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Abstract

A multivariate Hawkes process is a class of marked point
processes: A sample consists of a finite set of events of un-
bounded random size; each event has a real-valued time and a
discrete-valued label (mark). It is self-excitatory: Each event
causes an increase in the rate of other events (of either the
same or a different label) in the (near) future. Prior work has
developed methods for parameter estimation from complete
samples.
However, just as unobserved variables can increase the model-
ing power of other probabilistic models, allowing unobserved
events can increase the modeling power of point processes. In
this paper we develop a method to sample over the posterior
distribution of unobserved events in a multivariate Hawkes
process. We demonstrate the efficacy of our approach, and its
utility in improving predictive power and identifying latent
structure in real-world data.

Marked Point Processes
Many applications work with records of events and their
times: social networks (information propagation or network
changes), computer systems (system calls, hardware failures,
network events), global politics (treaties, armed conflicts), as
examples. The times are real-valued, and the event types (or
labels or marks) are drawn from a finite set.

The general class of marked point processes (MPPs) pro-
vide families of distributions over such data. The Poisson
process is the simplest and most familiar, but the event sets
from any two non-overlapping intervals of time are indepen-
dent, and thus it does not provide strong modeling power.
More complex MPPs include Cox processes and Poisson
cluster processes.

In machine learning, a variety of structured MPPs have
been developed including Poisson-networks (Rajaram, Grae-
pel, and Herbrich 2005) and piecewise-constant conditional
intensity models (PCIMs) (Gunawardana, Meek, and Xu
2011). We concentrate on Hawkes processes (Hawkes 1971).
They have been used in earthquake modeling (Marsan
and Lengliné 2008), finance (Linderman and Adams 2014;
Bacry, Mastromatteo, and Muzy 2015), social networks
(Simma and Jordan 2010; Zhou, Zha, and Song 2013;
Perry and Wolfe 2013; DuBois, Butts, and Smyth 2013),
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influence maximization (Du et al. 2013), armed conflicts
(Blundell, Heller, and Beck 2012; Mohler 2013; Linder-
man and Adams 2014), and topic modeling (He et al. 2015;
Guo et al. 2015; Du et al. 2015).

Hidden (unobserved) variables are an essential modeling
tool. They can simplify a model, be used to find hidden
structure, or express the modeler’s prior knowledge. Previous
uses of Hawkes processes have used complete event data: all
event times are observed. This paper expands the modeler’s
toolkit by allowing partially and fully unobserved events
types. This allows hypothesizing about events associated
unobserved actors, communication paths, servers, or other
variables. It also allows the full use of datasets in which actors
enroll or dropout at various times.

For example, we can add unobserved (but modeled) ac-
tors in a social network event process. Or, we can allow for
periods of non-observation of known actors (for instance,
prior to enrolling in a study). Unobserved events in other
arenas might correspond to weather, news, or political events.
More generally, a Hawkes process between two event-types,
A and B, allows for each to self-excite or to excite the other
event-type, producing clusters of events that stem from a
single seed event of one type. However, if we add a third
type, C, and postulate that the observed times of events for A
and B result from the marginalization of a Hawkes process
over all three event types, this provides a richer model of the
relationship between events of types A and B, which includes
relationships where A and B do not trigger each other, but
both are temporally correlated (through type C).

We consider the situation in which the set of possible labels
(types of events) is known. Yet, for some labels for some
periods of time, it is known that any events during that time
were unobserved (and during other times, all occurring events
for this label were observed). This allows for completely
hidden event types, as well as masking certain types during
certain time intervals.

While other applications placed priors on the parameters
of the Hawkes process or other parts of the model and used
Gibbs sampling (or similar) over these parameters (Linder-
man and Adams 2014; Rasmussen 2013), no work to date has
considered unobserved events to the extent that we do in this
paper. Yang and Zha (2013) used mixtures of Hawkes pro-
cesses and developed a variational inference method. How-
ever, all events were observed; only their assignments to



mixture components were not. Xu, Luo, and Zha (2017) con-
sidered the situation in which all events prior to a specific
time are unobserved (left censoring), which is a very specific
case of the missingness patterns we allow. Finally, if there
are no observed events of any labels and the process has an
exponential kernel, a closed-form solution exists (Du et al.
2013). However, no general closed-form solution is known
for the evidence patterns we consider here.

Contributions
A likelihood-weighted sampler is natural and straight-
forward. However, as we demonstrate in our results, it does
not perform well in complex tasks. Therefore, we develop a
Markov chain Monte Carlo (MCMC) method using auxiliary
variables. The auxiliary variables are not only the hidden
“chain” of events, which have been considered previously
in Hawkes processes, but also additional “thinned” events,
adapted from previous samplers for other classes of MPPs
(Rao and Teh 2011; 2013; Qin and Shelton 2015). This novel
combination is an efficient sampler that performs well in all
tested scenarios.

We show the advantage of being able to hypothesize un-
seen events on real-world data. In particular, we demonstrate
that, on gang homicides in Chicago, the addition of hidden
labels improves prediction accuracy and reveals structure in
the data that cannot be extracted without hidden events.

Multivariate Hawkes Process Background
We assume that the process begins at time t0 = 0 and ends
at time T . A (complete) sample from the process can be rep-
resented as x = {(t1, l1), (t2, l2), . . . , (tn, ln)} where there
are n events (a random quantity) and, for notational conve-
nience, we will let tn+1 = T (although there is no event at
T ). ti−1 < ti,∀i and thus ti is the time of the ith event, and li
is the label (mark) of the ith event. Without loss of generality,
we assume that the labels are drawn from the set of integers
{1, 2, . . . , L}. We let ht = {(ti, li) ∈ x | ti < t} or the
set of all events and labels prior to time t, analogous to the
natural filtration for the process. For notational convenience,
we let It = {i | ti < t}, or the set of event indices that
occurred before t (also the set of event indices in ht).

A general discrete-label MPP can be specified through
the intensity function λl(t, ht) which is the rate of an
event of label l at time t and is a function of the ab-
solute time, as well as the history of events up to time
t: λl(t, ht) = limδt→0 Pr(event of label l in [t, t+ δt) |
t, ht)/δt. The probability density of sample x is

p(x) = exp

(
−
∑
l

∫ T

0

λl(s, hs) ds

)
n∏
i=1

λli(ti, hti) .

(1)
A (linear) multivariate Hawkes process specifies

λl(t, ht) = µl +
∑
i∈It φli,l(t − ti) where µl is the base

rate of events of label l and φl,l′(t), the kernel or transfer
function, is the increase in the rate of label l′ due to an event
of label l t time units ago. We can simplify this to

λl(t, ht) =
∑
i∈I0t

φli,l(t− ti) (2)

l=1

l=2

l=3
0.0 3.02.01.0 t

Figure 1: A sample from a multivariate Hawkes process, in
black. The green dashed arrows show one possible sampling
tree (the arrows point to the parents). Arrows pointing to
nowhere indicate that the event was generated by the base
rate (root event, l = 0).

if we add a special event at t0 (a time not previously associ-
ated with an event). In particular, let l0 = 0 (a new special
label), let I0t = It∪{0}, and set the kernel for this new label:
φl,0(t) = 0,∀l and φ0,l(t) = µl,∀l > 0. This event “causes”
the base rate of events for each label. For notational compact-
ness, we will assume the kernel has been so redefined.

If we denote Φl,l′(t) =
∫ t
0
φl,l′(s) ds and Φl,?(t) =∑

l′ Φl,l′(t), Equation 1 for a Hawkes process is

p(x) = exp

(
−
∑
i

Φli,?(T − ti)
)∏

i

∑
j∈I0ti

φlj ,li(ti − tj).

(3)

Kernels
Multivariate Hawkes processes are usually defined in terms
of a base kernel, φ(t), and an L× L matrix of non-negative
values, M : φl,l′(t) = Ml,l′φ(t). In systems with a large
number of labels, M is usually sparse: Each event label only
excites a small subset of other event labels. The two most
common base kernels are the exponential (with parameter
β > 0): φ(t) = e−βt and the power-law (with parameters
β > 0 and γ > 0): φ(t) = (t + γ)−(1+β). The process is
well behaved (with probability 1 there are a finite number of
events on any finite interval of time) if λ

∫∞
0
φ(s) ds < 1,

where λ is the largest eigenvalue of M (Bacry, Mastromatteo,
and Muzy 2015).

If the base kernel is an exponential, the resulting process
can be viewed as a Markovian process over a continuous
vector-valued state space (essentially tracking the sum of
φl,l′(t) over all previous events), see Oakes (1975) and Propo-
sition 2 of Bacry, Mastromatteo, and Muzy (2015) for more
details. This can reduce the running time of sampling or like-
lihood sampling (but not our MCMC sampler). We used this
improved method for exponential kernels in our experimental
results, but otherwise the details are not relevant and are left
for the supplementary material.

Unconditional Sampling
The Poisson superposition principle states that the union
of events from two independent Poisson processes is itself
a Poisson process whose rate function is the sum of the



rate functions of the two underlying processes. Equation 2
shows the rate as the sum of independent rates (one for each
past event). Each event generates a set of children events
independently (at time t the rate of an event is the sum of the
rates of any previous event generating a child at time t). This
view of a Hawkes process is well established (Hawkes and
Oakes 1974) and critical to the development of our sampler.

The sampling algorithm can therefore be recursive in na-
ture. We start with the special label 0 at time 0 and pro-
ceed until time T , sampling “children” events from the
base rates. Each of these children recursively generates its
own events from the kernel rate function. An event (t, l)
generates a set of events independently for each other la-
bel l′ from the inhomogeneous Poisson process with rate
λ(t′) = Ml,l′φ(t′ − t),∀t′ > t.

This recursive structure forms a tree of events; each event
has a parent whose kernel rate function was used to generate
it. Figure 1 show one possible sample, along with the (nor-
mally discarded) information about which events recursively
generated which other events in dashed green.

Posterior Sampling
Our goal is to reason about the distribution of such a process,
conditioned on observations of the events for only some
labels over some intervals of time. That is, we assume that
we observe all elements of x that fall within certain observed
label-time ranges.

We let the observational evidence, z = (z(x), z(o)),
be such a partial sample which specifies the events dur-
ing certain time intervals for certain labels. z(x) =
{(t1, l1), . . . , (tm, lm)} is the set of observed events (z(x) ⊆
x), analogous to x, but specifying m ≤ n events. z(o) =
{(rs1, re1, l1), . . . , (rsk, r

e
k, lk)} specifies k observed intervals.

In particular, the ith element of z(o) specifies that all events
of label li on t ∈ [rsi , r

e
i ) were observed. We assume the

data are missing at random: z(o) ⊥ x. We let z(o)l denote the
union of the intervals over which label l is observed.

Our goal is to estimate p(x | z). Note that while the un-
conditional sampler could sample each set of children inde-
pendently, conditioned on evidence, these samples are no
longer independent. The conditional process p(x | z) is not a
Hawkes process.

Markov Chain Monte Carlo
A likelihood-weighted sampler is straight-forward (just re-
strict the sample generation to agree with the evidence), but
(as shown later), this method does not perform well on prob-
lems of even moderate size.

Auxiliary Variables We use Metropolis-Hastings sam-
pling (Metropolis et al. 1953; Hastings 1970) on the tree
representation of the unconditional sampler from above. For
an effective MCMC sampler, we introduce two sets of auxil-
iary variables.

The first auxiliary variable set records the parent structure
of the recursive, generational view of a Hawkes process (the
green arrows in Figure 1). This set has been used in prior work
(Veen and Schoenberg 2008; Marsan and Lengliné 2008) to

l=1

l=2

l=3
0.0 3.02.01.0 t

Figure 2: An example sample from the full MCMC process
given missing data: Label 2 is unobserved until time 2.4 and
label 3 is unobserved from time 1.6 until time 2.5. Black
events are x (evidence are solid, sampled are dashed). The
parent auxiliary variables, a and ã, are in green. The virtual
events, x̃, are in orange.

estimate the parameters of a Hawkes process with complete
data using expectation-maximization.

The second auxiliary variable set consists of “virtual
events,” potential (but not realized) times for events, similar
to those used for continuous-time Markov processes (Rao
and Teh 2011; 2013) and PCIMs (Qin and Shelton 2015).
The virtual events are fast to generate (as they are not part of
the evidence) and provide a finite number of potential events
to turn into a real event (through a sampler move). They are
resampled (through other sampler moves) to allow for po-
tentially any real-valued event time. In this way, the times
for posterior events that might couple two observed events
can be search efficiently without considering the uncountably
infinite number of potential event times.

While each type has been used before, they have not pre-
viously been used together. The parent auxiliary variables
allow for a decoupling of the likelihood (much like mixture-
assignment variables in clustering). And, the virtual events
are needed to change the dimensionality of the sampling
space in a computationally simple fashion. Together, they
allow us to tackle Hawkes processes with unobserved events,
which no previous sampling method has addressed.

Parent Auxiliary Variables Let a = {a1, . . . , an} where
ai is the index of the parent of event with index i. If we
keep track of this information, the unconditional sampler
(from above) can be seen as generating samples from p(x, a),
whose marginal p(x) is the desired prior distribution (that
is, if we throw away the green arrows in Figure 1 we have a
sample over labels and times). For notation, let ci,l denote the
children of event i that have label l: {(tj , l) ∈ x | aj = i}
and ci =

⋃
l ci,l. The joint distribution over x and a has only

multiplicative terms:

p(x, a) =
∏
i

φlai
,li(ti − tai) exp (−Φli,?(T − ti)) .

It is straight-forward to show that
∑
a p(x, a) = p(x) (see

Equation 3).

Virtual Event Auxiliary Variables These virtual events
are potential (but not realized) children for each of the real



events (and the special “root event”). They do not generate
their own children (real or virtual) and are not part of x. Let
x̃ = {(t̃1, l̃1), . . . , (t̃ñ, l̃ñ)} denote the set of virtual events.
Let ãi denote the index of the parent (a real event) of the ith
virtual event. Let c̃i,l and c̃i, be analogous to ci,l and ci, but
for the ith virtual event.

The unconditional Hawkes process generates events in ci,l
from a Poisson process with rate φli,l(t−ti). Our distribution
including the auxiliary variables generates the events in c̃i,l
from a Poisson process with rate κ · φli,l(t− ti). Therefore,
unconditioned on evidence, by the Poisson superposition
principle, the events in ci,l ∪ c̃i,l are drawn from a Poisson
process with rate (κ+1) ·φli,l(t− ti). Furthermore, given an
event is from this union, it is a virtual event with probability
κ/(κ+ 1), regardless of its time.

Complete Joint Process Our total auxiliary process is over
x, a, x̃, and ã. Its marginal over x is the same as the original
multivariate Hawkes process. Its joint is

p(x, a, x̃, ã) =

n∏
i=1

exp [−(κ+1)Φli,?(T−ti)]

×
n∏
i=1

φlai
,li(ti−tai)

ñ∏
i=1

κ · φlãi
,l̃i

(t̃i−tãi) .

(4)

MCMC Sampler Figure 2 shows a sample from this pro-
cess. We build an MCMC sampler over the dashed items in
this figure: events in x that are in the unobserved periods, a
and ã (the parent sets of all events), and x̃. We constrain x̃
to also only contain events in during the unobserved periods
to reduce computation time because virtual events during an
observed period can never become real.

Our sampler maintains a state of x, a, x̃, and ã. There are
four types of events: the root event (label 0), evidence events,
sampled events, and virtual events. The first three are mem-
bers of x and the last of x̃. The root and evidence events
cannot be changed, but all of the other variables can. At each
iteration of the sampler, we pick an event uniformly at ran-
dom from x ∪ x̃. We then select one of the following three
“moves” uniformly at random. If the move does not apply
to the event, we consider it a self-transition in the Markov
chain.

Move 1: Virtual Children This only applies to events
from x. Let the event have index i. For this move, we consider
replacing the current set c̃i with a new set, c̃′i drawn from
a Poisson process with rate κ · φli,l(t − ti). This changes
the dimension of the distribution (by adding new or remov-
ing variables in x̃ and ã). However, these new variables are
sampled without regard to the current state of the process,
and therefore the “Jacobian” correction from reversible-jump
MCMC is 1 for this case (Green 1995). This is the only type
of dimension-changing move (also used as part of the other
moves).

Move 2: Virtualness Assume the event is the pair (t, l). If
the event is virtual, we propose changing it to be real (moving
it from x̃ to x) and sampling a set of virtual children as in
Move 1. The likelihood ratio corresponds to moving a term
from the second product to the first product in Equation 4,
times the probability of sampling these new virtual children.
This second part cancels with the proposal likelihood (same
as above). Again, we have a correction ratio corresponding
to the change in the number of events.

If the event is not virtual, to assure reversibility, we only
propose a change if it is neither the root nor an evidence event,
and if it has no non-virtual children. In this case, we propose
moving it from x to x̃ and removing its virtual children from
x̃.

Move 3: Parent This move only applies to non-root events
from x. Resampling parents from among x is straight-forward
but misses the gains possible by allowing evidence (or sam-
pled events) to “reach back” and suggest possible events
earlier in the timeline. Therefore, we allow virtual events
to be selected as parents. If one is, it becomes real, and we
sample virtual children for this new parent.

While local parent changes are appealing (they can be pro-
posed in constant time), they are difficult to make reversible
because they might insert virtual events between the old
and new parent, thus rendering the reverse move non-local.
Therefore, we sample a new proposed parent from any event
earlier in time. Let the event whose parent is to be resam-
pled be (t, l); let h̃t be all previous virtual events; and let
Ht = ht ∪ h̃t. We propose (t′p, l

′
p) ∈ Ht as the new parent

with probability proportional to w(t′p, l
′
p) = φl,l′p(t − t′p).

If (t′p, l
′
p) ∈ x̃, then our proposal includes moving it to x

and sampling (as in Move 1) new virtual children for it, c̃′.
If the proposed change would leave the old parent with no
real children and it is not the root event, then we propose to
change the old parent to be virtual (and remove its children)
with probability κ/(κ+ 1).

The moves were designed, for the most part, to simplify
the acceptance ratios. The exact form of the ratios are straight-
forward, but tedious to derive. We leave them to the supple-
mental material.

Synthetic Data Experiments
For evaluation, we used an exponential and a power-law
kernel. We generated two different sizes of problems, each
in an “easy” and “hard” version. We then tested the time-
accuracy trade-offs of the base likelihood weighting and our
MCMC method on each of these eight combinations.

Because the algorithms are samplers, estimating the expec-
tation of any function of the sample is possible. We chose the
number of events for a particular set of labels because this
query is simple and directly related to the average posterior
rate, which is important in kernel parameter estimation.

We chose the exponential kernel with β = 1 and the power-
law kernel with β = 1 (inverse squared decay) and γ = 1,
so they integrate to the same quantity. The power-law kernel
has a heavier tail, however, and so more of its power will
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Figure 3: Results on synthetic problems. Both likelihood weighting (LW) and our MCMC sampler perform well on easy problems.
LW fails on hard problems, while our MCMC sampler continues to performs well. LM3 is a limited version of “move 3.”

fall after time T . We describe the small and large synthetic
problems in more detail in the supplementary material. The
small problems consist of chains of labels (each affecting
the next one or two). The large problems consist of labels
connected via a graph with a power-law degree distribution.
All problems have evidence on approximately half of the
labels.

Methods

Each combination of kernel, problem size, and problem dif-
ficulty fixed a particular input process, evidence, and query.
We chose 16 geometrically evenly spaced computation times
and independently ran the algorithms 200 independent times
for each of these computation times, stopping the sampling
when the algorithm had reached the computational time limit.
For the MCMC method, this computational budget included
the burn-in time, which we set to be 1000 iterations for the
easy problems and 5000 iterations for hard problems.

Running for a fixed computational time, instead of a fixed
number of iterations, can bias the resulting estimator toward
samples with smaller numbers of events (because they take
less time, generally, to generate). However, our experience
did not show this was a factor in these experiments.

For each problem and computational budget, we used the
200 estimates to compute the mean squared relative error (the
relative variance). We computed the true values by running
the MCMC sampler for 5 hours. Both sampling algorithms
can be easily parallelized, but, so as not to complicate the
comparison, we ran all experiments on a single core. The
single tunable parameter is κ. We set it to 1, following the
methodology of similar samplers (Rao and Teh 2011; Qin
and Shelton 2015). We illustrate the effect of changing κ on
the small-easy problem. We also tried removing the ability
of the MCMC “move 3” to select a previously virtual parent
and illustrate its effect on the hard problems (limited move
3).

Problem MCMC LW
diff size kernel samp/sec samp/sec eff/sec

E S exp 3.32× 106 4.67× 105 2.02× 103

E S pow 2.84× 106 5.71× 105 4.17× 103

E L exp 8.65× 105 8.53× 102 1.87× 102

E L pow 7.66× 105 9.58× 102 4.34× 102

H S exp 5.61× 105 1.23× 104 0.30
H S pow 7.14× 105 1.75× 104 0.16
H L exp 3.51× 105 1.04× 102 0.15
H L pow 2.12× 105 1.83× 101 0.22

Table 1: Generation speed statistics for both algorithms. Col-
umn samp/sec lists the average number of samples taken per
second (a single step for MCMC and a full sample for LW).
Column eff/sec lists the effective number of samples for LW
(the average effective sample size across all runs with the
longest runtime).

Results
Figure 3 shows the accuracy-time trade-off for the algo-
rithms. On the easy problems (Figure 3, left), both algo-
rithms perform well. The likelihood weighting method has
fewer samples and many fewer effective samples, measured
as (
∑
i wi)

2/
∑
i w

2
i , see Table 1. However, the performance

suggests this is compensated by the independence of each
sample, unlike MCMC. For the small instance, we also show
the very small effect of changing κ to 4. We found similarly
small differences for adjustments of κ between 0.5 and 8 for
all of the experimental designs tested.

On the hard problems (Figure 3, right), things are different.
Our MCMC method performs well with expected O(1/n)
reduction in variance. The exponential kernel for the small
problem requires more than the provided burn-in time (a full
burn-in is not always possible in 0.01 seconds, hence the
missing point). Thus, the O(1/n) behavior does not start
until after 1 second. If we remove the ability of the MCMC
sampler to select a previously virtual event as a parent (lim-
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Figure 4: Results for crime data, without hidden event types (top) and with hidden event types (bottom). Background region color
on left map shows the (area-normalized) background rates (µ) of the estimated model. Estimated model network (M ) shown in
three ways: (left) as super-imposed on map with arc darkness proportional to weight in M , (middle) as a filtered graph, laid out
to demonstrate automatically found clusters, and (right) the same clusters shown geographically.

ited move 3), the performance degrades when there are more
events and the base rate is small, and therefore it does not
naturally generate real events. This can be seen in the small
hard problem with an exponential kernel. Note that adding
this ability never hurts the performance.

The likelihood weighting performs terribly on the hard
problems. We do not even see the expected O(1/n) perfor-
mance. This is because very few samples with any signifi-
cant weight are generated as seen in Table 1 in the “eff/sec”
column. While the bias and variance of this estimator do
decrease as O(1/n), 200 runs is not sufficient to demonstrate
this effect. Almost never, in all of the 200 runs and all of the
samples taken in each of these runs, does the sampler gener-
ate a sample that is even remotely likely under the posterior
distribution.

All sampling code exploits the sparsity of M .

Crime Data Experiments
To demonstrate the utility of unobserved variables, we used
homicide data provided by the Chicago Police Department
from 1965 through 1995 (Block, Block, and Illinois Criminal
Justice Information Authority 2005) filtered to only those
events reported to be gang-related. This follows the same
methodology as Papachristos (2009). We treat each gang-
related homicide as an event with a label corresponding to
the community area in which it occurred. There are 77 differ-
ent Chicago communities identified in the dataset and 2195
events. We did not supply any proximity information about

the regions to the model or algorithm.
While a self-excitatory process would seem to be a good fit

to gang-related homicides, previous uses of a plain Hawkes
process failed to find structure in the data. Others have used
a Hawkes process as part of a more complex model to find
structure. For instance, Linderman and Adams (2014) placed
hierarchical priors over the parameters to produce a clustering
of communities. We show that using a plain Hawkes process
with unobserved event types (labels) will also find structure,
and does better at prediction, relative to a plain Hawkes
process.

Methods
We first used a Hawkes process with an exponential kernel to
model the 77 fully observed labels (one for each community
of Chicago). Because there are no missing data, our sampling
method reduces to sampling over the latent generational struc-
ture (a). We use this as the expectation step in a Monte Carlo
expectation maximization procedure (Wei and Tanner 1990)
to estimate the parameters: M (matrix of inter-label weights),
β (decay rate of kernel), and µ (vector of base rate for each
label). We included an L1 regularizer on the elements of M
with strength set via a search over powers of 10. We let κ = 1
in our sampler. For the maximization step, given a collection
of samples and β, M and µ can be solved in closed form (see
supplementary material). We use a 1-dimensional line search
to find β. This method is essentially the same as previous EM
methods for Hawkes processes with fully observed labels



(a) (b) (c) (d) (e)

Figure 5: The strength of connection to (in green) geographic labels and from (in blue) geographic labels each of the five hidden
event labels.

but hidden branching structure (Veen and Schoenberg 2008;
Marsan and Lengliné 2008).

To demonstrate the advantage of hidden events, we re-
peated the same process, but with five extra process labels,
each completely unobserved. These can be viewed as missing
variables (event sequences) with unspecified semantics. They
can be used by the (unaided) learning procedure to simplify
the structure, similar to how hidden variables in a Bayesian
network can simplify the distribution’s representation. Note
each hidden event type is not a single scalar random variable,
but rather a full (unobserved) sequence of event times.

These processes are allowed arbitrary connections with
each other and the 77 observed labels. To encourage their use
in the model, we clamped the elements of M corresponding
to connections between two observed labels to 0 for the first
half of the EM iterations.

Finally, we reran the models, training only on crimes from
1993 and 1994. We then tested on the last year of data (1995),
advancing time one event at a time and predicting the loca-
tion of the next event (the time of the next event is almost
always in the next zero to three days and not as interesting to
estimate). There are 215 events in 1995 on 171 different days.
We credited a model if the region with the highest probability
of having the next event corresponded to any of the regions
with an event on that day. We used our MCMC method to do
the forecasting.

Results
The prediction accuracy for the model with five hidden event
types was 22% higher (6.5% versus 5.3%). However, more
interesting was the hidden event model’s ability to capture
sociological structure in the data.

The EM algorithm was very stable, producing very simi-
lar results on multiple runs, despite different starting values
and random seeds. The resulting β value is 1

28.6 days for the
model with no hidden event types and 1

48.2 days for the model
with hidden event types. The M and µ values are shown in
Figure 4. The result is messy (despite tuning the regulariza-
tion) and thus consistent with previous attempts. The network
among the observed variables is slightly sparser for the model
with hidden event types, but it is hard to tell from this fig-

ure. We clustered the regions (see supplemental material for
method) to try to find meaningful clusters, shown in Figure 4.
While some are geographically reasonable, they do not reflect
the major connectivity of the model.

Yet, the hidden event connections of the model with 5 hid-
den labels do directly reveal known gang-related structure.
Figure 5 shows the connections in M to and from the five
hidden labels. Each plot, therefore, shows regions (in blue)
that tend to get “triggered” together (from the same hidden
event) and regions (in green) that tend to trigger these hidden
events. These results correlate well with previous studies.
Block and Block (1993) mapped out Chicago gang crime in
the late 1980s. Neither the base rates of models nor clustering
of the M matrix (Figure 4) identify the gang areas in south
Chicago. However, two of our hidden label connections, Fig-
ure 5 (c,d), identify the primary areas in south Chicago also
noted in Exhibit 1 of Block and Block (1993). The cluster
in Figure 5(b) matches the first cluster (that of highest crime
rate) identified by Linderman and Adams (2014). Further, the
“Street Gang Turfs” of 1991 highlighted in Exhibit 4 of Block
and Block (1993) are also identified in Figure 5(e).

Summary
The code for general inference in Hawkes processes with
optional parallelization, as well as the wrapper code to
run the exact experiments done here and gather the results
are available at https://github.com/cshelton/
hawkesinf.

We developed a reversible-jump MCMC sampler for
Hawkes processes. It allows the use of hidden event types
in Hawkes processes, providing flexibility to modelers. We
demonstrated the utility of such hidden events by using them
to more accurately predict locations, and to find meaningful
clusters of regions in Chicago crime data.
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