
Hawkes Process Inference with Missing Data:
Supplementary Material

Christian R. Shelton
University of California, Riverside

cshelton@cs.ucr.edu

Zhen Qin
University of California, Riverside

zqin001@cs.ucr.edu

Chandini Shetty
University of California, Riverside

cshet001@cs.ucr.edu

Abstract

Supplemental material: state-space formulation, likelihood-
weighting sampler, pseudo-code for samplers, derivations of
likelihood and acceptance ratios, sample generation speed
for experimental results, full synthetic results, derivation of
M-step for MCEM, and details of the network cluster analysis.

Background
Equation 3 (main paper) can be derived as

p(x) = exp

−∑
l

∫ T

0

∑
j∈I0s

φlj ,l(s− tj) ds

×
∏
i

∑
j∈I0ti

φlj ,li(ti − tj)

= exp

(
−
∑
l

∑
i

∫ T

ti

φli,l(s− ti) ds

)
×
∏
i

∑
j∈I0ti

φlj ,li(ti − tj)

= exp

(
−
∑
i

Φli,?(T − ti)

)
×
∏
i

∑
j∈I0ti

φlj ,li(ti − tj)

where the first step switches the order of the sum and integral
by noting that the integral over all time of the sum of all
previous events is the same as the sum over all events of the
integral over the time after each event.

State Space for Exponential Kernel
In the particular case of a multivariate Hawkes process with
an exponential base kernel, the history of events prior to time
t can be summarized by a state of L scalars, s1(t), . . . , sL(t).
sl(t) summarizes the contribution to the rate of all past events
of label l. In particular, we start sl(0) = 0,∀l. The system
then evolves as dsl(t)

dt = −βsl(t) when t is not an event
time for label l. At event time ti, sli(t

+
i) = sli(t

−
i) + 1 (that

is the state value for li is increased by one as we cross the

event time). The rate can then be written as λl′(t, ht) = µl′ +∑
lMl,l′sl(t). See Proposition 2 of Bacry, Mastromatteo,

and Muzy (2015) for more details.

Algorithm 1 Unconditional sampling algorithm

Sample next event of label l′ generated from event of
label l. Assume parent event is at time 0 and last event
was at time s. Multiply kernel function by factor ρ (ρ = 1
until Algorithm 4).

function SAMPLENEXTEVENT(l,l′,s,ρ)
r ← SAMPLEFROMUNITEXP
return φ̄−1

l,l′(r/ρ+ Φl,l′(s)) . If φ̄−1
l,l′(s) is undefined

for s, it returns∞.

Sample all descendant events of event at t0 of label l
until time T

function SAMPLE(l,t0,T)
x← {}
for all l′
t← t0
while t < T
t← t0 + SAMPLENEXTEVENT(l,l′,t− t0,1)
if t < T
x← x ∪ {(t, l′)} ∪ SAMPLE(l′,t,T) . Add event

and all of its descendants.
return x

Unconditional Sampling
Algorithm 1 is the unconditional sampler for a Hawkes pro-
cess. It depends upon the ancestor interpretation of a Hawkes
process. In this view, each event of label l at time t inde-
pendently generates “children” events of label l′ from an
inhomogeneous Poisson process with rate φl,l′(t′− t) at time
t′ > t. This is equivalent to having a net total rate at time t′
for label l′ as

∑
i|ti<t′ φli,l′(t

′ − ti).
As mentioned in Section (main paper), we fold the back-

ground rate for label l, µl, into these sums by adding an
special label l = 0 and a single event at the start of the se-
quence with label 0 (no other event has this label). We call
this event the root event. For l = 0, the kernel is different:
φ0,l′(t) = µl.

The function SAMPLENEXTEVENT samples a next event
from a inhomogeneous Poisson process by transforming an
exponential duration sample (a sample for a homogeneous
Poisson process) through the inverse of the cumulative of
the kernel. There are other methods, but this is the most
straight-forward and, for the kernels commonly used, works
well.

Algorithm 2 Likelihood weighting sampling algorithm

Sample descendant events as with SAMPLE, but skip
over observed times in z(o)

function SAMPLEWITHEVID(l,t0,T ,z(o),ρ)
e← {}
for all l′
t← t0
while t < T
t← t0 + SAMPLENEXTEVENT(l,l′,t− t0,ρ)
if t ∈ z(o)

l′ . Skip over observed times for label l′.
t← next unobserved time for l′ after t

else if t < T
e←e ∪ {(t, l′)} ∪ SAMPLEWITHEVID(l′,t,T ,ρ)

return e

Compute the sample’s weight
function WEIGHT-SAMPLE(x,z)
w ← 1
for all (t, l) ∈ x . each sampled or observed event

for all (rs, re, l′) ∈ z(o) such that re > t . each
observed interval after the event

w←w · exp(−Φl,l′(r
e − t)+Φl,l′(max(0, rs − t)))

. weight for duration of interval
for all (t, l) ∈ z(x) . each observed event w′ ← 0

for all (t′, l′) ∈ x such that t′ < t . each earlier event
w′ ← w′ + φl′,l(t− t′) . additive kernel weight

w ← w · w′
return w

Sample events from 0 to T consistent with evidence z
and return samples and likelihood weight

function LW-SAMPLE(z,T)
x← z(x) ∪ SAMPLEWITHEVID(0,0,T ,z(o),1) .

Sample descendants of root events.
for all (t, l) ∈ z(x)

x← x ∪ SAMPLEWITHEVID(l,t,T ,z(o),1) . Sample
descendants of observed events.

return (x,WEIGHT-SAMPLE(x,z))

Likelihood Weighting
The most straight-forward method of producing an estimate
of the posterior distribution is to use importance sampling. In
particular, we sample from the prior distribution, except we
will not allow sampled events to occur during observed in-
tervals, and we add events from z(x) (including any sampled
descendant events). We let q(x | z) represent the distribu-
tion induced by this sampling method. To compensate for

the differences in sampling distributions, we will weight the
corresponding sample by the ratio of its likelihood under the
prior to its likelihood under q. Discarding the constant of
proportionality, p(z), and noting that p(x | z) = p(x) if x is
consistent with z (because x contains all of the information
in z), w(x) ∝ p(x)

q(x|z) . p(x) is as in Equation 3 (main paper).
q(x | z) is much the same, except that we do not integrate
φli,l(s − ti) over intervals of observed evidence of label l
(because we are not sampling during those times for label l)
and we do not multiply the second part over i indices which
are part of the evidence (because those samples are forced).
Therefore, the ratio becomes exactly those components that
are excluded from q:

w(x) ∝ p(x)

q(x | z)

=
exp

(
−
∑
l

∑
i

∫ T
ti
φli,l(s− ti) ds

)
exp

(
−
∑
l

∑
i

∫ T
ti
I[s 6∈ z(o)

l]φli,l(s− ti) ds
)

×

∏
i|xi 6∈zx

∑
j∈I0ti

φlj ,li(ti − tj)∏
i

∑
j∈I0ti

φlj ,li(ti − tj)

= exp

−∑
i,l

∫
s∈[ti,T)∩z(o)l

φli,l(s− ti) ds

×

∏
(t,l)∈z(x)

∑
j∈I0t

φlj ,l(t− tj) .

Algorithm 2 is a direct modification of Algorithm 1 to add
likelihood weights. In this version, the weights are calculated
after the sample is generated for easy of exposition. It is
simple to calculate the weight as the sample is generated.

MCMC

The acceptance ratios can be calculated as follows. Each is
the the ratio of the probability of selecting the reverse move
to the probability of selecting the forward move (which we
will denote Q) multiplied by the ratio of the likelihood of the
new state to the likelihood of the old state (which we will
denote L).

To ease notation, we let at(t, l) and al(t, l) be the time and
label (respectively) of the parent of event at time t with label
l. We let a′t(t, l) and a′l(t, l) be the same after the proposed
move. For most (t, l) the parents are the same before and
after.

Move 1: Virtual Children This move resamples the chil-
dren for real event (ti, li). The old state had n+ñ events. The
new state samples and adds |c̃′i| new virtual events, and drops
|c̃i| old virtual events. The ratio of the proposal probabilities
is the ratio of the chance of selecting this move for event i
times the ratio of the probabilities of selecting the (new or

old) set of virtual events:

Q1 =

1
3

1
n+ñ+|c̃′i|−|c̃i|

× exp (−κ · Φli,?(T − ti))
1
3

1
n+ñ × exp (−κ · Φli,?(T − ti))

×

∏
(t,l)∈c̃i

κ · φli,l(t− ti)∏
(t,l)∈c̃′i

κ · φli,l(t− ti)

=

(n+ ñ)
∏

(t,l)∈c̃i

κ · φli,l(t− ti)

(n+ ñ+ |c̃′i| − |c̃i|)
∏

(t,l)∈c̃′i

κ · φli,l(t− ti)

The likelihood ratio is

L1 =

∏
(t,l)∈x

exp (−(κ+ 1)Φl,?(T − t))φa′l(t,l),l(t− a
′
t(t, l))∏

(t,l)∈x

exp (−(κ+ 1)Φl,?(T − t))φal(t,l),l(t− at(t, l))

×

∏
(t,l)∈x̃∪c̃′i\c̃i

κ · φa′l(t,l),l(t− a
′
t(t, l))∏

(t,l)∈x̃

κ · φal(t,l),l(t− at(t, l))

=

∏
(t,l)∈c̃′i

κ · φa′l(t,l),l(t− a
′
t(t, l))∏

(t,l)∈c̃i

κ · φal(t,l),l(t− at(t, l))

=

∏
(t,l)∈c̃′i

κ · φli,l(t− ti)∏
(t,l)∈c̃i

κ · φli,l(t− ti)

where the last line holds because all of the events in the
products are children of event i.

The ratio inL1 cancels with the similar terms inQ1 leaving

A1 = Q1L1 =
n+ ñ

n+ ñ+ |c̃′i| − |c̃i|
.

Move 2: Virtualness We first consider changing an event
at time t̃ with label l̃ from virtual to real. This adds |c̃′| new
virtual events (as children from the newly real event). The
reverse move removes these same events, but does not add
any. The derivations are similar to those of Move 1.

Qvirt→real
2 =

1
n+ñ+|c̃′|

1
n+ñ exp

(
−κ · Φl̃,?(T − t̃)

) ∏
(t,l)∈c̃′

κ · φl̃,l(t− t̃)

=
n+ ñ

(n+ ñ+ |c̃′|) exp
(
−κ · Φl̃,?(T − t̃)

) ∏
(t,l)∈c̃′

κ · φl̃,l(t− t̃)

Lvirt→real
2 =

∏
(t,l)∈x∪{(t̃,l̃)}

exp (−(κ+ 1)Φl,?(T − t))

∏
(t,l)∈x

exp (−(κ+ 1)Φl,?(T − t))

×

∏
(t,l)∈x∪{(t̃,l̃)}

φa′l(t,l),l(t− a
′
t(t, l))∏

(t,l)∈x

φal(t,l),l(t− at(t, l))

×

∏
(t,l)∈x̃∪c̃′\{(t̃,l̃)}

κ · φa′l(t,l),l(t− a
′
t(t, l))∏

(t,l)∈x̃

κ · φal(t,l),l(t− at(t, l))

=
exp

(
−(κ+ 1)Φl̃,?(T − t̃)

)
φa′l(t̃,l̃),l̃

(t̃− a′t(t̃, l̃))

κ · φal(t̃,l̃),l̃(t̃− at(t̃, l̃))

×
∏

(t,l)∈c̃′
κ · φa′l(t,l),l(t− a

′
t(t, l))

=

exp
(
−(κ+ 1)Φl̃,?(T − t̃)

) ∏
(t,l)∈c̃′

κ · φl̃,l(t− t̃)

κ

Again, a number of terms cancel between Qvirt→real
2 and

Lvirt→real
2 to produce

Avirt→real
2 =

exp(−Φl̃,?(T − t̃))
κ

· n+ ñ

n+ ñ+ |c̃′|

Changing a real event at time t with label l into a virtual
event is entirely symmetric and produces the reciprocal, ex-
cept that the total number of events with the “to be removed”
children is n + ñ, and the resulting total number of events
(after the removal) is n+ ñ− |c̃i|:

Areal→virt
2 =

κ

exp(−Φl,?(T − t))
· n+ ñ

n+ ñ− |c̃i|
.

Move 3: Parent Sampling a new parent is the most diffi-
cult, as we may change whether the old, new, or both parents
are virtual. Doing so will insert or remove virtual children
(of the old or new real events). Let A ∈ {1+, 0, v} be the
status of the old parent after the proposed move: has chil-
dren, has no children but is real, is virtual (respectively). Let
A′ ∈ {1+, 0, v} be the status of the new parent before the
proposed move.

Let (t, l) be the point to be changed. Let (tp, lp) be the old
parent and (t′p, l

′
p) be the new parent. Let c̃p be the virtual

children of the old parent. Let c̃′ be the new virtual children
of the new parent, if the new parent was previously virtual.
Finally, let δ+ be the set of events moved from virtual to real,
δ− be the set of events moved from real to virtual events, δ̃+

be the set of newly added virtual events, and δ̃− be the set of

removed virtual events. If we let 1 be the indicator function,
these sets can be written as

δ+ =

{
{(t′p, l′p)} 1A′=v = 1

{} 1A′=v = 0
δ− =

{
{(tp, lp)} 1A=v = 1

{} 1A=v = 0

δ̃+ =

{
c̃′ 1A′=v = 1

{} 1A′=v = 0
δ̃− =

{
c̃p 1A=v = 1

{} 1A=v = 0
.

Using the definitions

u = exp
(
−Φlp,?(T − tp)

)
u′ = exp

(
−Φl′p,?(T − t

′
p)
)

W =
∑

(t′′,l′′)∈Ht

w(t′′, l′′)

∆W = 1A′=v
∑

(t′′,l′′)∈Ht(c̃
′)

w(t′′, l′′)− 1A=v

∑
(t′′,l′′)∈Ht(c̃p)

w(t′′, l′′)

r =
W

W+∆W
· n+ ñ

n+ñ+1A′=v|c̃′|−1A=v|c̃p|
the proposal ratio is

Q3 =

1
n+ñ+|δ̃+|−|δ̃−|

φlp,l(t−tp)∑
(t′,l′)∈Ht∪Ht(δ̃

+)\Ht(δ̃
−)

φl′,l(t− t′)

(
κ
κ+1

)1A′=v
(

1
κ+1

)1A′=0

1
n+ñ

φl′p,l(t−t′p)∑
(t′,l′)∈Ht

φl′,l(t− t′)

(
κ
κ+1

)1A=v
(

1
κ+1

)1A=0

×

exp
(
−κ · Φlp,?(T − tp)

) ∏
(t′,l′)∈c̃p

κ · φlp,l′(t′ − tp)

1A=v

exp
(
−κ · Φl′p,?(T − t′p)

) ∏
(t′,l′)∈c̃′

κ · φl′p,l′(t
′ − t′p)

1A′=v

=
(n+ ñ)

φlp,l(t−tp)

W+∆W

(
κ+1
κ

)1A=v−1A′=v(
n+ ñ+ |δ̃+| − |δ̃−|

) φl′p,l(t−t′p)

W (κ+ 1)
1A′=0−1A=0

×

exp
(
−κ · Φlp,?(T − tp)

) ∏
(t′,l′)∈c̃p

κ · φlp,l′(t′ − tp)

1A=v

exp
(
−κ · Φl′p,?(T − t′p)

) ∏
(t′,l′)∈c̃′

κ · φl′p,l′(t
′ − t′p)

1A′=v

= r
φlp,l(t− tp)

(
κ+1
κ

)1A=v−1A′=v

φl′p,l(t− t′p) (κ+ 1)
1A′=0−1A=0

×

exp
(
−κ · Φlp,?(T − tp)

) ∏
(t′,l′)∈c̃p

κ · φlp,l′(t′ − tp)

1A=v

exp
(
−κ · Φl′p,?(T − t′p)

) ∏
(t′,l′)∈c̃′

κ · φl′p,l′(t
′ − t′p)

1A′=v

The likelihood ratio is

L3 =

φl′p,l(t−t
′
p)

φlp,l(t−tp)

∏
(t,l)∈x∪δ+\δ−

exp (−(κ+ 1)Φl,?(T − t))φa′l(t,l),l(t− a
′
t(t, l))∏

(t,l)∈x

exp (−(κ+ 1)Φl,?(T − t))φal(t,l),l(t− at(t, l))

×

∏
(t,l)∈x̃∪δ̃+∪δ−\δ̃−\δ+

κ · φa′l(t,l),l(t− a
′
t(t, l))∏

(t,l)∈x̃

κ · φal(t,l),l(t− at(t, l))

=

∏
(t,l)∈δ+

exp (−(κ+ 1)Φl,?(T − t))φa′l(t,l),l(t− a
′
t(t, l))∏

(t,l)∈δ−
exp (−(κ+ 1)Φl,?(T − t))φal(t,l),l(t− at(t, l))

×

φl′p,l(t− t
′
p)

∏
(t,l)∈δ̃+∪δ−

κ · φa′l(t,l),l(t− a
′
t(t, l))

φlp,l(t− tp)
∏

(t,l)∈δ̃−∪δ+
κ · φal(t,l),l(t− at(t, l))

=

φl′p,l(t− t
′
p)

∏
(t,l)∈δ+

exp (−(κ+ 1)Φl,?(T − t))

φlp,l(t− tp)
∏

(t,l)∈δ−
exp (−(κ+ 1)Φl,?(T − t))

×

1
κ

∏
(t,l)∈δ̃+

κ · φa′l(t,l),l(t− a
′
t(t, l))

1
κ

∏
(t,l)∈δ̃−

κ · φal(t,l),l(t− at(t, l))

=
φl′p,l(t− t

′
p)
(

exp
(
−(κ+ 1)Φl′p,?(T − t

′
p)
)

1
κ

)1A′=v

φlp,l(t− tp)
(
exp

(
−(κ+ 1)Φlp,?(T − tp)

)
1
κ

)1A=v

×

 ∏
(t,l)∈c̃′

κ · φl′p,l(t− t
′
p)

1A′=v

 ∏
(t,l)∈c̃p

κ · φlp,l(t− tp)

1A=v
.

Many terms from Q3 and L3 cancel. Using u′ and u from
above, we get

A3 = r

(
exp

(
−Φl′p,?(T − t

′
p)
)

1
κ

)1A′=v

(κ+ 1)
1A=v−1A′=v(

exp
(
−Φlp,?(T − tp)

)
1
κ

)1A=v
(κ+ 1)

1A′=0−1A=0

= r
(u′)

1A′=v (κ+ 1)
1A=v+1A=0

(u)
1A=v (κ+ 1)

1A′=0+1A′=v

which can be rewritten in tabular form, if we note that r = 1
unless A′ = v or A = v:

A\A’ 1+ 0 v

1+ 1 1
κ+1

ru′

κ+1

0 κ+1
1 1 ru′

1

v r(κ+1)
u

r
u

ru′

u

Algorithm 3 MCMC Algorithm, initialization and helper
function

Initialize sampler by setting all evidence events to be
children of the root event and sampling virtual children
for them.

function MCMCINIT(z,T ,κ)
x← {(0, 0, ())} ∪ z(o)

for all (t, l, a) ∈ x
x̃← x̃ ∪ SAMPLECHILDREN(li,ti,T ,z(o),κ)

return (x, x̃)

Sample children for event (ti,li) for all labels until time
T , inserting parent information

function SAMPLECHILDREN(li,ti,T ,z(o),κ)
c← SAMPLEWITHEVID(li,ti,T ,z(o),κ) , r ← {}
for (t, l) ∈ c : r ← r ∪ (t, l, (ti, li))
return r

The pseudo-code for the MCMC sampler is listed in Al-
gorithms 3 and 4. For the purposes of this pseudo-code, we
augment each element of x and x̃ with an extra value: the
parent, which we denote by its (t, l) pair. In actual code, ref-
erences would be used instead. We initialize the sampler with
just the root event and the events from the evidence and set
all events to have the root event as their parents. This assumes
that all labels have a non-zero background rate. If not, a more
complex initialization would be necessary. In our implemen-
tation, a few indexes make things faster. Additionally, when
resampling the parent for event of label l′, we exclude all
events for labels l for which Ml,l′ = 0. For sparse systems,
this saves much time. Similar optimizations for sparse sys-
tems are applied where possible in our implementation of
both methods.

Synthetic Results
For each kernel, we tested the algorithms on two sizes of
problems, each with an “easy” and “hard” version.

Small Problem In our small problems, the labels form a
chain. For the simple version there are three labels, and M
has only two non-zero entries: M1,2 = M2,3 = 1. So, each
label affects the next one in the chain but there are no self-
excitations. The base rates are 10−2 for label 1 and 10−6 for
labels 2 and 3. T = 3.0. Labels 1 and 2 are unobserved the
entire time. Label 3 is observed only on [2.0, 3.0). The only
observed event is (t = 2.5, l = 3). We query the (expected)
number of events of label 1. For the exponential kernel, the
true value is ≈ 1.027. For the power-law kernel, the true
value is ≈ 1.026.

The hard version consists of 5 labels. Each label affects the
next two in the chain (but not itself): Ml,l+1 = Ml,l+2 = 1.

Algorithm 4 MCMC Algorithm

Sampler step, given previous state (x, x̃), evidence (z),
ending time T , and κ

function MCMCSTEP(x,x̃,z,T ,κ)
(t, l, (tp, lp))← UNIFORMSAMP(x ∪ x̃)
N ← |x|+ |x̃| . total number of events
c̃← {(t′, l′, a) ∈ x̃ | a = (t, l)} . all virtual children
switch UNIFORMSAMP({move-1,move-2,move-3})

case move-1
c̃′ ← SAMPLECHILDREN(t,l,T ,z(o),κ)
if RAND(0,1) < N/(N + |c̃′| − |c̃|)
x̃← x̃ ∪ c̃′ \ c̃

case move-2
if (t, l, (tp, lp))∈x ∧ (t, l) 6∈z(x) ∧ l 6=0 ∧ |c|=0
r ← (κ/ exp(−Φl,?(T − t)))(N/(N − |c̃|))
if RAND(0,1) < r
x← x \ (t, l, (tp, lp))
x̃← x̃ ∪ (t, l, (tp, lp)) \ c

else if (t, l, (tp, lp)) ∈ x̃
c̃′ ← SAMPLECHILDREN(t,l,T ,z(o),κ)
r ← (exp(−Φl,?(T − t))/κ)(N/(N+|c̃′|))
if RAND(0,1) < r
x̃← x̃ ∪ c̃′ \ (t, l, (tp, lp))
x← x ∪ (t, l, (tp, lp))

case move-3
if (t, l, (tp, lp)) 6∈ x̃
w ← {}
for all (t′, l′, a) ∈ (x ∪ x̃) | t′ < t
w ← w ∪ (exp(−Φl′,?(T − t′)) : t′, l′, a)

(w′ : t′p, l
′
p, a)← WTSETSAMPLE(w)

if (t′p, l
′
p, a) ∈ x̃

c̃′p ← SAMPLECHILDREN(t′p,l′p,T ,z(o),κ)
v ← false
if (tp, lp) can be made virtual after change
v ← RAND(0,1) < κ/(κ+ 1)

if RAND(0,1) < ratio from table
x← x ∪ (t, l, (t′p, l

′
p)) \ (t, l, (tp, lp))

if (t′p, l
′
p, a) ∈ x̃

x̃← x̃ ∪ c̃′p \ (t′p, l
′
p, a)

x← x ∪ (t′p, l
′
p, a)

if v
c̃p ← {(t′, l′, a) ∈ x̃ | a = (tp, lp)}
(tpp, lpp)← (t′′, l′′) | (tp, lp, (t′′, l′′)) ∈ x
x← x \ (tp, lp, (tpp, lpp))
x̃← x̃ ∪ (tp, lp, (tpp, lpp)) \ c̃p

return (x, x̃)

The base rates are 10−3 for label 1 and 10−6 for the others.
We sampled from the model (with different samples for each
kernel, but fixing a single sample for all experiments with a
given kernel) with T = 1000. The observations were of only
labels 3 and 5 (for all time). We queried the number of events
for label 4. The true values are ≈ 44.88 for the exponential
kernel and ≈ 12.90 for the power-law kernel.

Large Problem In this model, the connections between
labels are generated by a randomly sampled connected undi-
rected graph with degrees sampled from a power-law distribu-
tion with α = 2.5 (Viger and Latapy, 2016). This simulates
common social network graph structures, a common applica-
tion of Hawkes processes. We use a single sampled 100-node
graph for the easy problem and 500-node graph for the hard
problem. Each node in the graph is associated with a label. If
there is not a direct edge between nodes i and j, Mi,j = 0. If
there is an edge, Mi,j = 1/(8dj) where dj is the degree of
node j (thus the graph has asymmetric weights). Mi,i = 1/2.
The base rates are 0.1 for all labels. Separately for each ker-
nel, a single full event sequence is sampled. The labels are
sorted according to degree and alternating labels are com-
pletely unobserved (other labels are complete observed). We
query the total number of unobserved events.

For the easy version, T = 10. The true values are ≈ 91.44
for the exponential kernel and ≈ 79.11 for the power-law
kernel. For the hard version, T = 100. The true values are
≈ 4739.6 for the exponential kernel and ≈ 4473.0 for the
power-law kernel.

MCEM

Assuming complete data (or a set of samples generated from
the posterior distribution) and assuming the auxiliary infor-
mation of which event “caused” which event (a), we can
maximize the likelihood in almost closed form. We derive the
method for a single sample below (for ease of notation). To
extend to multiple samples, sum the relevant statistics over
all samples. Note: ai is the index of the parent of the ith event
and li is the label of the ith event. For events “caused” by the
background rate, we say that the label of their parent event is
0 (the special label of the root event). ν is the strength of the
L1 regularizer (0 if no regularization). Finally, we assume
the kernel takes the form φl′,t(l) = Ml,l′φ(t) and therefore
denote the integral of the kernel as Φl′,t(l) = Ml,l′Φ(t).

L = −
∑
i

(∑
l

Mli,l

)
Φ(T − ti)−

∑
l

Tµl

+
∑

i|lai
6=0

(
logMlai

,li + log φ(ti − tai)
)

+
∑

i|lai
=0

logµli − ν
∑
l

∑
l′

Ml,l′

The maximizing value for µl is immediate:

∂L

∂µl
= 0

T −
∑
i|lai

=0,li=l
1

µl
= 0

µl =
N0,l

T

where N0,l is the number of events of label l generated from
the root event.

The maximizing value for Mj,k can be derived, assuming
the base kernel parameters are fixed:

∂L

∂Mj,k
= 0

0 = −
∑
i|li=j

Φ(T − ti) +

∑
i|li=k,lai

=j 1

Mj,k
− ν

Mj,k =
Nj,k

ν +
∑
i|li=j Φ(T − ti)

where Nj,k is the number of events of label k generated from
events of label j.

Substituting the maximizing value of M into L (and ignor-
ing the terms that do not depend on the kernel), our goal is to
select the kernel parameter(s) that maximize(s) the expression

L = −
∑
i

(∑
l

Nli,l
ν +

∑
j|lj=li

Φ(T − tj)

)
Φ(T − ti)

−
∑

i|lai
6=0

log

ν +
∑

j|lj=lai

Φ(T − tj)

+
∑

i|lai
6=0

log φ(ti − tai)

− ν
∑
l

∑
l′

Nl,l′

ν +
∑
i|li=l Φ(T − ti)

.

If we let Sl =
∑
i|li=l Φ(T − ti) and R =∑

i|lai
6=0 log φ(ti − tai), we can simplify the expression to

L = −
∑
l

∑
i|li=l

∑
l′

Nl,l′

ν + Sl
Φ(T − ti)

−
∑

i|lai
6=0

log
(
ν + Slai

)
+R− ν

∑
l

∑
l′

Nl,l′

ν + Sl

=
∑
l

∑
l′

Nl,l′

ν + Sl

ν +
∑
i|li=l

Φ(T − ti)

−
∑

i|lai
6=0

log
(
ν + Slai

)
+R

= N −
∑

i|lai
6=0

log
(
ν + Slai

)
+R

where N is a constant (the number of events not generated
from the root event). Sl andR are functions of the base kernel
(and therefore its parameters). This expression can therefore
be optimized by a low-dimensional search on the base kernel
parameters. Once the base kernel parameters are fixed, M
can be estimated as above.

Additional Network Analysis
The networks shown in Figure 4, left (main paper) appear
very messy. We tried a number of procedures to tease out
clusters or meaningful graphs. The best procedure we found
was the following.
1. We filtered out edges with weight less than 0.002 (thresh-

old found by manual search).
2. We removed nodes with small degree (less than 5).
3. We used a community detection algorithm based on mod-

ularity (Blondel et al., 2008) to get four or five clusters.
4. We then used a graph layout algorithm to position the

nodes based on both links and the detected clusters.
5. We plotted the graph with labels indicating the Chicago

community numbers (numbers greater than 77 indicate hid-
den labels) with node colors corresponding to the clusters
and sizes corresponding to the degrees.
The results (along with geographic maps of Chicago show-

ing the clusterings) are shown in Figure 4, middle & right
(main paper). The increased sparsity when using hidden la-
bels is apparent. While the clusters detected are not unreason-
able geographically, they do not reflect the major connectivity
of the model. Note that the strongest edges (thickest lines)
exist between clusters, not within clusters, particularly in the
model without hidden labels. The hidden labels (77 and 80)
can be seen as major nodes in the right-most graph.

References
Bacry, E.; Mastromatteo, I.; and Muzy, J.-F. 2015. Hawkes

processes in finance. Market Microstructure and Liquidity
1(1).

Blondel, V. D.; Guillaume, J.-L.; Lambiotte, R.; and Lefebvre,
E. 2008. Fast unfolding of communities in large networks.
Journal of Statistical Mechanics: Theory and Experiment
P10008.

Viger, F., and Latapy, M. 2016. Efficient and simple genera-
tion of random simple connected graphs with prescribed
degree sequence. Journal of Complex Networks 4(1):15–
37.

