trajectory prediction and
behavior prediction respectively. [6] also considers other
tracks as contextual constraints for the solution. But to the
best of our knowledge, our work is the first to directly and
generally consider the quality of social grouping behavior
as a higher-level reasoning evidence to improve DAT per-
formance while tracking. Also, we consider grouping from
a clustering point of view. Though clustering views have
been applied for tracking such as in [24] and [22], they usu-
ally focus on flow analysis or feature clustering for people
counting. But our framework works for semi-crowded en-
vironments and focuses on individuals to improve tracklet
linking performance.

3. Modeling social grouping behavior

We build out formulation of social grouping behavior
model from the basic tracklet-linking problem. Then we
propose a two-stage iterative algorithm that optimizes the
joint tracklet-tracklet linking and tracklet-grouping assign-
ments, resulting in steps that can be solved efficiently by
off-the-shelf algorithms. Finally we describe how to choose
K, the number of clusters used in this algorithm.

3.1. Problem formulation

We aim to recover the trajectories of an unknown num-
ber of targets considering consistency of both visual and
social cues within a time interval [0,77]. We are given
a set of n tracklets (possibly including false alarms) 7 =
{1, 72,..., 7} within [0,7]. Each tracklet is a sequence
of short but reliable state estimations (in our case, the po-
sition and size of targets) across some time interval. The
task is to determine which tracklets correspond to the same
target. This can be represented as a correspondence matrix
¢, such that

Pij =

1 if tracklet j immediately follows tracklet ¢,
0 otherwise,

ey
with the added constraints that > ; ¢ij =land ), ¢ = 1,
indicating each tracklet should only follow and be followed
by one other tracklet (except for the first and last tracklets
of each track, as which we will address in Sec. 3.3). We let
® be the set of valid correspondence matrixes.

We define a pairwise transition score matrix M (See
Sec. 4.2 for details), in which M;; denotes the negative log-
likelihood that tracklet j should be the first instance linked
after tracklet ¢. We call this the basic affinity model. Tradi-
tional DAT can be formulated as

arg min ii M ;. 2)
%@D iZj¢J J



This is an assignment problem which can be solved opti-
mally by the Hungarian algorithm in polynomial time.

We want to take the quality of social grouping behav-
ior into consideration to help eliminate visual ambiguities
within the video and improve tracking performance. The
goal is to maximize the consistency of both visual and so-
cial grouping cues. For social grouping evaluation, we as-
sume people form groups of an optimal number of K (see
Sec. 3.3 for the selection of K) and, within each group,
there is a group mean trajectory Gj. Then we measure how
well each tracklet sticks to its group and add this term to the
original objective function. Thus, the SGB DAT problem is

formulated as
arg min ¢ii Mi; +a Y YuD(r, Gy
peP,pev,G %: v %: D : 3)

st. Vi, g,k ¢ij(Yi — i) =0,

where 1) is a social grouping matrix:

“)

1 if tracklet 7 is assigned to group k,
Vi, = .
0 otherwise.

Again there is an added constraint that > x Yik = 1 and we
let ¥ be the set of valid social grouping matrixes. This con-
straint can be naturally satisfied by modeling the tracklet-
grouping assignment task as a clustering problem.

The constraint in Eq. 3 naturally asserts that if two track-
lets are linked (they belong to the same target), they should
be assigned to the same group. D(7;, Gy) is the distance
measure between tracklet ¢ and group trajectory G'.To bal-
ance the contributions of visual cues and social grouping
behavior, « is chosen as the weighting parameter. For each
dataset in experiments, we choose « by coarse binary search
within only one time window and keep it constant for all the
others. We call Eq. 3 the primal problem.

3.2. A two-stage iterative algorithm

To solve Eq. 3, a nonlinear optimization problem with
equality constraints, we apply Lagrange theory and get

L(¢,0,G, ) =) ¢ijMij + > ¢ D(ri,Gi)
ij ik (5)
+ Zﬂijkﬁsz(wz‘k — k),
ijk
in which the us are the Lagrange multipliers indexed by 4,5
and k. So the dual of this problem is

max g(p)

where = min
q(u) PP, YeV,G

L, Gop).  ©

The corresponding linking result ¢ (also ¢ and G if inter-
ested) of the optimization result is the output of the method.

For a fixed p, let

(oM, ", G*) = argmin L(¢, ¢, G, p). @)
PEDP YEV,G

To solve Eq. 6, we use a line search strategy guided by the
subgradient:

3Mz'jk

=Gl =) ®

Therefore to find the subgradient, we must solve Eq. 7. We
do so by a two-stage block coordinate-descent algorithm,
using a penalized Hungarian algorithm and a penalized K-
means clustering.

The first stage minimizes over ¢ (the tracklet linking re-
sult) from Eq. 5 with ¢ and G fixed as

¢‘u = argrglnz ¢z]Mz] + Z,uz]kqsz] ik — %k)
o
ijk

)
= arg mlnz ¢ii[M;; + Z tijk(Yix — Yir)]-

PED

Comparing with Eq. 2 this amounts to adding a penalty term
to the matrix scores, based on the Lagrange multipliers. So
Eq. 9 can again be effectively solved by the Hungarian al-
gorithm as is commonly done for Eq. 2.

The second stage minimizes over ¢ and G based on
Eq. 5, with ¢ fixed as (¢*, G*) =

arg min azwsz 7i, G) + Z,U/z]k(sz (Yix — Vjk)

YET,G

ijk
_argmlnzwzk aD(TMGk + Z Nz]k¢zg /'L]’Lk?¢jl)}
Yev,G ik J

(10)

where the equality can be achieved by changing the sums’
indexes. We note the form of the resulting function is that
of a clustering problem like K -means. The first step of K-
means clustering is observation assignment step, in which
each observation is assigned to its closest mean (center).
In this case, we view each tracklet 7; as an observation
while each G, (group mean trajectory) is a center. The dis-
tance function D(-, -) function is the distance measure and
the penalty/reward term -, (tijk®ij — f1jik®;i) adjusts this
distance measure. The second step of K-means is the cen-
ter update step, as described in Sec. 4.4. Since K-means
converges to local minimum, we run several random initial
grouping assignments and use the output of the one with the
minimum value for Eq. 6 as the final result.

For Eq. 9, the intuition is that if two tracklets are not
assigned to the same group but are linked, we add the
>k Mijk (Vi — 1bji) term to drive them to different tracks,
if the visual cues are not very strong. For Eq. 10, we add the
penalty term that considers linking results to drive tracklets



into different groups. Therefore, we are guided explicitly to
a better global optimization result. Notice that for the typi-
cal initial value of y equal all zero, the solution for Eq. 9 is
the same as the original result for Eq. 2, which is a reason-
able starting point.

In summary, for each initial grouping assignment, op-
timization for Eq. 6 over u is based on subgradient as-
cent. For each fixed p, there is an alternating minimization
process based on block coordinate-minimization across the
tracklet-tracklet linking space and tracklet-grouping assign-
ment space. The latter involves K-means which has iter-
ations itself in the tracklet-grouping assignment space. Fi-
nally, we keep the tracklet-linking result for the run with the
minimum value of ¢(u).

3.3. Selection of K

Until now we have not discussed the selection of K for
clustering. However, it is a key issue to guarantee automa-
tion. Here we propose a penalized version of our algorithm
to select K automatically. The total solution cost of Eq. 3
decreases with K (as the second term becomes smaller with
more clusters). Therefore, to prevent overfitting the number
of clusters, we place a linear penalty (weight 3, fixed for all
our experiments) on the number of clusters, K. A summary
of our method is shown in Alg. 1. Note that parallelizing our
algorithm is trivial, since each iteration of the outer loop is
independent. In experiments, building upon the basic affin-
ity model, our unoptimized implementation takes 1 to 10
seconds to converge to a local maximum for each run on a
video window of 5 seconds.

4. Implementation
We explain some implementation details of our system.
4.1. Tracklet extraction

Our framework can use different affinity models and de-
tection methods. For our experiments, we use two very dif-
ferent frameworks. The first one is the error-based tracklet
extraction method of [23]. This method uses traditional de-
tection methods without assuming a human detector. This
method benefits from easy implementation and detection of
multiple class objects, but suffers from inaccurate detection.

We build our second tracklet extraction framework based
on a popular human detector[7], combining nearest neigh-
bor association and template matching to extract conserva-
tive tracklets. Given detection responses, we link detection
response pairs only at consecutive frames which have very
similar color, size and position. Additionally, the newly
added detection must be similar to the first detection in the
tracklet, thus avoiding within-tracklet ID switches caused
by gradual changes. We find this simple strategy produces
almost zero ID switches within tracklets and good recall
performance.

Algorithm 1: SGB Algorithm

Data: Tracklet set T
Result: Linking Result ¢ pinq;

1 for K «+ 1to K,, do

2 for i < 1to N do

3 w0, %70

4 initialize 1" and G¥+* randomly

5 while Not local maximum for Eq. 6 do

6 1 < subgradient ascent: Eqs. 7 and 8
7 while ¢ or 5! changes do

8 Update ¢*: Eq. 9

9 while /% changes do

10 Update »%*: Eq. 10

1 Update G** according to /%
12 end

13 end

14 end

15 end

16 Cost™" < primal cost (¢, 151, GK-): Eq. 3
17 end

18 (K*,i*) + argming; Cost®? + BK

19 Gpina ¢

4.2. Basic affinity model

Social grouping behavior regularizes our solution and al-
leviates the need for a highly tuned affinity model. How-
ever, the basic affinity model must produce reasonable mea-
surements, M, ;. Here we build a simple affinity model con-
sidering three features which are commonly used and shown
to be among the most important features[ 15][13]:

Mij = ft(Ti7 7_7) + ’Ylfappr(Tia Tj) + 72fmotion(7—ia7—j)~
(11)

The time constraint is

0 lfO < At” < tmaaﬁ

) (12)
oo otherwise,

fe(Ti75) —{

where At;; is the time gap between the end of tracklet 7 and
the start of tracklet j. So tracklet linking is only possible
when tracklet j takes place later than tracklet ¢ and within
the maximum allowed frame gap t,,,,. For the appearance
model foppr(7i, 7j), we use the Bhattacharyya distance be-
tween the average color histograms within the tracklets[23].
We employ the HSV color space and get a 24-element fea-
ture vector after concatenating 8 bins for each channel. The
motion model fy,otion (7;, 7;) measures the motion smooth-
ness, which is defined in both forward and backward direc-



tion by a negative log-Gaussian:

fmotion (Ti; Tj) =—In G(pfail + 'UrfailAtij - p@ead7 Zj)

J

—In G(p?ead — v?eadAtij — plait ¥, (13)
p; and v; represent the refined positions and velocities of
7; for both the beginning and ending part. A smaller value
for all these three models between two tracklets indicates
a bigger likelihood that they should be linked. We select
the s (feature weights) by only looking at one time win-
dow. We show in Sec. 5 that this simple model can provide
reasonable linking results.

4.3. Augmentation of pairwise assignment problem

As mentioned before, ¢ € ® enforces >, ¢;; = 1 and
> ; @i = 1, but they should not hold for the first and last
tracklet of each track respectively. In other words, tradi-
tional pairwise assignment algorithms like the Hungarian
algorithm are not able to identify initialization or termina-
tion of tracks when applied to the M matrix directly. A
simple example is where one person exits the scene and
another person with a very different appearance enters af-
terwards. These two tracklets will be linked in the solu-
tion even though M;; is big because every tracklet must be
linked to a “next” tracklet unless conflict exists. One solu-
tion is the link-cut strategy, in which a threshold is set and
when M, ; exceeds it, the link between these two tracklets is
cut. However, the final result (after cutting) for this strategy
is based on the initial result that may include very bad link-
ing, as it was forced to link every tracklet to a next tracklet.
In this work, we use the cut-while-linking strategy similar
to [9] in a simple way and augment the M;; matrix as

new __ M C
Mrew = (ﬁ) . (14)

C is a diagonal matrix (infinity elsewhere) with values c
indicating the “finishing” threshold, and B is a matrix of
infinities. The constant ¢ can be varied if scene structure
(such as exit positions) is known. The augmented columns
(and rows) are virtual finishing tracklets. Linking to them
indicates the end of a track. Once termination is determined,
initialization of tracks come along naturally.

4.4. Augmentation of K-means clustering

In this section we describe some details of the imple-
mentation of our K-means clustering, specifically for lines
9-12 in Alg. 1. We view each tracklet and grouping mean
trajectory as a 2D time series. D(7;, Gy) is the Euclidean
distance integrated over time between one tracklet and the
grouping mean trajectory. Using positions on image plane
works, but for more accurate distance measurement, in this
work, positions on the image plane are projected to the 2D
world coordinates of the ground plane.

The grouping mean trajectories (centers) must exist for
the entire time, since for the observation assignment step,
each tracklet needs to be compared with all groups. So
given a set of tracklets for which ¢;;, = 1, we generate the
kth grouping mean trajectory as follows: For each frame
number in the time window, we use the mean position of
corresponding tracklets positions occurring at certain time.
For time steps with no assigned tracklets, we use linear in-
terpolation or extrapolation for the mean trajectories.

4.5. Duality gap

A duality gap exists between Eq. 3 and Eq. 6, meaning
the constraints in Eq. 3 may not all be satisfied when our al-
gorithm converges. Though in practice it does not evidently
affect the performance, we propose the following strategy to
address such concerns: When each run converges, we still
output the tracking result ¢, but for the evaluation of the ob-
jective cost, we force the constraints of Eq. 3 to be true by
generating the centers of the final tracks one last time and
evaluating the objective cost again. This helps to get a more
accurate cost for comparison of different optimization runs.

5. Experiments

We evaluate how modeling social grouping behavior
helps to improve multi-person tracking on two public
datasets: CAVIAR and TownCentre. We use the popular
evaluation metrics of [15]: the number of ground truth tra-
jectories (GT), mostly tracked trajectories (MT), mostly lost
trajectories (ML), fragments (Frag) and ID switches (IDS).

Our way of modeling social grouping behavior is inde-
pendent of the choice of tracklet extraction methods and
affinity model. However, it is clear that the tracking per-
formance is related to detector performance and we think
it unfair to compare methods with different tracklet extrac-
tion frameworks. So, for the CAVIAR dataset, we compare
our SGB algorithm with the basic affinity model, a particle
filter[10], and the published result of [23] using the same
set of tracklets provided by the authors. For the TownCen-
tre dataset, we show improvement of our SGB over the basic
affinity model using our proposed detection-based tracklet
extraction framework with the same set of detections.

5.1. CAVIAR dataset

The CAVIAR Test Case Scenarios dataset[!] captures
people moving in a shopping center with frequent occlu-
sions and interactions. We use the videos selected by [23],
which are the relatively challenging parts of the dataset. A
comparison is shown in Tbl. 1. Our basic affinity model
achieves reasonable results and better results than [23] can
be achieved by employing our social grouping model.

Fig. 2 shows representative cases of the strong grouping
information that allows us to improve tracking performance.
Fig. 2(a) and 2(b) show results under challenging conditions
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(c) The baseline model labels 12 and 6 as the same person. Our model identifies a new track.

Frame 1200

Figure 2: Some representative tracking results for CAVIAR dataset.

Frame 2105 Frame 2133

Frame 2199

Frame 2147

Robust tracking result in crowded scene under occlusion.

Figure 3: A representative tracking result for TownCentre dataset.

(noisy velocity estimation, interaction, appearance change
and false detection). Fig. 2(c) shows robustness to the selec-
tion of C in Eq. 14. Though in the baseline, the last tracklet
of person 12 and first tracklet of person 6 are linked since
the corresponding M value is less than C, our model finds
it inappropriate to do so since person 6 deviates seriously
from the mean trajectory of person 12 and 13.

5.2. TownCentre dataset

We use the TownCentre dataset[3] to further test our pro-
posed method, with the detection-based tracklet extraction
framework. This video is a high-resolution video of a busy
street, with an average of 16 people visible at each frame.

Table 1: Comparison of the tracking result on the CAVIAR
dataset: 75 ground truth (GT) tracks.

Method MT ML | Frag | IDS
Basic particle filter | 53.3% | 10.7% 15 19
Basic affinity model | 77.3% | 6.7% 91 12
MCMC prediction | 84.0% | 4.0% 6 8
Our SGB model 88.0% | 2.6% 5 6

We use the raw HOG pedestrian detections for the first 4500
frames (3 minutes) provided by the authors. The scene is
very crowded with 220 people (provided by the annotated
ground truth and excluding those who only appear briefly at



Table 2: Comparison of the tracking result on the TownCen-
tre dataset: 220 ground truth (GT) tracks.

Method MT ML | Frag | IDS
Basic affinity model | 76.8% | 7.7% 37 | 60
Our SGB model 83.2% | 5.9% 28 | 39

the image border) in just 3 minutes, but there are many so-
cial grouping behaviors. A quantitative comparison of our
SGB model and basic affinity model is shown in Tbl. 2. We
see that our SGB model improves tracking performance in
all aspects, especially for ID switches (reducing the num-
ber by 35%). Some sample frames are shown in Fig. 3, in
which robust tracking is achieved under a crowded scenario
and unexpected full occlusion.

6. Conclusion

In this paper, we propose a principled way of incorporat-
ing social grouping behavior information into multi-target
tracking as a high-level reasoning tool for better perfor-
mance. Our model is independent of the detection method
and affinity model, mitigating the need for heavy training or
sophisticated detection in DAT. Our optimization results in
a simple form which can be achieved by off-the-shelf algo-
rithms. In experiments we show our method performs better
than recent work, using a simple affinity model.
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