
UNIVERSITY OF CALIFORNIA
RIVERSIDE

Divide and Conquer Algorithms for Machine Learning

A Dissertation submitted in partial satisfaction
of the requirements for the degree of

Doctor of Philosophy

in

Computer Science

by

Michael John Izbicki

September 2017

Dissertation Committee:

Dr. Christian R. Shelton, Chairperson
Dr. Stefano Lonardi
Dr. Vagelis Papalexakis
Dr. James Flegal

Copyright by
Michael John Izbicki

2017

The Dissertation of Michael John Izbicki is approved:

Committee Chairperson

University of California, Riverside

Acknowledgments

I would like to especially thank my advisor Christian Shelton for his mentorship and encour-

agement. I would also like to thank the rest of my dissertation committee (Stefano Lonardi,

Vagelis Papalexakis, and James Flegal) and professors who served on my candidacy and

proposal committees (Hamed Mohsenian-Rad, Ertem Tuncel, and Neal Young). Finally, I

would like to thank the members of the RLAIR lab, including Juan Casse, Busra Celikkaya,

Zhen Qin, Dave Gumboc, Matthew Zarachoff, Kazi Islam, Sepideh Azarnoosh, Chengkuan

Hong, Sanjana Sandeep, Gaurav Jhaveri, Jacob Fauber, and Mehran Ghamaty.

iv

To my wife Kristen.

v

ABSTRACT OF THE DISSERTATION

Divide and Conquer Algorithms for Machine Learning

by

Michael John Izbicki

Doctor of Philosophy, Graduate Program in Computer Science
University of California, Riverside, September 2017

Dr. Christian R. Shelton, Chairperson

This thesis improves the scalability of machine learning by studying mergeable learning

algorithms. In a mergeable algorithm, many processors independently solve the learning

problem on small subsets of the data. Then a master processor merges the solutions together

with only a single round of communication. Mergeable algorithms are popular because they

are fast, easy to implement, and have strong privacy guarantees.

Our first contribution is a novel fast cross validation procedure suitable for any

mergeable algorithm. This fast cross validation procedure has a constant runtime indepen-

dent of the number of folds and can be implemented on distributed systems. This procedure

is also widely applicable. We show that 32 recently proposed learning algorithms are merge-

able and therefore fit our cross validation framework. These learning algorithms come from

many subfields of machine learning, including density estimation, regularized loss minimiza-

tion, dimensionality reduction, submodular optimization, variational inference, and markov

chain monte carlo.

We also provide two new mergeable learning algorithms. In the context of regu-

larized loss minimization, existing merge procedures either have high bias or slow runtimes.

We introduce the optimal weighted average (OWA) merge procedure, which achieves

vi

both a low bias and fast runtime. We also improve the cover tree data structure for fast

nearest neighbor queries by providing a merge procedure. In doing so, we improve both the

theoretical guarantees of the cover tree and its practical runtime. For example, the original

cover tree was able to find nearest neighbors in time O(c12
exp log n), and we improve this

bound to O(c4
hole log n) for i.i.d. data. Here, cexp and chole are measures of the “intrinsic

dimensionality” of the data, and on typical datasets cexp > chole. Experiments on large scale

ad-click, genomics, and image classification tasks empirically validate these algorithms.

vii

Contents

List of Figures x

List of Tables xi

1 Introduction 1

2 Mergeable learning algorithms 7
2.1 Ridge regression as a motivating example 9
2.2 A formal definition of mergeable learning algorithms 11
2.3 Model selection and fast/distributed cross validation 13
2.4 Example mergeable algorithms . 21

2.4.1 Estimators with closed form solutions 21
2.4.1.1 Exponential family distributions 22
2.4.1.2 Naive Bayes . 25

2.4.2 Approximate regularized loss minimization 27
2.4.2.1 When are approximate merge procedures appropriate? . . . 28
2.4.2.2 Averaging based methods 29
2.4.2.3 Principle component analysis 34
2.4.2.4 Submodular optimization 37

2.4.3 Bayesian methods . 40
2.4.3.1 Bernstein-von Mises . 41
2.4.3.2 Variational inference . 43
2.4.3.3 Markov chain Monte Carlo 48

2.5 Conclusion . 53

3 The optimal weighted average 54
3.1 The problem of merging linear models . 55
3.2 The algorithm . 57

3.2.1 Warmup: the full OWA estimator 57
3.2.2 The OWA estimator . 57
3.2.3 Implementing OWA with existing optimizers 60

3.3 Analysis . 61

viii

3.4 Experiments . 68
3.4.1 Synthetic data . 69
3.4.2 Real world advertising data . 71

3.5 Nonlinear OWA . 73
3.5.1 Notation . 73
3.5.2 Merging neural networks . 75
3.5.3 Experiments . 76

3.6 Conclusion . 78

4 The cover tree 79
4.1 Definitions . 81
4.2 Measuring the size of a metric space . 82

4.2.1 Expansion dimension . 83
4.2.2 Doubling dimension . 85
4.2.3 Hole dimension . 90
4.2.4 Aspect ratio . 92

4.3 Review of methods for faster nearest neighbors 96
4.3.1 Sample compression . 97
4.3.2 Embeddings and locality sensitive hashing 98
4.3.3 Spacial data structures . 100

4.4 The original cover tree . 102
4.4.1 Properties of the cover tree . 103
4.4.2 Approximate nearest neighbor query for a single point 105
4.4.3 Improved approximate nearest neighbor query for a single point . . 108
4.4.4 Inserting a single point . 109

4.5 The simplified cover tree . 112
4.5.1 Properties of the simplified cover tree 113
4.5.2 Approximate nearest neighbor queries 113
4.5.3 Inserting a single point . 114
4.5.4 The nearest ancestor invariant . 116
4.5.5 Merging simplified cover trees . 121
4.5.6 Cache efficiency . 124

4.6 Experiments . 125
4.6.1 Cover tree type comparison . 125
4.6.2 Cover tree implementation comparison 126
4.6.3 Alternative methods for Euclidean nearest neighbors 129
4.6.4 Graph kernels and protein function 129
4.6.5 Earth mover’s distance . 132

4.7 Conclusion . 134

5 Conclusion 135

ix

List of Figures

3.1 Graphical depiction of the OWA estimator’s parameter space. 58
3.2 OWA’s performance on synthetic logistic regresion data. 69
3.3 OWA is robust to the regularization strength 72
3.4 OWA’s performance on real world ad-click data 73
3.5 Comparison of merge procedures on convolution neural networks using MNIST

data. 77

4.1 Fraction of nodes required for the simplified cover tree. 114
4.2 Example of a simplified cover tree. 117
4.3 Experiments of the nearest ancestor cover tree runtimes on benchmark data. 127
4.4 Cache performance of the simplified cover tree. 128
4.5 Experiments of three cover tree implementations on benchmark data. 128
4.6 Experiments comparing the cover tree to non-cover tree nearest neighbor

methods using a single core. 130
4.7 Experiments comparing the cover tree to non-cover tree nearest neighbor

methods using a multiple cores. 130
4.8 Experiments on the cover tree with protein data 132

x

List of Tables

2.1 Summary of the existing mergeable learning algorithms. 8
2.2 Accuracy of different methods for estimating a model’s true error 14

4.1 Benchmark datasets . 126
4.2 Experiments on the cover tree with image data 133

xi

Chapter 1

Introduction

Machine learning has seen many recent successes due to the availability of large datasets.

For example, Facebook collects more than 200 terabytes of user information per day (Vagata

and Wilfong). This information includes text messages sent between users, photos uploaded

by users, and the webpages that users visit. Machine learning algorithms use this data to

predict who a user is friends with offline (Curtiss et al., 2013), identify users in uploaded

images (Taigman et al., 2014), and determine which ads are the most profitable to display

(He et al., 2014). These learning algorithms run on an estimated “hundreds of thousands” of

servers located at six data centers around the world (Facebook Datacenter FAQ). Technol-

ogy companies like Amazon, Apple, Google, Microsoft, Netflix, and Twitter all depend on

machine learning algorithms operating on similarly large scale data. Developing algorithms

that work at this scale is one of the central problems of modern machine learning research.

Parallel algorithms are needed to solve these large scale problems, but designing

parallel algorithms is difficult. There are many architectures for parallel computing, and

1

most parallel algorithms work well only for certain architectures. The simplest architecture

is the shared memory model, which corresponds to a typical desktop computer with

multiple cores. Communication between cores has almost no overhead, so shared mem-

ory parallel algorithms may perform many rounds of communication without slowing down.

The Hogwild learning algorithm (Recht et al., 2011) is a famous example. The distributed

model of computing is an alternative where communication between processors is more ex-

pensive. In distributed algorithms, the dataset is too large to fit in the memory of a single

machine. So the data is partitioned onto a cluster of machines connected by a network.

Communication is relatively expensive and good distributed algorithms use clever tricks

to minimize communication. Frameworks such as MPI (Message Passing Forum, 1994),

MapReduce (Dean and Ghemawat, 2008) and Spark (Meng et al., 2016) have been devel-

oped to provide simple abstractions to manage this communication. In a typical distributed

environment, all machines are located in the same building with high speed network con-

nections; so communication takes on the order of milliseconds. But some examples are

more extreme. Google recently proposed the federated learning model of computation

where the processors are user cellphones (McMahan et al., 2017). Cellphones have only

intermittent network connectivity, and so communication can take hours or days. The use

of cellphones as processing nodes further raises privacy concerns.

This thesis studies a particularly simple class of parallel algorithms called merge-

able learning algorithms. Mergeable learning algorithms work using the following divide

and conquer procedure: first, each processor independently solves the learning problem on

a small subset of data; then a master processor merges the solutions together with only

2

a single round of communication. Mergeable algorithms are growing in popularity due to

three attractive properties:

1. They have small communication complexity. This makes them suitable for both the

shared memory and distributed parallel environments.

2. They are easy to implement. Because each processor works independently on a small

dataset, these processors can use standard libraries for solving small scale learning

problems. For example, these processors could use Python’s scikit-learn (Pedregosa

et al., 2011), C++’s MLPack (Curtin et al., 2013a), or the libraries provided by the

R (R Development Core Team, 2008) or Julia (Bezanson et al., 2017) languages. To

implement a mergeable algorithm, the programmer need only implement the merge

function. This is typically a simple task.

3. They have strong privacy guarantees. Differential privacy is the standard mathe-

matical technique for privacy preserving data analysis (Dwork et al., 2014). Single

processor differentially private algorithms are now well understood (Chaudhuri et al.,

2011). Using these locally private methods ensures that confidential data doesn’t leak

between machines or leak to the outside world.

These three advantages are well known, and they are the primary motivation for a recent

growth in popularity of mergeable algorithms. The first major contribution of this thesis is

to show that mergeable algorithms have a fourth benefit:

4 They have a fast cross validation algorithm. Cross validation is a method for estimat-

ing the quality of a machine learning algorithm. Standard k-fold cross validation takes

3

time linear in k and cannot be used on large scale datasets. Chapter 2 shows that

all mergeable algorithms have a fast cross validation method that takes constant time

independent of k. This fast cross validation method is suitable even in the distributed

environment where communication is expensive.

Chapter 2 emphasizes the wide applicability of this new fast cross validation method by

describing 32 recently developed mergeable algorithms. They come from many subfields of

machine learning, including density estimation, regularized loss minimization, dimension-

ality reduction, submodular optimization, variational inference, and Markov chain Monte

Carlo. Much of this work appears to be unaware of the developments in mergeable estima-

tors from other subfields of machine learning, and our survey points out how these fields can

benefit from each other. For example, we show that mergeable algorithms for regularized

loss minimization can be directly applied to solve variational inference problems, improving

the known results for variational merge procedures. We emphasize that this fast cross vali-

dation algorithm is applicable to all 32 mergeable estimators that we present in Chapter 2.

For many of these problems, no previous fast cross validation procedure was known, and so

cross validation could not be performed on large scale datasets.

The remainder of this thesis develops two new mergeable estimators. Chapter 3

presents the optimal weighted average for regularized risk minimization (RLM). RLM is

one of the most important learning paradigms. It includes important models such as logistic

regression, kernel algorithms, and neural networks. As we show in the survey portion of

Chapter 2, existing merge procedures for RLM either have poor statistical performance or

poor computational performance. The OWA merge procedure is the first algorithm that has

4

both good statistical and computational performance. The key insight of OWA is that the

merge procedure depends on the data, whereas all previous merge procedures for RLM do

not depend on the data. We validate the OWA merge procedure empirically using logistic

regression and convolutional neural network models.

Chapter 4 discusses the cover tree data structure for fast nearest neighbor queries in

arbitrary metric spaces. Cover trees were first introduced by Beygelzimer et al. (2006), and

they have seen widespread use in the machine learning community since then. This chapter

shows that cover trees can be merged together, providing the first parallel construction and

fast cross validation algorithms. We also improve the cover tree’s theoretical and practical

performance. As an example, the cover tree’s original analysis showed that nearest neighbor

queries could be answered in time O(c12
exp log n), and we improve this bound to O(c4

hole log n)

for i.i.d. data. Here cexp and chole are measures of the “intrinsic dimensionality” of the data.

We will show that on typical datasets cexp > chole, and we will argue that in pathological

data sets chole more accurately represents our intuitive notion of dimensionality. We further

provide practical improvements in the form of a new data structure called the simplified

cover tree. These practical improvements include an easier to understand definition,

reduced overhead in tree traversals, and improved cache performance. We use benchmark

datasets with the Euclidean distance to show that our simplified cover tree implementation

is faster than both existing cover tree implementations and other techniques specialized for

Euclidean distance nearest neighbor queries such as kd-trees and locality sensitive hashing.

We also compare the simplified and original cover trees on non-Euclidean protein interaction

and computer vision problems.

5

Chapter 5 concludes the thesis with a summary of open problems. We argue

that little is known about the best possible merge procedures, and that the existing merge

procedures likely are suboptimal.

6

Chapter 2

Mergeable learning algorithms

Chapter 1 argued that mergeable learning algorithms are popular because they are fast, easy

to implement, and provide good privacy guarantees. This chapter develops a novel fast cross

validation method for mergeable algorithms and shows that 32 recently developed learning

algorithms are mergeable. For most of these learning algorithms, no previous fast cross

validation procedure was known. Our fast cross validation method can be used on all of

them.

The chapter begins with a discussion of the classic ridge regression algorithm in

Section 2.1. Ridge regression has well known distributed training and fast cross validation

algorithms. Then Section 2.2 formally defines mergeable algorithms as algorithms that have

nice computational properties similar to ridge regression. The main contribution of this

chapter is Section 2.3, which introduces a novel fast cross validation procedure applicable

to all mergeable algorithms. To motivate the need for fast cross validation, we first review

existing methods for estimating the quality of an estimator. We show that these methods

7

Section Problem Number of merge methods

2.4.1 closed form estimators 3
2.4.2.2 averaging methods 9
2.4.2.3 principle component analysis 2
2.4.2.4 submodular optimization 6
2.4.3.1 parametric Bayesian inference 1
2.4.3.2 variational inference 3
2.4.3.3 Markov chain Monte Carlo 8

Table 2.1: Summary of the existing mergeable learning algorithms.

either do not scale to large datasets or have suboptimal statistical properties. Our fast cross

validation procedure, however, is both highly scaleable and statistically efficient. Another

advantage of our cross validation procedure is that it works in both the single machine and

distributed environments. This improves previous methods for fast cross validation which

worked only in the single machine environment and only on a much smaller class of models.

Section 2.4 argues that the framework of mergeable learning algorithms is widely

applicably by describing 32 published examples. We divide these examples into three cate-

gories. Section 2.4.1 describes how to merge learning algorithms with closed form solutions

such as linear exponential families and naive Bayes. Most estimators, however, do not have

closed form solutions. Section 2.4.2 describes merge procedures for regularized loss min-

imization problems, which typically lack a closed form solution. The procedures in this

section apply to a large class of learning models, one of the most important being logis-

tic regression. The most general methods are based on parameter averaging, but we also

present more methods designed specifically for principle component analysis and submod-

ular optimization. Finally, Section 2.4.3 describes merge procedures for Bayesian methods.

It includes subsections on parametric estimation, variational inference, and Markov chain

8

Monte Carlo. Table 2.1 summarizes these examples.

2.1 Ridge regression as a motivating example

Ridge regression is one of the earliest learning algorithms, but it is still widely studied and

used. For example, Meng et al. (2014), Wang et al. (2016b), and Gascon et al. (2017)

propose distributed learning algorithms in different settings. In this section, we describe

some of the computationally attractive properties of the ridge regression algorithm. These

properties enable easy distributed learning and fast cross validation. In subsequent sections

we will see that mergeable algorithms are a generalization of ridge regression that share its

nice computational properties.

In the regression problem, we are given a matrix of covariates X : Rd×mn

and a vector of response variables Y : Rmn. Here we assume that the dimensionality of

the problem is d and there are mn data points. The goal is to learn an unknown function

y∗ : Rd → R. In a linear regression problem, the function y∗ is defined to be

y∗(x) = w∗Tx (2.1)

where w∗ : Rd is an unknown vector of model parameters that we must learn. The standard

ridge regression algorithm estimates w∗ using the formula

ŵridge = arg min
w∈Rd

‖Y −wTX‖2 + λ‖w‖2 (2.2)

where λ is a hyperparameter that must be set by the user. We can solve this optimization

9

problem by taking the derivative inside the arg min and setting it to zero. The result has

closed form solution

ŵridge = (XTX + λI)−1XTY. (2.3)

The matrix product XTX take time O(mnd2), and the inverse takes time O(d3). Whenever

mn >> d, the product dominates the runtime and should be parallelized.

The closed form solution for ŵridge lets us construct parallel algorithm using a

divide and conquer procedure. First, we divide the data onto m separate machines as

follows. Divide the covariate matrix X into m smaller matrices X1, ..., Xm each of dimension

d×n, and divide the response vector Y into m smaller vectors Y1, ..., Ym each of dimension n.

Then transfer Xi and Yi to each machine i. Next, each machine i independently calculates

the local statistics

Ai = XT
i Xi and Bi = XT

i yi. (2.4)

The runtime of calculating these local statistics O(nd2), which is independent of the number

of machines m. The local statistics are transmitted to a master server, which calculates

ŵridge =

(
m∑
i=1

Ai + λI

)−1 m∑
i=1

Bi. (2.5)

By definition of Ai and Bi, Equations (2.3) and (2.5) are the same. Calculating the summa-

tions in (2.5) takes time O(md2) and the inverse takes time O(d3). The total runtime of the

parallel procedure is O((m+ n)d2 + d3), which is faster than the runtime of the sequential

procedure O(mnd2 + d3).

This divide and conquer algorithm makes ridge regression easy to use on large scale

10

data. Mergeable learning algorithms are a generalization of ridge regression to all methods

that support a similar divide and conquer approach to learning. In the next subsection,

we formally define mergeable learning algorithms. Then, we describe a novel fast cross

validation procedure that generalizes fast cross validation of ridge regression models (e.g.

Golub et al., 1979) to all mergeable algorithms.

2.2 A formal definition of mergeable learning algorithms

We first provide a general definition of learning algorithms, then we define mergeable learn-

ing algorithms. Let Z be a set called the data space; let PZ be an unknown distribution

over Z; let W be a set called the parameter space; and let f : Z → W be a function

called the model. Our goal is to estimate Ez∼PZ f(z) based on a sample of points Z from

Z.1 We call a function alg : {Z} → W a machine learning algorithm or equivalently

an estimator2 if

alg(Z) ≈ E
z∈Z

f(z). (2.6)

When the data set Z is understood from context, we will denote the parameter estimate

by ŵalg = alg(Z). For example the formula (2.3) that defined ŵridge in the previous

section defined the ridge regression estimator. Notice that except in trivial models that

lack randomness, the approximation in (2.6) can never be exact. The randomness ensures

that for any finite data set Z, the left-hand side can be close to the right hand side with

high probability, but they will be non-equal with probability 1.

1In most cases, the data set Z will be sampled i.i.d. from some PZ , but this is not a requirement.
2 While the terms machine learning algorithm and estimator are interchangeable, we will typically refer

to alg as a machine learning algorithm when analyzing its computational properties and as an estimator
when analyzing its statistical properties.

11

We say a learning algorithm alg is mergeable if it can be decomposed into two

functions map : {Z} → W local and reduce : {W local} → W such that for any collection of

disjoint data sets Z1, ..., Zm satisfying ∪mi=1Zi = Z,

reduce{map(Zi)}mi=1 ≈ alg(∪mi=1Zi). (2.7)

In the ridge regression example, Equation (2.4) defined the map procedure and Equation

(2.5) defined the reduce procedure. Unlike the approximation in (2.6), the approximation

in (2.7) can be exact (as it is for ridge regression).

Algorithm 1 shows that all mergeable estimators can be distributed using the pop-

ular MapReduce framework (Dean and Ghemawat, 2008). However not all algorithms that

can be implemented with MapReduce are mergeable. General MapReduce procedures can

require many iterations of the map and reduce functions, whereas mergeable algorithms are

allowed only a single iteration. Previous work has systematically studied machine learning

algorithms that use an arbitrary number of MapReduce iterations (Chu et al., 2007) and

algorithms that use a fixed constant number of iterations (Karloff et al., 2010). This thesis

is the first work to study MapReduce learning algorithms that use exactly 1 iteration.3 De-

spite this lack of systematic study, we shall see that many existing papers have developed

mergeable algorithms for specific problems. The key contribution of this study is shown

in Section 2.3, where we present a new fast cross validation procedure applicable to all

mergeable algorithms.

3 With the exception of Izbicki (2013) on which this thesis is based.

12

Algorithm 1 dist learn(learning algorithm f , data sets Zi)

prerequisite: each machine i has dataset Zi stored locally

1: each machine i independently and in parallel:
2: compute ŵ

alg
i = map(Zi)

3: transmit ŵ
alg
i to the master

4: master machine:
5: compute ŵalg = reduce{ŵalg

i }mi=1

2.3 Model selection and fast/distributed cross validation

Model selection is the process of selecting a good machine learning algorithm for a particular

task. Unfortunately, the most accurate model selection methods have high computational

cost and so cannot be used in large scale learning systems. Most research on large scale

learning has focused only on accelerating the learning algorithm, with the model selec-

tion process receiving comparatively little attention. In this section, we review popular

model selection procedures with emphasis on their statistical and computational tradeoffs.

A summary is shown in Table 2.2. We show in particular that cross validation has the

best statistical properties, but that standard cross validation techniques are too slow for

large scale data. We develop two new cross validation techniques that address this short-

coming. In particular, we show that for mergeable learning algorithms cross validation can

be performed with only a constant computational overhead independent of the size of the

problem, and that this cross validation can be distributed. Effectively, this results in “free”

cross validation estimate whenever we train a distributed model.

In the model selection problem, we are given a set of models F : {Z → W} and

a dataset Z. Our goal is to select a good model f̂ ∈ F . To formally measure the quality of

13

method
serial

runtime
distributed

runtime
bias variance prerequisites

empirical risk O(mn) O(n) high high –
SRM O(mn) O(n) low high excess risk bound
validation set O(mn) O(n) low high –
bootstrap O(kmn) O(kn) low low –
k-fold cross validation O(kmn) O(kn) low low –
fast k-fold cross validation O(mn) O(n) low low mergable

Table 2.2: Accuracy of different methods for estimating a model’s true error. To simplify
the notation, we assume that: the total number of data points is mn; in the distributed
environment, there are m machines each with n data points; the runtime of alg is O(mn),
map is O(n), and reduce is O(1); and the communication cost of distributed learning is
negligible. Notice that our fast k-fold cross validation method has both the best runtimes
and statistcal properties.

a model, we require a loss function L : {Z} ×W → R.4 The best model f∗ is given by

f∗ = arg min
f∈F

err∗(f(Z)) where err∗(f(Z)) = E
z∼PZ

L(z, f(Z)). (2.8)

Because the distribution over Z is unknown, the distribution over f(Z) is also unknown;

so err∗(f(Z)) cannot be directly computed and must be estimated. Given a loss estimator

êrrg ≈ err∗, we can define an estimator of f∗ as

f̂g = arg min
f∈F

êrrg(f(Z)). (2.9)

The minimization (2.9) is highly nonconvex, and a number of algorithms have been proposed

to solve it. In the popular but naive grid search algorithm, the space of functions F is

discretized into a finite grid F ⊂ F , and the optimization is performed over F . Grid

search tends to work well when F is one dimensional, but the performance degrades in

4Many specific models assume that L is convex or satisfies linearity properties, but in general this need
not be the case.

14

higher dimensions. More advanced techniques involve randomly subsampling F (Bergstra

and Bengio, 2012) and the so-called Bayesian optimization techniques (e.g. Snoek et al.,

2012; Feurer et al., 2015). Each of these techniques requires as a subroutine a good estimate

êrrg of the true error. We focus in the remainder of this section on these loss estimators.

The most obvious estimator of err∗ is the empirical risk

êrremp = L(Z, alg(Z)). (2.10)

Unfortunately, the empirical risk êrremp is heavily biased because it evaluates the model on

the same data it was trained on. Structural risk minimization (SRM) is a technique

that uses a debiased empirical risk êrremp for model selection (Chapter 7 of Shalev-Shwartz

and Ben-David, 2014). The idea is to create a function b : {Z} → R that upper bounds the

excess risk. That is,

err∗ − êrremp ≤ b(Z). (2.11)

These bounds are often given in terms of the learning algorithm’s VC-dimension or Rademacher

complexity. The SRM risk estimator is then given by

êrrsrm = êrremp + b(Z). (2.12)

The main advantage of the SRM estimator is its computational simplicity. SRM is not

often used in practice because deriving the bound function b can be difficult, and the known

bounds are typically not tight enough to give good approximations.

The most commonly used risk estimator in large scale learning is the validation

15

set estimator (Chapter 11 of Shalev-Shwartz and Ben-David, 2014). This method divides

the training data set into two disjoint sets Ztrain and Ztest . The risk is then estimated by

êrrvalid = L(Ztest , f(Ztrain)). (2.13)

This estimator has low bias but high variance. In particular, the variance of êrrvalid is

determined by the number of samples in the validation set: as the number of samples

increases, the variance decreases. Unfortunately, increasing the size of the validation set

decreases the size of the test set, increasing the model’s true error. There is no general

procedure for finding the optimal balance between the size of the training and test sets,

although in practice it is common to use about 10% of the data in the validation set. The

validation set method shares the favorable computational properties of SRM, but is easier

to use because there is no need to derive a bound on the excess risk. When the bound is

loose, as is often the case in practice, the validation set method will also have improved

statistical performance. Whenever the learning algorithm is parallelizable, then both SRM

and the validation set method are parallelizable as well.

The bootstrap improves the statistical properties of the validation set estima-

tor but is more expensive computationally (Efron et al., 1979). The full procedure is

shown in Algorithm 2. The idea is to use repeated subsampling to create many overlapping

train/validation test splits, then average the results. This averaging reduces the variance of

the error estimate. The runtime is linear in the number of resampling iterations k, which

is too expensive for large scale problems. Kleiner et al. (2012) and Kleiner et al. (2014)

introduce the bag of little bootstraps (BLB) as an efficiently computatable alternative

16

Algorithm 2 bootstrap(learning algorithm f , data set Z, number of samples t)

1: for i = 1 to k do
2: let Z(i) be a sample of mn data points from Z with replacement
3: let êrr(i) = L(Z − Z(i), f(Z(i)))
4: end for
5: return êrrboot = 1

k

∑k
i=1 êrr(i)

Algorithm 3 cv(learning algorithm f , data set Z, number of folds k)

1: partition Z into k disjoint sets Z1, ..., Zk
2: for i ∈ {1, ..., k} do
3: let Ztrain

i = Z − Zi
4: let ŵ−i = f(Ztrain

i)
5: let êrremp

i = L(ˆmodeli, Zi)
6: end for
7: return 1

k

∑k
i=1 êrremp

i

to the bootstrap. The BLB subsamples some small fraction of the data set in each itera-

tion before performing the full bootstrap test. This increases the bias of the estimator but

makes it suitable for large scale problems. As there are no data dependencies between each

of the iterations, both the standard bootstrap and BLB are easy to parallelize even when

the learning algorithm is not parallelizable.

Cross validation is a family of techniques that also improves the validation set

method (see Arlot et al., 2010, for a survey). A standard version called k-fold cross validation

is shown in Algorithm 3. The data set Z is partitioned into k smaller data sets Z1, ..., Zk.

For each of these data sets, the validation set estimator is used to approximate the true

error. The results are then averaged and returned.

Naive k-fold cross validation is an expensive procedure taking time linear in the

number of folds k. This makes it unsuitable for large scale learning problems. Algorithm

17

Algorithm 4 fast cv(learning algorithm f , data set Z, number of folds k)

1: partition Z into k equally sized disjoint sets Z1, ..., Zk
2: // calculate local models
3: for i = 1 to k do
4: ŵ

alg
i = map(Zi)

5: end for
6: // calculate prefixes
7: for i = 1 to k do
8: ŵprefix,i = reduce(ŵprefix,i−1, ŵ

alg
i)

9: end for
10: // calculate suffixes
11: for i = k to 1 do
12: ŵsuffix,i = reduce(ŵsuffix,i+1, ŵ

alg
i)

13: end for
14: // merge models and calculate estimated risk
15: for i = 1 to k do
16: ŵ

alg
−i = reduce(ŵprefix,i, ŵsuffix,i)

17: êrr(i) = L(ŵ
alg
−i , Zi)

18: end for
19: return êrrcv = 1

k

∑k
i=1 êrr(i)

4 presents a faster method for cross validation that uses the reducef function (Izbicki,

2013). The algorithm is divided into four loops. In the first loop, a “local model” ŵ
alg
i

is trained on each partition Zi. The second loop calculates “prefix models,” which satisfy

the property that ŵprefix,i ≈ f(∪i−1
j=1Zj). The third loop calculates “suffix models,” which

satisfy the property that ŵprefix,i ≈ f(∪kj=i+1Zj). The final loop merges the prefix and suffix

models so that ŵ
alg
−i ≈ f(Z − Zi). The computed error is then an unbiased estimate of the

true error. When the reducef function is exact, then fast cv will return exactly the same

answer as the standard cv procedure. When reducef is not exact, then fast cv will be an

approximate version of cross validation, and the approximation depends on the accuracy of

reducef .

Standard cross validation can be easily parallelized as there are no data dependen-

18

Algorithm 5 dist cv(learning algorithm f , data set Z, number of folds k)

prerequisite: each machine i has dataset Zi stored locally

1: each machine i:
2: calculate ŵi = map(Zi)
3: broadcast ŵi to each other machine
4: each machine i:
5: compute w−i = reduce{w1, ...,wi−1,wi+1, ...,wk}
6: compute êrremp

i = L(ŵ−i, Zi)
7: transmit êrremp

i to the master
8: the master machine:
9: compute êrremp = 1

k

∑k
i=1 êrremp

i

10: return êrremp

cies between each iteration of the foor loop. The fast cv method is slightly more difficult

to parallelize due to the data dependencies in the first and second for loops.5 Algorithm 5

presents a distributed version of fast cross validation. This algorithm is closely related to

the distributed learning algorithm of Algorithm 1 and has essentially the same runtime. In

other words, when learning an embarrassingly parallel model on a distributed architecture,

we can also perform cross validation with essentially no computational overhead. The only

difference between the distributed cross validation and distributed learning algorithms is

that in the second round of communication, each machine (rather than only the master)

computes the model w−i. As these machines were sitting idle in the distributed training

procedure in Algorithm 1, having them perform work does not increase the runtime. The

runtime of the cross validation procedure is increased slightly by the fact that an addi-

tional round of communication is needed where the master averages the validation errors

calculated on each machine.

5 The standard parallel prefix-sum algorithm can be used to compute the ŵprefix,i and ŵprefix,j vectors
(Ladner and Fischer, 1980; Blelloch, 1990), which would parallelize the fast cv method. These parallel
algorithms are designed for shared memory systems, and it is unclear how they generalize to the distributed
environment where communication is expensive. Thus the dist cv algorithm uses a different approach.

19

Many other fast cross validation procedures have been developed for specific mod-

els. Arlot et al. (2010) provide a survey of results, describing fast cross validation methods

for ridge regression, kernel density estimation, and nearest neighbor classification. Our fast

cross validation framework includes each of these models as a special case, and many more

besides. Joulani et al. (2015) develop a cross validation framework that is closely related to

our own. Their framework is suitable for any incremental learning algorithm (whereas ours

is suitable for mergable algorithms). All previous work on fast cross validation only consid-

ered the non-distributed case, but we have shown that our fast cross validation framework

is suitable for the distributed case.

Both the bootstrap and cross validation are strictly better than the validation set

method of error estimation, but standard no-free-lunch results (e.g. Chapter 8 of Shalev-

Shwartz and Ben-David, 2014) ensure that there is no universally best method for estimating

an estimator’s true error for all distributions. On real world datasets, however, k-fold cross

validation seems to work better and is the method of choice. Kohavi (1995) empirically

compare the bootstrap to k-fold cross validation, and determine that on real world datasets

k-fold cross validation has the best performance. When computational requirements are

ignored, it is tempting to make k as large as possible. One of the limitations of the dist cv

method is that the number of folds must be the same as the number of processors. This will

be relatively small compared to the number of data points. Conveniently, this turns out to

be a good number of folds to use in practice. Rao et al. (2008) shows that for very small

k values, increasing k improves the estimation of the model’s accuracy; but as k increases

beyond a certain threshold, the error of cross validation increases as well. Thus the dist cv

20

method is both computationally cheap and statistically effective for real world data.

2.4 Example mergeable algorithms

Many proposed distributed algorithms fit our mergeable framework and therefore get a fast

cross validation algorithm “for free.” This section reviews this previous work. Section 2.4.1

discusses algorithms with closed form solution; Section 2.4.2 discusses approximate merge

procedures for loss minimization problems; and Section 2.4.3 discusses approximate merge

procedures for Bayesian learning problems. In total, we discuss 32 algorithms. None of the

papers that originally presented these algorithms has fast cross validation procedures,6 but

our fast cross validation procedure is applicable to all these algorithms.

2.4.1 Estimators with closed form solutions

We now show that many popular machine learning algorithms are mergeable. We begin by

looking at models that are exactly mergeable. That is, given data sets Z1, ..., Zm,

reduce({alg(Zi)}mi=1) = alg(∪mi=1Zi). (2.14)

Notice that (2.14) is the same as (2.7) which defined the invariant that reduce should obey

approximate equality, except the ≈ symbol has been replaced by =. In this section, we

show that the RLM estimator for linear exponential families, Bayesian classifers, and ridge

regression all have exact merge functions. A key feature of each of these models is that

the RLM estimator has a closed form solution. This closed form solution is what allows

6For some of these algorithms, fast cross validation procedures do exist, but they were developed in an
ad-hoc manner independent of the mergeable distributed algorithm.

21

the development of an exact merge function. We also show that many other estimators

have closed form solutions not based on the RLM, and these estimators are also exactly

mergeable.

2.4.1.1 Exponential family distributions

Exponential family distributions have nice computational properties and are used frequently

in practice. Many popular distributions (e.g. Gaussian, Dirichlet, Poisson, exponential, and

categorical) are in the exponential family. In this section we will see that a particularly nice

subclass of the exponential family called the linear exponential family is exactly mergeable,

but that other subclasses called curved exponential families and stratified exponential fami-

lies are not. Many of the merge procedures in later sections will depend on the mergeability

of the linear exponential family.

The exponential family (EF) of distributions is defined to be the set Pexp of all

distributions whose density can be written in the form

p (z|w) = h(z) exp
(
wTT (z)− ψ(w)

)
(2.15)

where z ∈ Z and w ∈ W. We make no assumption on the set Z, but require W to

be an open subset of a Hilbert space H. We will ignore the technical details of infinite

dimensional Hilbert spaces and denote the inner product using T in analogy with finite

dimensional vectors. The function h : Z → R is called the base measure, T : Z →W the

sufficient statistic, and ψ : W → R the log partition function. Many authors require

ψ to be strongly convex, but we will require only the weaker condition that the derivative

22

be invertible.

The standard method to estimate parameters in the exponential family is with

maximum likelihood estimation (MLE). MLE is equivalent to RLM with the regular-

ization strength λ = 0 and loss equal to the negative log likelihood. That is,

`(z; w) = − log p (z|w) = − log h(z)−wTT (z) + ψ(w), (2.16)

and the parameter estimate is given by

ŵexp = arg min
w∈W

∑
z∈Z

(
ψ(w)−wTT (z)

)
. (2.17)

The − log h(z) term in (2.16) does not depend on the parameter w and so does not appear

in the optimization (2.17).

In the special case when W = H = Rd, the distribution is said to be in the linear

exponential family (LEF).7 Let Z be a dataset with mn elements. Then the parameter

estimate (2.17) has closed form solution

ŵexp = ψ′−1

(
1

mn

∑
z∈Z

T (z)

)
, (2.18)

which follows from setting the derivative of the objective in (2.17) to zero and solving for

w. Because the equation for ŵexp can be given in closed form, an exact merge procedure

exists. Decompose the data set Z into m data sets Z1, ..., Zm each of size n. On each local

7The LEF is sometimes called the full exponential family (FEF) when the parameters are identifiable.

23

data set, the parameter estimate is defined to be

ŵexp
i = ψ′−1

 1

n

∑
z∈Zi

T (z)

 (2.19)

and the merge procedure is then

reduce({ŵexp
i }

m
i=1) = ψ′−1

(
1

m

m∑
i=1

ψ′
(
ŵrlm
i

))
. (2.20)

Substituting (2.19) into (2.20) gives the standard MLE (2.18). That is, the merge function

is exact. For the linear exponential family, we can therefore parallelize training and perform

fast cross validation.

Other important subfamilies of the exponential family do not have exact merge

procedures. When the parameter space W is a manifold in the underlying Hilbert space

H, we say the distribution is in the curved exponential family (CEF). The CEF was

introduced by Efron (1975) and Amari (1982). Amari (2016) provides a modern treatment

of the CEF from the perspective of information geometry. The CEF is used to represent

dependency relationships between random variables, and a particularly important subset of

the CEF is the set of undirected graphical models with no hidden variables. Liu and Ihler

(2012) prove that no exact merge procedure exists for CEF distributions.

When the parameter space W is an algebraic variety (i.e. the set of roots of low

dimensional polynomials embedded in high dimensional space.), then the distribution is in

the stratified exponential family (SEF). Geiger and Meek (1998) and Geiger et al. (2001)

introduced SEFs and show that the SEF is equivalent to the set of directed or undirected

24

graphical models with hidden variables. They further show that

LEF ⊂ CEF ⊂ SEF ⊂ EF, (2.21)

where the set inequalities in (2.21) are strict. An immediate consequence of (2.21) is that

exact merge procedures do not exist for general SEF distributions since they do not exist for

CEF distributions. The deep exponential family (DEF) of distributions was proposed

by Ranganath et al. (2015) and is a subset of the SEF. A distribution is in the DEF if it

is the distribution resulting from placing EF priors on the natural parameters of an EF

distribution. Although exact merge procedures do not exist for the CEF, SEF, or DEF,

approximate merge procedures can be used. See Section 2.4.2 for examples of approximate

merge procedures.

2.4.1.2 Naive Bayes

Generative classifiers are some of the oldest and simplest machine learning algorithms. They

model the data as a probability distribution, and parameter estimation of the classifier is

just parameter estimation of the underlying distribution. Whenever the distribution has

a mergeable learning algorithm, then the generative classifier does as well. Fast cross

validation methods for generative classifiers seem to be “folk knowledge” in the statistical

community, but we know of no publications earlier than Izbicki (2013) that describe a fast

cross validation method.

Formally, in classification we assume that the data space Z = X × Y, where X

is the space of features and Y is a finite set of class labels. The goal of classification is to

25

learn an unknown function ŷ : X → Y. In a generative classifier, the function ŷ has the

form

ŷ(x) = arg max
y∈Y

p(y|x) (2.22)

where p(y|x) is a distribution from a known family with unknown parameters. By Bayes

theorem, we have that

p(y|x) =
p(y)p(x|y)

p(x)
, (2.23)

and so (2.22) can be rewritten as

ŷ(x) = arg max
y∈Y

p(y)p(x|y). (2.24)

The 1/p(x) factor is dropped as it does not affect the optimization. To learn a generative

classifier, we need to learn the parameters of the distributions p(y) and p(x|y). Whenever

these distributions have mergeable learning algorithms, then the generative classifier does

as well.

The naive Bayes model is an important special case of a generative classifier that

makes the following simplifying assumptions: the feature space X = Rd, and each feature

x(i) is independent given y. In notation,

p(x|y) =

d∏
i=1

p(x(i)|y). (2.25)

26

Substituting into (2.24) gives the naive Bayes classification rule

ŷ(x) = arg max
y∈Y

p(y)
d∏
i=1

p(x(i)|y). (2.26)

The distribution p(y) is typically assumed to be the categorical distribution, and the distri-

butions p(x(i)|y) are typically assumed to be univariate categorical distributions for discrete

data or univariate normal distributions for continuous data. All of these distributions are

in the linear exponential family, so naive Bayes has an exact mergeable learning algorithm.

2.4.2 Approximate regularized loss minimization

The regularized loss minimizer (RLM) is a large and popular family of learning algo-

rithms. It is defined to be

ŵrlm = arg min
w∈W

L(Z; w) + λr(w) (2.27)

where λ is a hyperparameter and r :W → R a regularization function. In the common case

where the data Z is drawn i.i.d. from Z, the loss function can be decomposed as

L(Z; w) =
∑
z∈Z

`(z; w) (2.28)

where ` : Z → W is also called the loss function. The RLM estimator is then equivalently

written as

ŵrlm = arg min
w∈W

∑
z∈Z

`(z; w) + λr(w). (2.29)

27

Ridge regression (Section 2.1) is an example RLM where

`(x, y; w) = ‖y −wTx‖2 and r(w) = ‖w‖2. (2.30)

Unlike the ridge regression case, most RLM problems have no closed form solution. There-

fore, no exact merging procedure exists, but a large body of work has formed that develops

approximate merge procedures. Before presenting these merge procedures, we begin with a

discussion about when approximate merge procedures are appropriate.

2.4.2.1 When are approximate merge procedures appropriate?

Approximate merge procedures are appropriate when the approximation has a small effect

on an estimator’s statistical error. When W is a normed space, we define the statistical

error of an estimator f to be ‖w∗ − ŵf‖ where w∗ is called the true parameter and

defined to be

w∗ = arg min
w∈W

E
z∼PZ

L(z; w). (2.31)

We assume for notational convenience that w∗ is unique. A low statistical error ensures

that the estimator has low loss for any reasonable loss function.

Standard results on the RLM estimator show that if the size of the training set

Z is mn, then ‖w∗ − ŵf‖ ≤ O(1/
√
mn) under mild conditions on f (e.g. Lehmann, 1999).

This rate of convergence is known to be optimal in the sense that no estimator can have

faster convergence. But alternative estimators can also have this optimal convergence rate.

Therefore, the goal when designing an approximate merge method is to design an algorithm

that matches this convergence rate.

28

Exact merge procedures for RLM problems automatically inherit the O(1/
√
mn)

convergence rate. If an approximate merge procedure also has an O(1/
√
mn) convergence

rate, then it is just as good as the standard RLM procedure from a statistical perspective.

We shall see that existing merge procedures are only able to achieve this rate under special

conditions. In the Chapter 3, we present a novel algorithm called the optimal weighted

average that achieves this optimal convergence rate in the most general setting. We divide

existing approximate merge methods into three categories. Section 2.4.2.2 presents merge

procedures based on averaging. Section 2.4.2.3 presents merge procedures specialized for

principle component analysis (PCA), and Section 2.4.2.4 presents merge procedures for

submodular losses. In Chapter 3, we present a more general merge procedure with better

statistical and computational properties than existing methods.

2.4.2.2 Averaging based methods

The averaging based merge procedures are the simplest. Most of these procedures require

only that the parameter space W have vector space structure. This is common in many

problems, the standard example being logistic regression. This section presents 9 published

merge methods (Merugu and Ghosh, 2003; McDonald et al., 2009; Zinkevich et al., 2010;

Zhang et al., 2012, 2013b; Liu and Ihler, 2014; Battey et al., 2015; Han and Liu, 2016; Jordan

et al., 2016; Lee et al., 2017). There is no previously published fast cross validation method

for these learning algorithms, but the method presented in Section 2.3 can be applied to all

of them. A common theme of these merge procedures is that they do not depend on the

data. In the next chapter, we present a novel improvement to these estimators that does

depend on the data and so has better approximation guarantees.

29

The simplest and most popular mergeable estimator is the naive averaging es-

timator. The map procedure is given by

ŵrlm
i = arg min

w∈W

∑
z∈Zi

`(z; w) + λr(w) (2.32)

where ŵrlm
i is called the local regularized risk minimizer on machine i, and the reduce

procedure is given by

ŵave =
1

m

m∑
i=1

ŵrlm
i . (2.33)

Naive averaging was first studied by McDonald et al. (2009) for the case L2 regularized

maximum entropy models. They use the triangle inequality to decompose the statistical

error as

‖w∗ − ŵave‖ ≤ ‖w∗ − E ŵave‖+ ‖E ŵave − ŵave‖. (2.34)

We call the ‖w∗ − E ŵave‖ the bias of ŵave and the ‖E ŵave − ŵave‖ term the variance8

of ŵ. They provide concentration inequalities for the estimation error, showing that the

variance reduces at the optimal rate of O((mn)−1/2), but that the bias reduces only as

O(n−1/2). Therefore naive averaging works well on unbiased models, but poorly on models

with large bias. Subsequent work has focused on merge methods that improve both the

bias and the variance.

Under more stringent assumptions, it can be shown that the bias of ŵave will

reduce at a faster rate. In particular, when the bias of ŵrlm
i shrinks faster than O(n1/2),

then naive averaging can be an effective merge procedure. Zhang et al. (2012) show that the

8 It is also common to call the term ‖E ŵ − ŵ‖2 the variance, in which case ‖E ŵ − ŵ‖ could be called
the deviation.

30

mean squared error (MSE) E ‖w∗ − ŵave‖2 decays as O((mn)−1+n−2). This matches the

optimal MSE of ŵrlm whenever m < n. Their analysis also requires limiting assumptions.

For example, they assume the parameter space W is bounded. This assumption does not

hold under the standard Bayesian interpretation of L2 regularization as a Gaussian prior

of the parameter space. They further make strong convexity and 8th order smoothness

assumptions which guarantee that ŵrlm
i is a “nearly unbiased estimator” of w∗. Most

recently, Rosenblatt and Nadler (2016) analyze ŵave in the asymptotic regime as the number

of data points n → ∞. This analysis is more general than previous analyses, but it does

not hold in the finite sample regime. Zinkevich et al. (2010) show that if the local training

sets Zi partially overlap each other (instead of being disjoint), then the resulting estimator

will have lower bias.

Zhang et al. (2013b) show how to reduce bias in the special case of kernel ridge

regression. By a careful choice of regularization parameter λ, they cause ŵrlm
i to have

lower bias but higher variance, so that the final estimate of ŵave has both reduced bias

and variance. This suggests that a merging procedure that reduces bias is not crucial to

good performance if we set the regularization parameter correctly. Typically there is a

narrow range of good regularization parameters, and finding a λ in this range is expensive

computationally. Our dist cv method in Algorithm 5 can be used to more quickly tune

this parameter.

Battey et al. (2015) and Lee et al. (2017) independently develop methods to reduce

the bias for the special case of lasso regression.9 In the lasso, the loss function is the squared

9 Both Battey et al. (2015) and Lee et al. (2017) originally appeared on arXiv at the same time in 2015,
but only Lee et al. (2017) has been officially published.

31

loss (as in ridge regression), but the regularization function is the L1 norm (instead of the

squared L2 norm). The idea is to use an estimator with low bias and high variance to train

a model on each local data set Zi. Then, when the results are averaged, the bias will remain

low, and the high variance will be reduced. They propose using the following debiased

lasso estimator (DLE) on each dataset:

ŵdle
i = ŵrlm

i +
1

n
Θ̂XT(y −Xŵrlm

i), (2.35)

where Θ̂ is an approximate inverse of the empirical covariance Σ̂ = XTX. The resulting

debiased average (DAVE) estimator is

ŵdave =
1

m

m∑
i=1

ŵdle. (2.36)

The bias and variance of this estimator both shrink at the optimal rate of O((nm)−1/2.

Zhang et al. (2012) provide a debiasing technique that works for any estimator. It

works as follows. Let r ∈ (0, 1), and Zri be a bootstrap sample of Zi of size rn. Then the

bootstrap average estimator is

ŵboot =
ŵave − rŵave,r

1− r
, where ŵave,r =

1

m

m∑
i=1

arg max
w

∑
(x,y)∈Zr

i

`(y,xTw) + λr(w).

The intuition behind this estimator is to use the bootstrap sample to directly estimate

and correct for the bias. When the loss function is convex, ŵboot enjoys a mean squared

error (MSE) that decays as O((mn)−1 + n−3). There are two additional limitations to

ŵboot. First, the optimal value of r is not obvious and setting the parameter requires cross

32

validation on the entire data set. So properly tuning λ2 is more efficient than r. Second,

performing a bootstrap on an unbiased estimator increases the variance. This means that

ŵboot could perform worse than ŵave on unbiased estimators.

Jordan et al. (2016) propose to reduce bias by incoporating second order informa-

tion into the average. In particular, they develop an approach that uses a single approximate

Newton step in the merge procedure. As long as the initial starting point (they suggest

using ŵave) is within O(
√

1/n) of the true parameter vector, then this approach converges

at the optimal rate. When implementing Jordan et al.’s approach, we found it suffered

from two practical difficulties. First, Newton steps can diverge if the starting point is not

close enough. We found in our experiments that ŵave was not always close enough. Sec-

ond, Newton steps require inverting a Hessian matrix. In the experiments of Chapter 3, we

consider a problem with dimension d ≈ 7 × 105; the corresponding Hessian is too large to

practically invert.

Liu and Ihler (2014) propose a more Bayesian approach inspired by Merugu and

Ghosh (2003). Instead of averaging the model’s parameters, they directly “average the

models” with the following KL-average estimator:

ŵkl = arg min
w∈W

m∑
i=1

KL

(
p(·; ŵrlm

i)

∥∥∥∥ p(·; w)

)
. (2.37)

Liu and Ihler show theoretically that this is the best merge function in the class of functions

that do not depend on the data. The main disadvantage of KL-averaging is computational.

The minimization in (2.37) is performed via a bootstrap sample from the local models,

which is computationally expensive. This method has three main advantages. First, it

33

is robust to reparameterizations of the model. Second, it is statistically optimal for the

class of non-interactive algorithms. Third, this method is general enough to work for any

model, even if the parameter space W is not a vector space. The main downside of the

KL-average is that the minimization has a prohibitively high computational cost. Let nkl

be the size of the bootstrap sample. Then Liu and Ihler’s method has MSE that shrinks

as O((mn)−1 + (nnkl)−1). This implies that the bootstrap procedure requires as many

samples as the original problem for a single machine to get a MSE that shrinks at the same

rate as the averaging estimator. Han and Liu (2016) provide a method to reduce the MSE

to O((mn)−1 + (n2nkl)−1) using control variates, but the procedure remains prohibitively

expensive. Their experiments show the procedure scaling only to datasets of size mn ≈ 104,

whereas our experiments involve a dataset of size mn ≈ 108.

2.4.2.3 Principle component analysis

Principle component analysis (PCA) is a popular technique for dimensionality reduc-

tion. In this section, we describe how PCA works on a single machine, show that two

existing techniques for distributed PCA are mergeable (Qu et al., 2002; Liang et al., 2013),

and describe the importance of fast cross validation techniques for PCA.

Let Z denote the mn × d input data matrix. The goal of PCA is to find a d × k

matrix with k << d such that the distance between Z and Zww† is minimized. Formally,

ŵpca = arg min
w∈Rd×k

‖Z − Zww†‖2. (2.38)

The optimization (2.38) is non-convex, but the solution can be calculated efficiently via the

34

singular value decomposition (SVD). The SVD of Z is

Z = UDV T, (2.39)

where U is an orthogonal matrix of dimension mn×mn, D is a diagonal matrix of dimension

mn× d, and V is an orthogonal matrix dimension d× d. The columns of U are called the

left singular vectors, the columns of V the right singular vectors, and the entries in D the

singular values. The solution to (2.38) is given by the first k columns of V . Halko et al.

(2011) provides a method for efficiently calculating approximate SVDs on a single machine

when only the first k singular values/vectors are needed.

Qu et al. (2002) and Liang et al. (2013) introduce essentially the same algorithm

for distributed PCA. Each machine i locally calculates the SVD of its local dataset Zi =

UiDiVi
T. Let D

(k)
i denote the k × k submatrix of Di containing the first k singular values,

and V
(k)
i denote the d×k submatrix of Vi containing the first k columns. The local machines

each transmit D
(k)
i and V

(k)
i to the master machine. The master calculates

S =
m∑
i=1

V
(k)
i D

(k)
i V

(k)
i

T
(2.40)

Performing the SVD on S then gives the approximate principle components of the entire

data set Z. Qu et al. (2002) further provide a modification to the merge procedure that

approximately centers the data, but they do not provide any theoretical guarantees on the

performance of their algorithm relative to the single machine oracle. Liang et al. (2013) do

not consider the possibility of centering the data, but they do show that their algorithm is

35

a 1 + ε approximation of the single machine algorithm, where ε depends on properties of

the data and the choice of k.

A major difficulty in PCA (distributed or not) is selecting a good value for k.

There are two reasons to choose a small value of k. The most obvious is computational.

When k is small, future stages in the data processing pipeline will be more efficient because

they are working in a lower dimensional space. But there is a more subtle statistical reason.

When there is a large noise component in the data, using fewer dimensions removes this

noise and improves the statistical efficiency of later stages of the data pipeline. Perhaps

the simplest method of determining k is the scree test (Cattell, 1966), where the data’s

singular values are plotted and the analyst makes a subjective judgement. More robust

methods make distributional assumptions (Bartlett, 1950). Under these assumptions, the

noise in the data can be estimated directly and k determined appropriately. When these

distributional assumption do not hold, however, the resulting k value can be arbitrarily poor.

The most robust solution uses cross validation and the PRESS statistic. Unfortunately, this

is also the most expensive technique computationally. Considerable work has been done to

improve both the theoretical guarantees of cross validation and improve its runtime via

approximations (Wold, 1978; Eastment and Krzanowski, 1982; Krzanowski, 1987; Mertens

et al., 1995; Diana and Tommasi, 2002; Engelen and Hubert, 2004; Josse and Husson, 2012;

Camacho and Ferrer, 2012). Notably, none of these fast cross validation techniques work

in the distributed setting. Thus the distributed fast cross validation technique due to the

mergeability of Qu et al. (2002) and Liang et al. (2013) is both novel and useful.

36

2.4.2.4 Submodular optimization

Submodular functions are a class of set function that share many important properties with

convex functions (Lovász, 1983). In particular, they are easy to optimize and have many ap-

plications. The maximization of submodular functions has become an important technique

in the approximation of NP-hard problems (Krause and Golovin, 2014). Applications in

machine learning include clustering, sparse nonparametric regression, image segmentation,

document summarization, and social network modeling (see references within Mirzasoleiman

et al., 2016). The last five years has seen work focused on scaling up submodular optimiza-

tion via distributed algorithms. Six of these methods create mergeable estimators that fit

our framework (Mirzasoleiman et al., 2013; Barbosa et al., 2015; Malkomes et al., 2015;

Bhaskara et al., 2016; Barbosa et al., 2016; Mirzasoleiman et al., 2016) and so induce fast

cross validation procedures. This is the first work addressing fast cross validation in sub-

modular learning algorithms. In this section we first define submodularity, then introduce

the distributed optimizers.

For a set function f : {Z} → R, a set Z ⊂ Z and an element e ∈ Z, we define the

discrete derivative of f at Z with respect to e to be

f ′(e;Z) = f(Z ∪ {e})− f(Z). (2.41)

We call the function f monotone if for all e and Z, f ′(e;Z) ≥ 0. We further call f

submodular if for all A ⊆ B ⊆ Z and e ∈ Z −B,

f ′(e;A) ≥ f ′(e;B). (2.42)

37

Algorithm 6 greedy(data set Z, constraint size k)

1: S ← {}
2: for i = 1 to k do
3: zi ← arg maxz∈Z−S f

′(z;S)
4: S ← S ∪ {zi}
5: end for
6: return S

We first consider the problem of monotone submodular maximization subject to cardinality

constraints. That is, we want to solve

Ŝ = arg max
S⊆Z

f(S) s.t. |S| ≤ k. (2.43)

Solving (2.43) is NP-hard in general, so it is standard to use the greedy approximation

algorithm introduced by Nemhauser et al. (1978). The procedure (which we will refer to

as greedy) is shown in Algorithm 6. The greedy algorithm is known to be a 1 − 1/e

approximation algorithm10, and no better approximation algorithm exists unless P = NP

(Krause and Golovin, 2014).

Mirzasoleiman et al. (2013) introduced the first method of merging independently

computed solutions in their GreeDi (GREEdy DIstributed) algorithm. GreeDi works by

first running the greedy algorithm locally on each node to compute local solutions ŵgreedy
i .

These solutions are transmitted to the master machine. The master combines the local

solutions into a set of size km and reruns greedy on the combined set. In notation, the

10 The symbol e is Euler’s constant and not an approximation variable.

38

merge procedure is given by

GreeDi(ŵgreedy
1 , ..., ŵgreedy

m) = greedy(∪mi=1ŵ
greedy
i , k). (2.44)

Mirzasoleiman et al. (2013) show that in the worst case, GreeDi achieves an approximation

guarantee of

f(ŵGreeDi) ≥ (1− 1/e)2

min{m, k}
f(w∗). (2.45)

Barbosa et al. (2015) improve the analysis of GreeDi to show that in expectation

f(ŵGreeDi) ≥ 1− 1/e

2
f(w∗), (2.46)

which matches the guarantee of the optimal greedy centralized algorithm up to the 1/2

constant factor. Notably, the approximation is independent of the number of machines m

or the size of the problem k.

Subsequent work has extended the GreeDi framework to apply to more general

submodular optimization problems. Malkomes et al. (2015) solves the k-centers clustering

problem; Bhaskara et al. (2016) solves the column subset selection problem; and both

Barbosa et al. (2016) and Mirzasoleiman et al. (2016) solve submodular problems with

matroid, p-system, and knapsack constraints. The algorithms presented in each of these

papers follows the same basic pattern: the greedy algorithm used by the local machines

and the merge procedure is replaced by an alternative algorithm that is more appropriate

for the new problem setting.

As with continuous statistical optimization problems, the difficulty of submodular

39

optimization is known to depend on the curvature of the problem (Vondrák, 2010). The

submodular curvature is defined to be

c = 1−min
e∈Z

f ′(e;Z − e)
f(e)

. (2.47)

When the curvature is small, the greedy algorithm will perform better. In particular, when

the c = 0 the problem is said to be modular and the greedy algorithm returns an optimal

solution. Vondrák (2010) shows that for all c > 0, greedy returns a (1−e−c)/c approximate

solution, and that no better approximation is possible. There is as yet no work discussing

the relationship of curvature to the difficulty of merging local solutions. It seems likely,

however, that a bound analogous to the continuous bound provided by Liu and Ihler (2014)

will hold.

2.4.3 Bayesian methods

In Bayesian inference, we treat the data set Z as observed variables and assume there

is a hidden variable θ on which the data depends. For ease of notation, we will assume

that θ ∈ Rd and the data set Z contains mn i.i.d. data points. That is, the distribution

of Z is p(Z|θ) =
∏mn
i=1 p(zi|θ).11 Our goal is to calculate the posterior distribution

p(θ|Z). In this section we discuss three general techniques for learning the posterior. We

warm-up with the Bernstein-von Mises (BvM) method. BvM uses a simple model based

on a parametric approximation. The method of merging linear exponential families from

Section 2.4.1.1 is then used to merge the posteriors. Next we discuss variational inference

11 In general these conditions can be relaxed at the expense of more complicated notation.

40

(VI). VI also makes a parametric approximation, but uses a more complex optimization

procedure to choose the parameters. We shall see that the merge procedures for VI are

closely related to those for RLM, and in particular that all the merge procedures for RLM

of Section 2.4.2 can be directly applied to the VI problem. Previous work has not noticed

this connection. The final method is Markov chain Monte Carlo (MCMC). MCMC uses

sampling to approximate the posterior. The merge procedures for MCMC share little in

common with merge procedures for any other problem.

2.4.3.1 Bernstein-von Mises

When the posterior distribution p(θ|Zi) has a parametric form in the linear exponential

family, then the local posteriors can easily be combined (see Section 2.4.1.1). Under mild

conditions, the Bernstein-von Mises theorem12 states that as the number of samples

n → ∞, the distribution p(θ|Zi) converges to a normal distribution. See for example

Chapter 10.2 of van der Vaart (1998) for a formal statement of the theorem with conditions.

Neiswanger et al. (2014) use this result to create a simple distributed learning procedure

that can be thought of as the Bayesian version of naive parameter averaging (see Section

2.4.2.2).

The full procedure is as follows. By Bayes theorem, we have that the posterior

can be written as

p(θ|Z) =
p(Z|θ)p(θ)
p(Z)

(2.48)

where p(θ) is the prior distribution over the parameters θ. Neiswanger et al. (2014) define

12 The Bernstein-von Mises theorem is also often called the Bayesian central limit theorem.

41

the subposterior distribution for a dataset Zi to be

p(θ|Zi) =
p(Z|θ)p(θ)1/m

p(Zi)
. (2.49)

Notice the subposterior uses the underweighted prior p(θ)1/m. Some merge procedures use

this underweighted prior on the subposterior, and some use the unmodified prior. Here, our

choice of the underweighted prior means that we can rewrite the full posterior as

p(θ|Z) ∝ p(θ)p(Z|θ) = p(θ)
m∏
i=1

p(Zi|θ) ∝ p(θ)
m∏
i=1

p(θ|Zi)p(θ)−1/m =
m∏
i=1

p(θ|Zi). (2.50)

By the Berstein-von Mises theorem, we also have that the subposterior can be approximated

as

p (θ|Zi) ≈ N (θ; µ̂i, Σ̂i) (2.51)

where µ̂i and Σ̂i are local mean and covariance parameter estimates computed by either

variational inference (Section 2.4.3.2) or Markov chain Monte Carlo (Section 2.4.3.3), and

N (θ; µ̂i, Σ̂i) is the density of the multivariate normal distribution with mean µi and covari-

ance Σ̂i. Combining (2.50) and (2.51) gives our final parameter estimate

p (θ|Z) ∝
m∏
i=1

p (θ|Zi) ≈
m∏
i=1

N (θ; µ̂i, Σ̂i) = N (θ; µ̂, Σ̂), (2.52)

where

Σ̂ =

(
m∑
i=1

Σ̂−1
i

)−1

and µ̂ = Σ̂

(
m∑
i=1

Σ̂−1µi

)
. (2.53)

When the number of samples per machine n is much greater than the number of machines

42

m and the dimensionality of the problem d, then (2.53) provides a good estimate of the true

posterior distribution. Like the naive averaging method of Section 2.4.2.2, however, (2.53)

will be highly biased when n is small. Variational inference and Markov chain Monte Carlo

typically provide much better results.

2.4.3.2 Variational inference

Variational inference (VI) is a popular method for approximating intractable posterior dis-

tributions (Jordan et al., 1999; Blei et al., 2017). There are three existing methods of

distributed VI that fit our merging framework (Broderick et al., 2013; Campbell and How,

2014; Neiswanger et al., 2015). To describe these methods, we will present VI as a spe-

cial case of regularized loss minimization (RLM). This is a non-standard presentation of

VI, but it highlights the similarities between distributed VI methods and the distributed

RLM methods already presented. In particular, the 9 mergeable RLM estimators of Section

2.4.2.2 can be applied directly to the VI problem. These estimators have several advan-

tages over the VI-specific merging procedures, including explicit regret bounds. Each of

these merge procedures induces a fast cross validation procedure (by Section 2.3), and we

believe these are the first published fast cross validation procedures for VI.

Variational inference uses optimization to create a deterministic approximation

to the posterior that is easy to compute. The first step is to select a surrogate family of

densities Q = {q(θ|w) : w ∈ W}, then the optimal density q(θ|ŵvi) is given by solving the

optimization

ŵvi = arg min
w∈W

KL(q(θ|w) ‖ p(θ|Z)). (2.54)

43

Solving (2.54) is equivalent to the RLM problem

ŵvi = arg min
w∈W

∑
z∈Z

`(z; w) + r(w) (2.55)

where

`(z; w) = −
∫
θ∈Θ

q(θ|w) log p(z|θ) dθ and r(w) = KL(q(θ|w) ‖ p(θ)). (2.56)

The loss ` above is commonly known as the negative cross entropy. Practitioners commonly

choose the distributions p and q to be conjugate members of the exponential family, in

which case ` and r will have closed form representations. The equivalence between (2.54)

and (2.55) follows because

KL(q(θ|w) ‖ p(θ|Z)) (2.57)

=

∫
θ∈Θ

q(θ|w) log
q(θ|w)

p(θ|Z)
dθ (2.58)

=

∫
θ∈Θ

q(θ|w) log q(θ|w) dθ −
∫
θ∈Θ

q(θ|w) log p(θ|Z) dθ (2.59)

=

∫
θ∈Θ

q(θ|w) log q(θ|w) dθ −
∫
θ∈Θ

q(θ|w) log
p(Z|θ)p(θ)
p(Z)

dθ (2.60)

=

∫
θ∈Θ

q(θ|w) log
q(θ|w)

p(θ)
dθ −

∫
θ∈Θ

q(θ|w) log p(Z|θ) dθ +

∫
θ∈Θ

q(θ|w) log p(Z) dθ (2.61)

=

∫
θ∈Θ

q(θ|w) log
q(θ|w)

p(θ)
dθ −

∫
θ∈Θ

q(θ|w) log p(Z|θ) dθ + log p(Z) (2.62)

=

∫
θ∈Θ

q(θ|w) log
q(θ|w)

p(θ)
dθ −

∫
θ∈Θ

q(θ|w) log
∏
z∈Z

p(z|θ) dθ + log p(Z) (2.63)

=

∫
θ∈Θ

q(θ|w) log
q(θ|w)

p(θ)
dθ −

∑
z∈Z

∫
θ∈Θ

q(θ|w) log p(z|θ) dθ + log p(Z) (2.64)

44

= r(w) +
∑
z∈Z

`(z; w) + log p(Z) (2.65)

Finally, since the term log p(Z) does not depend on w it can be removed from the optimiza-

tion in (2.55). Because of this reduction of VI to RLM, the 9 techniques for merging RLM

estimators can be applied directly to the VI problem. No previous literature has noticed

this connection.

We now present three methods for distributed VI that are not derived from the

RLM problem. Broderick et al. (2013) proposed the first method, streaming distributed

asynchronous Bayes (SDA-Bayes). SDA-Bayes is effectively a form of naive parameter

averaging (see Section 2.4.2.2) that also updates the regularization. Each local machine

calculates the variational approximation q(θ|ŵvi
i) locally, then the merged parameters are

given by

ŵsda = (1−m)ŵvi
0 +

m∑
i=1

ŵvi
i (2.66)

where ŵvi
0 denotes the hyper parameters of the prior distribution p(θ), which is assumed to

be in the same exponential family as the variational approximation q(θ|ŵvi
i).

The merge formula for SDA-Bayes has the following probabilistic justification.

We can factor the global posterior into local posteriors and apply the exponential family

assumption to get

p(θ|Z) = p(θ|Z1, ..., Zm) (2.67)

∝

(
m∏
i=1

p(Zi|θ)

)
p(θ) (2.68)

45

∝

(
m∏
i=1

p(θ|Zi)
p(θ)

)
p(θ) (2.69)

= p(θ)1−m
m∏
i=1

p(θ|Zi) (2.70)

≈ p(θ)1−m
m∏
i=1

q(θ|ŵvi
i) (2.71)

= h(θ) exp

((1−m)ŵvi
0 +

m∑
i=1

ŵvi
i

)T

T (θ)− (1−m)ψ(ŵvi
0)−

m∑
i=1

ψ(ŵvi
i)

(2.72)

≈ h(θ) exp

((1−m)ŵvi
0 +

m∑
i=1

ŵvi
i

)T

T (θ)− ψ

(
(1−m)ŵvi

0 −
m∑
i=1

ŵvi
i

) (2.73)

= h(θ) exp
(
ŵsdaTT (θ)− ψ(ŵsda)

)
(2.74)

= q(θ|ŵsda) (2.75)

Notice that in (2.69), SDA-Bayes does not assume the underweighted prior in the subposte-

rior p(θ|Zi) as we assumed in the Bernstein-von Mises merge procedure. The approximation

of line (2.71) is the variational approximation, and the approximation of line (2.73) assumes

linearity of ψ. In general, ψ may be highly non-linear and so SDA-Bayes provides no guar-

antees on how well ŵsda approximates the single machine oracle VI parameters ŵvi. A

major advantage of using the RLM procedures instead is that they do come with these

guarantees. For example, even the simple naive average guarantees optimal reduction in

variance (Section 2.4.2.2).

Other work on mergeable VI has made the SDA algorithm more widely appli-

cable. One limitation of SDA-Bayes is that it only works when the parameters of the

variational family are identifiable. We say that the variational family is identifiable if for

46

all w1 6= w2 ∈ W , q(θ|w1) 6= q(θ|w2). One important class of nonidentifiability is parame-

ter symmetry. Let Sd denote the group of permutation matrices of dimension d (called the

symmetric group of order d), and recall that the variational parameter space W = Rd. We

say that the parameter space exhibits symmetry if for any P ∈ Sd, q(θ|w) = q(θ|Pw).

Symmetry is commonly found in mixture models, and it complicates their learning. Camp-

bell and How (2014) propose an extension to SDA-Bayes called approximate merging of

posteriors with symmetries (AMPS). The AMPS estimator is given by

ŵamps = (1−m)ŵvi
0 +

m∑
i=1

Piŵ
vi
i (2.76)

where the Pi are given by

{Pi} = arg max
Pi∈Sd

ψ

(
(1−m)ŵvi

0 +

m∑
i=1

Piŵ
vi
i

)
(2.77)

The intuition behind AMPS is that we should permute each machine’s parameters in such

a way that they have the highest probability of being aligned correctly. Maximizing the

log partition function ψ does this. The idea of optimizing over permutation matrices to

handle symmetry non-identifiabilities is useful in general RLM optimization problems, not

only variational methods. This idea has not been applied to general RLM problems, but

all the merge methods of Section 2.4.2.2 could be augmented with this capability relatively

easily.

A second limitation of SDA-Bayes is that it requires the prior and variational fam-

ilies be conjugate. Gershman et al. (2012) introduce nonparametric variational infer-

47

ence (NVI), which is a single machine method that does not require conjugacy. Neiswanger

et al. (2015) propose to combine SDA-Bayes with the NVI model. The central idea is that

the variational family should be a mixture of normal distributions. That is,

Qnvi =

{
1

k

k∏
i=1

N (θ;µ,Σ) : µ ∈ Rd,Σ is a d dimensional covariance matrix

}
(2.78)

and k is a hyperparameter determining the number of mixture components. Since Qnvi is

a family of mixture models, it exhibits parameter symmetry. Rather than optimizing over

rotation matrices like AMPS, Neiswanger et al. (2015) choose to use a merge procedure that

uses sampling to align the components. As the details are rather complicated, we do not

describe them here. We do note, however, that the sampling is done locally on the master

machine with no communication. The method therefore fits our framework.

In summary, we argue that VI problems should be seen as a special type of RLM

problem. This lets the merge procedures of Section 2.4.2.2 apply directly to the VI problem.

No experiments have yet been performed with these merge procedures on VI problems; but

we might hope they will perform well because they have strong theoretical guarantees

whereas the existing VI merge procedures completely lack theoretical guarantees.

2.4.3.3 Markov chain Monte Carlo

Markov chain Monte Carlo (MCMC) is a stochastic method for approximating the

posterior of a distribution (e.g. Andrieu et al., 2003). MCMC provides a way to generate

samples from the posterior distribution, and these samples can be used to estimate statistics

like the expectation or mode of the distribution. MCMC is typically slower than variational

48

inference but more accurate. As the number of MCMC samples approaches infinity, the

approximation error of MCMC shrinks to zero; whereas for variational methods, the approx-

imation error is always some nonzero constant determined by the variational distribution.

Because MCMC is computationally expensive, many techniques have been developed to

scale MCMC to large datasets. In this section, we will see that seven distributed MCMC

algorithms use merge procedures and fit our framework (Wang and Dunson, 2013; Minsker

et al., 2014; Neiswanger et al., 2014; Wang et al., 2015; White et al., 2015; Srivastava et al.,

2015; Nemeth and Sherlock, 2016; Scott et al., 2016). Another popular approach to re-

ducing the computational burden of MCMC samplers is via fast cross validation methods

(Marshall and Spiegelhalter, 2003; Bhattacharya et al., 2007; Bornn et al., 2010; Held et al.,

2010; Vehtari et al., 2012; Li et al., 2016). None of the existing fast cross validation algo-

rithms is suitable for the distributed environment. Our framework of mergeable learning

algorithms unifies these two approaches to faster MCMC estimators and provides the first

distributed fast cross validation methods for MCMC estimators.

We now formally describe the problem of merging MCMC samples. As in Sec-

tion 2.4.3.1, all the MCMC methods use the underweighted subposterior prior p(θ|Zi) ∝

p(Zi|θ)p(θ)1/m. So by Equation (2.50) gives us

p(θ|Z) ∝
m∏
i=1

p(θ|Zi), (2.79)

We use an MCMC sampler to create a series of t samples θi,1, ..., θi,t from each subposterior

i. The number of samples generated by each machine (t) need not have any relationship

to the number of data points stored on each machine (n). Generating these samples can

49

be done independently on m separate machines without communication. Furthermore, any

sequential MCMC sampler can be used. The optimal choice of sampler will depend on the

particular problem. The reduce procedure takes as inputs samples from the m subposteriors

and generates samples from the full posterior.

There are three families of merge procedures for MCMC. The simplest family

directly merges the samples from the subposterior distributions. The consensus Monte

Carlo (CMC) algorithm introduced by Scott et al. (2016)13 is the primary example. CMC

generates a sample by a weighted average of the subposteriors’ samples. Formally, the jth

sample from the full posterior is given by

θcmcj =

(
m∑
i=1

Σi

)−1 m∑
i=1

Σiθ
mcmc
i,j . (2.80)

Where Σi is the sample covariance matrix of Zi. Like the naive averaging estimator for

optimization problems, CMC reduces the variance but not the bias of the samples. If we

construct a pseudo-parameter vector ŵmcmc
i = (θi,1, ..., θi,r) by concatenating the samples

from the subposteriors, then we can use all the techniques of merging RLM parameters to

merge samples as well. None of the RLM merge procedures (other than averaging) have

been applied to MCMC, so it is unclear if they would offer any benefit.

A second category of merge functions uses a nonparametric estimate of the sub-

posterior density. This results in significantly more complicated merge functions. These

merge functions trade better statistical performance for worse computational performance.

13 The CMC method appears to be the earliest mergeable MCMC method despite the 2016 official publi-
cation date. An early version of the CMC paper was first released online in 2013 and is cited by many other
mergeable MCMC papers. Since the earlier papers are not on arXiv or otherwise available online. We have
chosen to cite the official journal publication.

50

Instead of merging the samples directly, an approximate posterior distribution is created

by multiplying the nonparametric estimates of the subposteriors. MCMC samples are then

generated by sampling from the approximate posterior. The first method in this catgory

was given by Neiswanger et al. (2014) and called the nonparametric density product

estimator (NDPE). NDPE uses the samples from subposterior i to approximate the sub-

posterior density using the kernel density estimator (KDE) with a Gaussian kernel:

pkde(θ|Zi) =
1

n

t∑
j=1

N (θ; θi,j , h
2Id), (2.81)

where Id is the d dimensional identity matrix and h is a global bandwidth parameter for the

gaussian kernel. The full posterior is then approximated by substituting (2.81) into (2.79):

pndpe(θ|Z) ∝
m∏
i=1

pkde(θ|Zi) =
1

nm

m∏
i=1

t∑
j=1

N (θ; θi,j , h
2Id) (2.82)

Naively sampling from (2.82) is computationally expensive as there are nm mixture com-

ponents. Neiswanger et al. (2014) show that many of these components are redundant,

and the NDPE samples form a mixture of only mt components, which can be tractably

sampled from. The advantage of nonparametric estimators is that they are unbiased when

n is fixed and m → ∞, but the disadvantage is that they take a long time to converge.

Neiswanger et al. (2014) also propose the semiparametric density product estimator

(SDPE) which has faster convergence. SDPE approximates the subposterior distributions

as the product of a gaussian distribution and the KDE of (2.81). SDPE exhibits both faster

convergence and asymptotic efficiency. Wang and Dunson (2013) propose an improvement

51

to the SDPE called the Weierstrass sampler (WS).14 The WS method approximates the

subposteriors using the weierstrass transform of the KDE, which is the convolution (instead

of the product) of a gausian distribution and KDE. Nemeth and Sherlock (2016) report

that using a gaussian process to approximate the subposteriors has improved empirical

performance compared to both the SDPE and WS methods, although they provide little

theoretical justification for this claim. Wang et al. (2015) introduce the parallel aggrega-

tion random trees (PART) merging method. PART uses a kd-tree to nonparametrically

represent the subposterior distributions. This has the advantage are that there is no kernel

hyperparameter that needs tuning. PART is the only method that provides finite sample

guarantees on the quality of the emitted samples. Finally, White et al. (2015) study the

NPDE method in the more general setting of approximate baysian computation (ABC)

where the likelihood function p(Z|θ) is either unknown or too expensive to compute.

The final category of samplers is based on taking the geometric median or mean of

the subposteriors. The earliest example in this category is due to Minsker et al. (2014) and

called the median of subposterior measures (MSM). The MSM embeds the subposte-

riors into a reproducing kernel Hilbert space. The approximated posterior is the median of

the subposteriors with respect to the distance function in the Hilbert space. Srivastava et al.

(2015) propose the waserstein posterior (WASP) method. WASP returns the barycenter

of the subposterior distributions with respect to the wasserstein distance (the continuous

analog of the earth mover distance). WASP shows that this problem can be formulated as

a sparse linear program and so solved efficiently in practice.

14 Wang and Dunson (2013) has an earlier citation date than Neiswanger et al. (2014), but was actually
created later. Neiswanger et al. (2014) first appeared on arXiv in 2013 and later was published in a journal
in 2014. The improvements of Wang and Dunson (2013) were released on arXiv between these two dates.

52

2.5 Conclusion

We have seen many examples of mergeable learning algorithms. Researchers have developed

these algorithms while working on distributed learning problems, but we have shown that

these algorithms also come with a fast cross validation procedure. In the next two chapters,

we design new mergeable learning algorithms. Chapter 3 presents the optimal weighted

average (OWA) algorithm for merging regularized loss minimizers. Unlike the methods for

RLM presented in Section 2.4.2.2, OWA has statistical guarantees and is fast to compute.

Chapter 4 presents the cover tree data structure, which is used to speed up nonparametric

learning algorithms like nearest neighbor queries and kernel density estimation. On of the

improvements to the cover tree is a merge procedure. This merge procedure provides the

first parallel construction algorithm and fast cross validation algorithm for cover tree based

learning methods.

53

Chapter 3

The optimal weighted average

This chapter presents a new merge procedure called the optimal weighted average

(OWA). OWA improves on the “averaging based” merge procedures of Section 2.4.2.2 from

the previous chapter. In particular: OWA either has stronger statistical guarantees, is ap-

plicable to more models, or is more computationally efficient. To simplify the exposition,

we will first present the OWA procedure for linear models. Then, we will show an example

application of OWA to deep neural networks.

This chapter can be read independently of the previous chapters. Section 3.1

formally introduces the needed notation and describes the problem of merging linear models.

Section 3.2 describes the OWA merge procedure. We take special care to show how OWA

can be implemented with off-the-shelf optimizers. Section 3.3 provides a simple proof that

OWA achieves the optimal O(
√
d/mn) error. Our main condition is that the single machine

parameter vectors have a “sufficiently gaussian” distribution. This is a mild condition known

to hold in many situations of interest. In order to clarify the constant factors involved in our

54

algorithm, we also introduce a novel measure of the smoothness of a loss function. Section

3.4.2 shows empirically that OWA performs well on synthetic and real world advertising

data. We demonstrate that OWA is robust to the strength of regularization, which is one

of the reasons it performs well in practice. Section 3.5 then generalizes the OWA algorithm

to deep neural networks. Preliminary experiments on the MNIST data set show that this

nonlinear version of OWA works well.

3.1 The problem of merging linear models

Let Y ⊆ R be the space of response variables, X ⊆ Rd be the space of covariates, and

W ⊆ Rd be the parameter space. We assume a linear model where the loss of data point

(x, y) ∈ X × Y given the parameter w ∈ W is denoted by `(y,xTw). We define the

true loss of parameter w to be L∗(w) = E `(y; xTw), and the optimal parameter vector

w∗ = arg minw∈W L∗(w). We do not require that the model be correctly specified, nor do

we require that ` be convex with respect to w. Let Z ⊂ X × Y be a dataset of mn i.i.d.

observations. Finally, let r : W → R be a regularization function (typically the L1 or L2

norm) and λ ∈ R be the regularization strength. Then the regularized loss minimizer

(RLM) is

ŵrlm = arg max
w∈W

∑
(x,y)∈Z

`(y,xTw) + λr(w). (3.1)

Assume that the dataset Z has been partitioned onto m machines so that each machine i

has dataset Zi of size n, and all the Zi are disjoint. Then each machine calculates the local

RLM

ŵrlm
i = arg max

w∈W

∑
(x,y)∈Zi

`(y,xTw) + λr(w). (3.2)

55

Solving for ŵrlm
i requires no communication with other machines. Our goal is to merge the

ŵrlm
i s into a single improved estimate.

We now recall some facts from Chapter 2 about measuring the quality of merged

estimators. Section 2.4.2.2 presented a number of existing baseline merge procedures. The

simplest is the naive averaging estimator:

ŵave =
1

m

m∑
i=1

ŵrlm
i . (3.3)

OWA will improve on naive averaging by taking a carefully selected weighted average. The

quality of an estimator ŵ can be measured by the estimation error ‖ŵ −w∗‖. We can use

the triangle inequality to decompose this error as

‖ŵ −w∗‖ ≤ ‖ŵ − E ŵ‖+ ‖E ŵ −w∗‖. (3.4)

We refer to ‖ŵ − E ŵ‖ as the variance of the estimator and ‖E ŵ −w∗‖ as the bias. For

the single machine oracle estimator ŵrlm, both the variance and bias decrease at the rate

O(
√
d/mn). For the naive averaging estimator, the variance decreases at the optimal

O(
√
d/mn) rate, but the bias decreases only as O(

√
d/n). In other words, the bias of ŵave

is independent of the number of machines m. We shall see that for the OWA estimator,

both the bias and variance decrease as O(
√
d/mn). Thus OWA has better guarantees than

naive averaging and similar guarantees as the single machine oracle.

56

3.2 The algorithm

The optimal weighted average (OWA) merge procedure uses a second round of optimiza-

tion to calculate the optimal linear combination of the ŵrlm
i s. This second optimization

occurs over a small fraction of the dataset, so its computational and communication cost is

negligible.

3.2.1 Warmup: the full OWA estimator

To motivate the OWA estimator, we first present a less efficient estimator that uses the full

dataset for the second round of optimization. Define the matrix Ŵ : Rd×m to have its ith

column equal to ŵrlm
i . Now consider the estimator

ŵowa,full = Ŵ v̂owa,full, where v̂owa,full = arg max
v∈Rm

∑
(x,y)∈Z

`
(
y,xTŴv

)
+ λr(Ŵv).

(3.5)

Notice that ŵowa,full is just the regularized loss minimizer when the parameter space W

is restricted to the subspace Ŵowa = span{ŵrlm
i }mi=1. In other words, the v̂owa,full vector

contains the optimal weights to apply to each ŵrlm
i when averaging. Figure 3.1 shows

graphically that no other estimator in Ŵowa can have lower regularized empirical loss than

ŵowa,full.

3.2.2 The OWA estimator

Calculating the weights v̂owa,full directly is infeasible because it requires access to the full

dataset. Fortunately, we do not need to consider all the data points for an accurate esti-

57

ŵrlm

ŵaveŵrlm
1

ŵrlm
2

ŵowa,full
ŵowa

`(y,xTw) + λr(w)

Ŵowa

Figure 3.1: Graphical depiction of the OWA estimator’s parameter space. ŵowa,full is the
estimator with best loss in Ŵowa, and ŵowa is close with high probability.

mator. In a linear model, the number of data points needed is proportional to the dimen-

sionality of the underlying space. The parameter space Ŵowa is m-dimensional, so we need

only O(m) samples. In general, m << n, so this second optimization requires only a tiny

fraction of the original data. This intuition motivates the OWA estimator. Let Zowa
i ⊂ Zi

be a set of nowa data points uniformly sampled from Zi without replacement, and let Zowa

be the union of the Zowa
i s. Then the OWA estimator is defined to be

ŵowa = Ŵ v̂owa, where v̂owa = arg max
v∈Rm

∑
(x,y)∈Zowa

`
(
y,xTŴv

)
+ λr(Ŵv). (3.6)

We present two algorithms for calculating ŵowa in a distributed setting. These

algorithms are minor specializations of the general distributed learning algorithm for merge-

able estimators (Algorithm 1). Algorithm 7 uses only a single round of communication, but

it requires that a predesignated master machine already have a copy of the Zowa dataset.

Each machine calculates ŵrlm
i independently, then transfers the result to the master. The

master then has all the information needed to solve (3.6). A total of O(dm) bits are trans-

fered to the server. (The parameter vector has d dimensions and there are m machines.)

58

Algorithm 7 Calculating ŵowa in one round

Preconditions:
each machine i already has dataset Zi
the master machine additionally has Zowa

Round 1, each machine i independently:
calculates ŵrlm

i using (3.2)
transmits ŵrlm

i to the master
The master calculates ŵowa using (3.6)

(optionally) master uses approximation (3.7)

Algorithm 8 Calculating ŵowa in two rounds

Preconditions:
each machine i already has dataset Zi

Round 1, each machine i independently:
calculates ŵrlm

i using (3.2)
broadcasts ŵrlm

i to all other machines
Round 2, each machine i independently:

constructs Ŵ = (ŵrlm
1 , ..., ŵrlm

m)
samples a dataset Zowa

i ⊂ Zi of size nowa

calcs Zproj
i = {(xTŴ , y) : (x, y) ∈ Zowa}

sends Zproj
i to a master machine

The master calculates ŵowa using (3.6)
(optionally) master uses approximation (3.7)

The averaging estimator transfers the same information, and so has the same O(dm) com-

munication complexity. The only difference between the two algorithms is the way the

master machine merges the local estimates.

If the master machine does not already have a copy of Zowa, then we must transfer

a copy to the master. Algorithm 8 is a two round version of OWA that exploits the structure

of the ŵowa estimator to transmit this data efficiently. In the first round, each machine

calculates ŵrlm
i independently. The result is then broadcast to every other machine, instead

of just the master. A total of O(dm2) bits are transmitted in this round. (The parameter

vector has d dimensions, there are m machines, and each machine transmits to each other

59

machine.) In the second round, each machine projects its local dataset Zowa
i onto the

space Ŵowa. These projected data points are then transmitted to the master. A total of

O(m2nowa) bits are transmitted. (The projected data points each have dimension m, there

are m machines, and there are nowa data points per machine.) The analysis in Lemma 2 (see

Section 3.3) suggests that nowa should be set to O(mn/d). So the total data transmitted in

both rounds is O(dm2 +m3n/d).

3.2.3 Implementing OWA with existing optimizers

Equations 3.5 and 3.6 cannot be solved directly using off-the-shelf optimizers because ex-

isting optimizers do not support the non-standard regularization term r(Ŵv). In practice,

it is sufficient to approximate this term by L2 regularization directly on the v vector:

λr(Ŵv) ≈ λ2‖v‖2, (3.7)

where λ2 is a new hyperparameter. We provide two justifications for this approximation:

1. When we want the parameter vector w to be sparse (and so the regularizer r is the L1

norm), we have no reason to believe that the v vector should be sparse. The desired

sparsity is induced by the regularization when solving for ŵrlm
i s and maintained in any

linear combination of the ŵrlm
i s.

2. As the size of the dataset increases, the strength of the regularizer decreases. In this

second optimization, the dimensionality of the problem is small, so it is easy to add more

data to make the influence of the regularization negligible.

60

The new λ2 regularization parameter should be set by cross validation. This will be a fast

procedure, however, because there are only mnowa << mn data points to optimize over,

they have dimensionality m << d, and the L2 regularized problem is much easier to solve

than the L1 problem. Furthermore, this cross validation can be computed locally on the

master machine without any communication. The experiments in Section 3.4.2 provide an

example where the first round of optimization to compute the ŵrlm
i s takes about a day,

but the second round of optimization (including cross validation over λ2) takes only several

minutes.

3.3 Analysis

In this section, we outline the argument that OWA’s generalization error L∗(ŵowa)−L∗(w∗)

and estimation error ‖ŵowa −w∗‖ both decay as O(
√
d/mn). Full proofs of all theorems

can be found in the supplemental material. Our analysis depends on the single machine

estimators obeying the following mild condition.

Definition 1. We say that an estimator ŵ that has been trained on n data points of

dimension d satisifies the sub-gaussian tail (SGT) condition if, for all t > 0, with probability

at least 1− exp(−t), ‖ŵ −w∗‖ ≤ O(
√
dt/n).

The SGT condition is a high-level condition that is well established in the statistical

literature. All generalized linear models (such as logistic regression and ordinary least

squares regression) satisfy the SGT condition, and many less standard models (such as

linear models with a sigmoid loss) also satisfy the condition. There are many ways to prove

that an estimator satisfies the SGT condition. In the asymptotic regime when n → ∞,

61

very strong results of this form have been known since the 1960s. Chapter 7 of Lehmann

(1999) provides an elementary introduction to this work. Lehman requires only that `

be three times differentiable, that the data points be i.i.d., and that w∗ be identifiable.

More recent results establish the SGT condition in the non-asymptotic regime n < ∞.

The strongest non-asymptotic results known to the authors are due to Spokoiny (2012).

Spokoiny’s only assumption is that the empirical loss admit a local approximation via the

“bracketing device,” which is a generalization of the Taylor expansion. The full explanation

of the bracketing device is rather technical, so we do not present it here. Instead, we

highlight that Spokoiny’s results do not require a convex loss or even that the data be i.i.d.

The first lemma is an easy consequence of the SGT condition for the ŵrlm
i s. It

formalizes the key idea that Ŵowa is a good subspace to optimize over because it contains

a point close to the true parameter vector.

Lemma 2. Assume the ŵrlm
i s satisfy the SGT condition. Let πŴowaw

∗ denote the vector in

Ŵowa with minimum distance to w∗. Let t > 0. Then with probability at least 1−exp(−t),

‖πŴowaw
∗ −w∗‖ ≤ O(

√
dt/mn). (3.8)

62

Proof. Using independence of the ŵrlm
i s and the SGT condition, we have that

Pr
[
‖πŴowaw

∗ −w∗‖ ≤ O(
√
dt/mn)

]
≥Pr

[
min
i=1...m

‖ŵrlm
i −w∗‖ ≤ O(

√
dt/mn)

]
(3.9)

=1− Pr

[
min
i=1...m

‖ŵrlm
i −w∗‖ > O(

√
dt/mn)

]
(3.10)

=1−
(

Pr
[
‖ŵrlm

1 −w∗‖ > O(
√
dt/mn)

])m
(3.11)

=1−
(

1− Pr
[
‖ŵrlm

1 −w∗‖ ≤ O(
√
dt/mn)

])m
(3.12)

≥1−
(
1− (1− exp(−t/m))

)m
(3.13)

=1− exp(−t). (3.14)

Our next lemma shows that ŵowa is a good approximation of ŵowa,full as long as

nowa = mn/d. In linear models, the number of dimensions used typically grows proportion-

ally to the number of data points, so this lemma formalizes the intuition that relatively little

data is needed in the second optimization. In this lemma, we require that both v̂owa,full and

v̂owa satisfy the SGT condition. Recall from Equations 3.5 and 3.6 that both estimators

are trained on a projected data set with dimension min(m, d). So the SGT conditions for

v̂owa,full and v̂owa state that with probability at least 1− exp(−t),

‖v̂owa,full − v*‖ ≤ O(min(m, d)t/mn), (3.15)

63

and

‖v̂owa − v*‖ ≤ O(min(m, d)t/mnowa), (3.16)

where v* is the parameter vector in Ŵowa that minimizes L∗. (Note that in general,

v* 6= πŴowaw
∗). The results of Spokoiny (2012) can be used to show that v̂owa,full and v̂owa

satisfy the SGT condition.

Lemma 3. Assume that v̂owa,full and v̂owa satisfy the SGT condition. Let nowa = mn/d.

Let t > 0. Then with probability at least 1− exp(−t), ‖ŵowa,full − ŵowa‖ ≤ O(dt/mn).

Proof. By the SGT condition for v̂owa,full, we have that

‖v̂owa,full − v*‖ ≤ O(
√

min(m, d)t/mn) = O(
√
dt/mn). (3.17)

Similarly, by the SGT condition for v̂owa, we have that So,

‖v̂owa − v*‖ ≤ O(
√

min(m, d)t/mnowa) = O(
√
mt/mnowa) = O(

√
dt/mn). (3.18)

The result follows by combining Equations 3.17 and 3.18 using the triangle inequality:

‖ŵowa,full − ŵowa,*‖ = ‖v̂owa,full − v̂owa‖ ≤ ‖v̂owa − v*‖+ ‖v* − v̂owa‖ ≤ O(
√
dt/mn).

(3.19)

In order to connect the results of Lemmas 1 and 2 to the generalization error of

our estimator, we need to introduce a smoothness condition on the true loss function L∗.

64

Definition 4. We say that L∗ is β-Lipschitz continuous if for all w1 and w2,

|L∗(w1)− L∗(w2)| ≤ β‖w1 −w2‖. (3.20)

We can now present our first main result.

Theorem 5. Assume the ŵrlm
i s, v̂owa,full, and v̂owa all satisfy the SGT condition. Further

assume that L∗ is β-Lipschitz. Let nowa = mn/d. Let t > 0. Then with probability at least

1− exp(−t),

L∗(ŵowa)− L∗(w∗) ≤ O(β
√
dt/mn). (3.21)

Proof. We have that

L∗(ŵowa,full)− L∗(w∗) ≤ L∗(ŵowa,full)− L∗(Ŵv*) + L∗(Ŵv*)− L∗(w∗) (3.22)

≤ L∗(Ŵ v̂owa,full)− L∗(Ŵv*) + L∗(πŴowaw
∗)− L∗(w∗) (3.23)

≤ β‖Ŵ v̂owa,full − Ŵv*‖+ β‖πŴowaw
∗ −w∗‖ (3.24)

≤ β‖v̂owa,full − v*‖+ β‖πŴowaw
∗ −w∗‖ (3.25)

≤ O(β
√
dt/mn). (3.26)

The last line follows by applying the SGT condition with respect to ŵowa,full on the left

65

term and Lemma 2 on the right term. We then have that

L∗(ŵowa)− L∗(w∗) ≤ L∗(ŵowa)− L∗(ŵowa,full) + L∗(ŵowa,full)− L∗(w∗) (3.27)

≤ β‖ŵowa − ŵowa,full‖+ L∗(ŵowa,full)− L∗(w∗) (3.28)

≤ O(
√
dt/mn). (3.29)

The last line follows from Lemma 3 on the left term and Eq. (3.26) on the right term.

The use of Lipschitz continuity in Theorem 1 sacrifices generality for interpretabil-

ity. While many losses are β-Lipschitz (e.g. log loss, hinge loss, and sigmoid loss), many

other losses are not (e.g. squared loss and exp loss). Therefore Theorem 1 is not as general

as it could be. To improve generality of our next result, we introduce the following novel

smoothness condition.

Definition 6. Let R ⊆ W. We call the true loss function L∗ locally quadratically bracketed

in R (LQB-R) if for all points w ∈ R,

αlo‖w −w∗‖2 ≤ L(w)− L(w∗) ≤ αhi‖w −w∗‖2. (3.30)

The LQB-R condition is quite general. The leftmost inequality in (3.30) is related

to (but more general than) the more familiar notion of αlo-strong convexity. (We say L∗

is αlo-strongly convex if ∇2L∗(w) ≥ αloI for all w.) Inequality (3.30), however, requires

only that ∇2L∗(w) ≥ αloI at the minimum point w = w∗. The function may (for example)

have local maxima elsewhere. When R has finite radius (i.e. ‖w1 −w2‖ is finite for all

w1,w2 ∈ R), then all continuous functions with a unique global minimum will satisfy the

66

leftmost inequality for some value of αlo. The rightmost inequality of (3.30) states that

L∗ must not grow too quickly within R. If R has finite radius, and there is an open ball

around w∗ that does not intersect R, then any continuous function satisfies the rightmost

inequality for some αhi. In particular, models using the log loss, hinge loss, sigmoid loss,

squared loss, and exp loss all satisfy the LQB-R condition for any finite set R.

Theorem 7. Assume the ŵrlm
i s, v̂owa,full, and v̂owa all satisfy the SGT condition. Further

assume that L is locally quadratically bracketed in R = {Ŵv*, πŴowaw
∗}. Let t > 0. Then

with probability at least 1− exp(−t),

‖ŵowa −w∗‖ ≤ O
(√

(αhi/αlo)(dt/mn)
)
. (3.31)

Proof. By local quadratic bracketing, we have that

αlo‖Ŵv* −w∗‖2 ≤ L(Ŵv*)− L(w∗) ≤ L(πŴowaw
∗)− L(w∗) ≤ αhi‖πŴowaw

∗ −w∗‖2.

Simplifying and applying Lemma 2 gives

‖Ŵv* −w∗‖ ≤
√
αhi/αlo‖πŴowaw

∗ −w∗‖ ≤ O(
√

(αhi/αlo)(dt/mn)). (3.32)

Applying the triangle inequality, Equation (3.32), and Lemma 3 gives

‖ŵowa −w∗‖ ≤ ‖ŵowa − ŵowa,full‖+ ‖ŵowa,full − Ŵv*‖+ ‖Ŵv* −w∗‖ (3.33)

≤ O(
√

(αhi/αlo)(dt/mn)). (3.34)

67

The last line follows from Lemma 2 on the left, the SGT conditionin the middle, and (3.32)

on the right.

Our choice of R in Theorem 2 gives us a reasonable interpretation of the ratio

αhi/αlo as a generalized condition number. We know from the SGT condition and Lemma

1 that as the number of data points per machine n goes to infinity, then the distances

‖Ŵv* −w∗‖ and ‖πŴowaw
∗‖ go to zero. The lower and upper bounding quadratic functions

then converge to the 2nd order Taylor approximation of L∗ at w∗. The ratio αhi/αlo is then

the condition number of the Hessian of L∗ at w∗.

We claim that the convergence rate in (3.31) is optimal because up to the constant

factor αhi/αlo, it matches the convergence rate of the single machine oracle ŵrlm.

3.4 Experiments

We evaluate OWA on synthetic and real-world logistic regression tasks. In each experiment,

we compare ŵowa with four baseline estimators: the naive estimator using the data from

only a single machine ŵrlm
i ; the averaging estimator ŵave; the bootstrap estimator ŵboot;

and the oracle estimator of all data trained on a single machine ŵrlm. The ŵboot estimator

has a parameter r that needs to be tuned. In all experiments we evaluate ŵboot with r ∈

{0.005, 0.01, 0.02, 0.04, 0.1, 0.2}, which is a set recommended in the original paper (Zhang

et al., 2012), and then report only the value of r with highest true likelihood. Thus we

are reporting an overly optimistic estimate of the performance of ŵboot, and as we shall see

ŵowa still tends to perform better.

68

d = 100, n = 1000 d = 1000, n = 1000 d = 10000, n = 1000
er

ro
r
‖w

∗
−

ŵ
‖

ŵrlm
iŵave

ŵbootŵrlm

ŵowa,full

ŵowa

20 40 60 80 100
10−2

10−1

100

101

20 40 60 80 100
100

101

102

20 40 60 80 100

102.6

102.8

103

number of machines (m)

Figure 3.2: OWA’s performance on synthetic logistic regresion data. The left figure shows
scalability in the low dimension regime, the middle figure in a medium dimension regime,
and the right figure in a high dimension regime. ŵowa scales well with the number of
machines in all cases. Surprisingly, ŵowa outperforms the oracle estimator trained on all of
the data ŵrlm in some situations.

3.4.1 Synthetic data

We generate the data according to a sparse logistic regression model. Each component of

w∗ is sampled i.i.d. from a spike and slab distribution. With probability 0.9, it is 0; with

probability 0.1, it is sampled from a standard normal distribution. The data points are

then sampled as

xi ∼ N (0, I) and yi ∼ Bernoulli
(

1/
(

1 + exp(−xT
i w∗)

))
. (3.35)

The primary advantage of synthetic data is that we know the model’s true parameter vector.

So for each estimator ŵ that we evaluate, we can directly calculate the error ‖ŵ −w∗‖. We

run two experiments on the synthetic data. In both experiments, we use the L1 regularizer

to induce sparsity in our estimates of w∗. Results are qualitatively similar when using a

Laplace, gaussian, or uniform prior on w∗, and with L2 regularization.

Our first experiment shows how the estimators scale as the number of machines

m increases. We fix n = 1000 data points per machine, so the size of the dataset mn

69

grows as we add more machines. This simulates the typical “big data” regime where data is

abundant, but processing resources are scarce. For each value of m, we generate 50 datasets

and report the average of the results. Our ŵowa estimator was trained with nowa = 128.

The results are shown in Figure 3.2. As the analysis predicted, the performance of ŵowa

scales much better than ŵave and ŵboot. Surprisingly, in the low dimensional regimes, ŵowa

outperforms the single machine oracle ŵrlm.

One issue that has been overlooked in the literature on non-interactive distributed

estimation is how to best set λ. There are two natural choices. The first is: for each λ in the

grid, perform the full training procedure including all communications and merges. Then

select the λ with lowest cross validation error. Unfortunately, this requires many rounds of

communication (one for each λ we are testing). This extra communication largely negates

the main advantage of non-interactive learners. The second is: each machine independently

uses cross validation to select the λ that best fits the data locally when calculating ŵrlm
i .

In our experiments we use this second method due to three advantages. First, there is

no additional communication because model selection is a completely local task. Second,

existing optimizers have built-in model selection routines which make the process easy to

implement. We used the default model selection procedure from Python’s SciKit-Learn

(Pedregosa et al., 2011). Third, the data may be best fit using different regularization

strengths for each machine. It is unclear which method previous literature used to select

λ. As mentioned in Section 3.2.3, OWA requires an additional round of cross validation

during the master’s merge procedure to set λ2. This cross validation is particularly fast and

requires no communication with other machines.

70

Our second experiment shows the importance of proper λ selection. We evaluate

the performance of the estimators with λ varying from 10−4 to 104 on a grid of 80 points.

Figure 3.3 shows the results. The ŵowa estimator is more robust to the choice of λ than

the other distributed estimators.

3.4.2 Real world advertising data

We evaluate the estimators on real world data from the KDD 2012 Cup (Niu et al., 2012).

The goal is to predict whether a user will click on an ad from the Tencent internet search

engine. This dataset was previously used to evaluate the performance of ŵboot (Zhang

et al., 2012). This dataset is too large to fit on a single machine, so we must use distributed

estimators, and we do not provide results of the oracle estimator ŵrlm in our figures.

There are 235,582,879 distinct data points, each of dimension 741,725. The data points are

sparse, so we use the L1 norm to encourage sparsity in our final solution. The regularization

strength was set using cross validation in the same manner as for the synthetic data. For

each test, we split the data into 80 percent training data and 20 percent test data. The

training data is further subdivided into 128 partitions, one for each of the machines used.

It took about 1 day to train the local model on each machine in our cluster.

Our first experiment tests the sensitivity of the nowa parameter on large datasets.

We fix m = 128, and allow nowa to vary from 20 to 220. Recall that the number of data

points used in the second optimization is mnowa, so when nowa = 220 nearly the entire data

set is used. We repeated the experiment 50 times, each time using a different randomly

selected set Zowa for the second optimization. Figure 3.4 shows the results. Our ŵowa

estimator has lower loss than ŵave using only 16 data points per machine (approximately

71

d = 100,m = 20 d = 100,m = 100 d = 1000,m = 100
er

ro
r
‖w

∗
−

ŵ
‖

ŵrlm
i ŵave

ŵboot

ŵrlm

ŵowa

ŵowa,full

10−4 10−2 100 102 104
10−2

10−1

100

101

102

10−4 10−2 100 102 104
10−3

10−2

10−1

100

101

102

10−4 10−2 100 102 104
10−1

100

101

102

103

regularization strength (λ)

Figure 3.3: OWA is robust to the regularization strength used to solve ŵrlm
i . Our theory

states that as m→ d, we have that Ŵowa →W, and so ŵowa → ŵrlm. This is confirmed in
the middle experiment. In the left experiment, m < d, but ŵowa still behaves similarly to
ŵrlm. In the right experiment, ŵowa has similar performance as ŵave and ŵboot but over a
wider range of λ values.

4× 10−8 percent of the full training set) and ŵowa has converged to its final loss value with

only 1024 data points per machine (approximately 2.7 × 10−6 percent of the full training

set). This justifies our claim that only a small number of data points are needed for the

second round of optimization, and so the communication complexity of ŵowa is essentially

the same as ŵave. The computation is also very fast due to the lower dimensionality and

L2 regularization in the second round of optimization. When nowa = 210, computing the

merged model took only minutes (including the cross validation time to select λ2). This

time is negligible compared to the approximately 1 day it took to train the models on the

individual machines.

Our last experiment shows the performance as we scale the number of machines

m. The results are shown in Figure 3.4. Here, ŵowa performs especially well with low m.

For large m, ŵowa continues to slightly outperform ŵboot without the need for an expensive

model selection procedure to determine the r parameter.

72

lo
g-

lo
ss ŵowa

ŵboot

ŵave

20 25 210 215 220
0.137

0.138

0.139

0.140

data points used in second optimization (nowa)

lo
g-

lo
ss

ŵave
ŵboot

ŵowa

22 24 26
0.137

0.138

0.139

0.140

0.141

0.142

number of machines (m)

Figure 3.4: OWA’s performance on real world ad-click data. (left) Relatively few data
points are needed in the second round of optimization for ŵowa to converge. (right) Perfor-
mance of the parallel estimators on advertising data as the number of machines m increases.

3.5 Nonlinear OWA

We now generalize the linear OWA procedures from the previous sections to a nonlinear

deep neural network problem. Neural networks are among the most complicated models

used in machine learning, and large neural networks require distributed training with many

GPUs for days or weeks. Cross validation is rarely used even on the smallest networks due

to the computational overhead. A merge method would simplify the distributed training

procedure and let practitioners use cross validation to evaluate their models. Due to the

complexity of neural networks, very little prior work attempts to merge them together. The

only example we know of is McMahan et al. (2017), which uses the naive averaging merge

procedure. This section will improve these results using the OWA merge procedure. We

first introduce new notation needed for neural network problems, then extend OWA to this

setting, and conclude with preliminary experiments on the MNIST data set.

3.5.1 Notation

We assume our network architecture has p layers. For each layer i ∈ {1, ..., p}, there is

an associated dimension di ∈ N, activation function σi : Rdi → Rdi , and weight matrix

73

Wi : Rdi×di−1 . The input to the network is a vector x ∈ Rd0 . The output of layer i is then

recursively given by

fi(x) : Rdi =

x i = 0

σi(Wifi−1(x)) i > 0

(3.36)

and fp(x) is the final output of the network. In supervised learning problems, we are given

a dataset Z ⊂ Rd0 × Rp with mn data points, and our goal is to approximately solve

W = arg min
W

∑
(x,y)∈Z

`(y, fp(x)) + r(W), (3.37)

where ` is the loss function and r is the regularization function. We make no assumptions

on the training algorithm used to minimize (3.37). For example, stochastic gradient descent

may be used with any learning rate schedule, with or without drop out (Srivastava et al.,

2014), and with or without batch normalization (Ioffe and Szegedy, 2015). We divide Z

into m disjoint smaller datasets {Z(1), ..., Z(m)} each with n points. Each dataset Z(a) is

transfered to processor a, which solves the local learning problem

W (a) = arg min
W

∑
(x,y)∈Z(a)

`(y, fp(x)) + r(W). (3.38)

Each machine solves (3.38) without communicating with other machines using any optimizer

appropriate for the network architecture and data. Our goal is to develop a merge procedure

that combines the W (a) local parameter estimates into a single global parameter estimate

with small loss.

74

3.5.2 Merging neural networks

A simple baseline merge procedure is the naive averaging estimator

W ave
i =

1

m

m∑
a=1

W
(a)
i . (3.39)

Google’s recent federated learning architecture uses naive averaging to merge models to-

gether that have been independently trained on users’ cellphones (McMahan et al., 2017).

Because neural networks have more complicated geometry than linear models, the averaging

estimator has not been formally analyzed in this setting.

We will define an improved merge procedure based on a weighted average of the

local parameter estimates. This requires some tensor notation. We define for each layer

i in the network the 3rd-order tensor W stacked
i : Rm × Rdi × Rdi−1 , where the (a, b, c)th

component of W stacked
i is defined to be the (b, c)th component of W

(a)
i . In words, W stacked

i is

the 3rd-order tensor constructed by stacking the local parameter estimates W
(a)
i along a new

dimension. We also define the function contract : (Rm,Rm × Rdi × Rdi−1) → Rdi × Rdi−1

to be the tensor contraction along the first dimension. That is, if V : Rm, then the (b, c)th

component of contract(V,W stacked
i) is equal to

∑m
a=1 V (a)W

(a)
i (b, c). In particular, if each

component of V equals 1/m, then contract(V,W stacked
i) = 1

m

∑m
a=1W

(a)
i = W ave

i .

The nonlinear OWA procedure then works as follows. First define the modified

75

neural network

fmod
i (x) : Rdi =

x i = 0

σi(W
mod
i fmod

i−1 (x)) i > 0

where Wmod
i = contract(Vi,W

stacked
i).

(3.40)

Then select a small subset of the data Zowa (i.e. |Zowa| << |Z|) and train the network fmod

over only the parameters Vi. That is, we solve the optimization problem

V owa = arg min
V

∑
(x,y)∈Zowa

`(y, fmod
p (x)) + r(W). (3.41)

The parameter matrices W owa
i = contract(V owa

i ,W stacked
i) can then be used in the original

neural network. Intuitively, we need only a small number of data points in the optimization

of (3.41) because the number of parameters is significantly smaller than in the original

optimization (3.37). That is, the dimension of V owa is much less than the dimension of W .

When the network contains no hidden layers,

To solve (3.41), we can use the same optimization procedure that we used to

solve the local optimization problem (3.38). Our implementation in TensorFlow (Abadi

et al., 2016). Given any neural network model as input, it can define an appropriate merge

procedure automatically.

3.5.3 Experiments

McMahan et al. (2017) evaluated the naive averaging merge procedure on MNIST, and we

perform a similar experiment here. For our neural network, we use a default convolutional

76

 0.93

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 1 2 4 8 16 32 64 128

number of machines

cl
as

si
fi

ca
ti

o
n

ac
cu

ra
cy

W ave

W owa, |Zowa| = 500

W owa, |Zowa| = 5000

Figure 3.5: Comparison of naive averaging an OWA when merging convolutional neural
networks on MNIST data. As expected, naive averaging has the lowest performance, and
OWA’s accuracy improves when we use more data in the second round of optimization.

neural network (CNN) provided by TensorFlow (Abadi et al., 2016). The network is specif-

ically designed for MNIST and closely related to AlexNet (Krizhevsky et al., 2012). It

has 8 layers and is trained using the Adam optimizer (Kingma and Ba, 2014) and dropout

(Srivastava et al., 2014). We performed no hyperparameter tuning and simply used the

default hyperparameters provided by TensorFlow. MNIST has a standard training set of

55000 data points, and we further divide the training set into 128 subsets containing either

429 or 430 data points. The 10 class labels are evenly distributed throughout the original

training set, but we made no effort to ensure they were evenly distributed throughout the

subsets. That means on average, each machine has access to only 43 examples from each

class, but most machines will have significantly fewer examples for some classes. Under such

an extreme paucity of data, it is unlikely for a single machine to be achive high classification

accuracy.

77

Figure 3.5 shows the classification accuracy as the number of machines used varies

from 2 to 128. Each experiment is repeated 5 times, and the average is shown. Since the

number of data points per machine is fixed, adding more machines adds more data, so

we should expect the classification accuracy to increase for a good merge procedure. We

see that the OWA algorithm outperforms naive averaging. The OWA algorithm does not

perform as well as the oracle network trained on all the data (which has > 0.99 accuracy).

This is because of the difficulty of the local learning problems when MNIST is split into

such small data sets. McMahan et al. (2017) performs several rounds of naive averaging to

improve the accuracy of their federated learners. A similar iterated procedure can be done

with OWA, but fewer iterations should be needed due to OWA’s improved accuracy.

3.6 Conclusion

OWA is a new mergeable learning algorithm. In the linear case, OWA has strong theoretical

guarantees and good practical performance. Preliminary experiments suggest that this

practical performance may carry over to complex neural network models, but more extensive

large scale experiments need to be done to validate this claim.

78

Chapter 4

The cover tree

The cover tree is a data structure for fast nearest neighbor queries in arbitrary metric

spaces. Cover trees were first introduced by Beygelzimer et al. (2006), and they have seen

widespread use in the machine learning community since then (Section 4.3). This chapter

improves the cover tree’s runtime both in theory and practice. Our first contribution is to

improve the cover tree’s runtime bounds. As an example, the original cover tree was able

to find nearest neighbors in time O(c12
exp log n), and we improve this bound to O(c4

hole log n)

for i.i.d. data. Here cexp and chole are measures of the “intrinsic dimensionality” of the data.

We will show that on typical datasets cexp ≈ chole, and we will argue that in pathological

data sets chole more accurately represents our intuitive notion of dimensionality. We further

provide practical improvements to the cover tree’s implementation. Experiments show

that with these improvements, the cover tree is the fastest technique available for nearest

neighbor queries on many tasks.

Most work on nearest neighbor queries focuses on Euclidean space, but a major

79

strength of the cover tree is that it works in the more general setting of metric spaces.

Section 4.1 formally introduces metric spaces and their importance in machine learning.

Section 4.2 then provides a mathematically detailed discussion of four measures of the “size”

of a metric space. These quantities are important to bound the runtime of operations on

the cover tree. We review standard results that demonstrate that the expansion constant

cexp is not robust to small changes in the dataset. We then review basic properties of the

more robust doubling constant. Unfortunately, we show that the doubling constant is not

suitable for measuring the difficulty of exact nearest neighbor queries because there exists

a data set of size n with doubling dimension 2 that requires O(n) distance computations to

find a nearest neighbor. We introduce the hole constant chole as a dimension that partially

captures the robustness of the doubling dimension but is suitable for bounding the runtime

of exact nearest neighbor queries. We also provide new results on the aspect ratio of a data

set (ratio of largest to smallest distance) that will be needed to bound the runtime of the

cover tree. Section 4.3 then reviews the history of techniques for faster nearest neighbor

queries. The main theme we emphasize is that the expansion constant is widely used to

bound the runtime of exact nearest neighbor queries, and the doubling constant is widely

used to bound the runtime of approximate nearest neighbor queries.

Section 4.4 formally describes the original cover tree data structure. We use the

mathematical techniques developed in previous sections to provide novel runtime bounds

for querying and inserting data points. We also provide a novel algorithm for approximate

nearest neighbor queries that improves on the algorithm of Beygelzimer et al. (2006). Section

4.5 then presents the simplified cover tree. The simplified cover tree is more awkward to

80

analyze theoretically but has a number of practical advantages. In particular: (i) the

invariants are simpler; (ii) there are fewer nodes in the tree resulting in smaller constant

factors; (iii) we introduce a new invariant that helps maintain tree balance; (iv) we show how

to make the tree cache efficient; and (v) we show how to merge two trees together, resulting

in a parallel tree construction algorithm and fast cross validation algorithm (based on the

results in Chapter 2). Finally, Section 4.6 concludes with a series of five experiments. We

use benchmark datasets with the Euclidean distance to show that our simplified cover tree

implementation is faster than both existing cover tree implementations and other techniques

specialized for Euclidean distance nearest neighbor queries. We also compare the simplified

and original cover trees on non-Euclidean protein interaction and computer vision problems.

4.1 Definitions

This section first defines metric spaces and the nearest neighbor problem. A set X equipped

with a distance function d : X × X → R is a metric space if it obeys the following three

properties:

1. Indiscernability. For all x1, x2 ∈ X , d(x1, x2) = 0 if and only if x1 = x2.

2. Symmetry. For all x1, x2 ∈ X , d(x1, x2) = d(x2, x2).

3. Triangle inequality. For all x1, x2, x3 ∈ X , d(x1, x2) + d(x2, x3) ≥ d(x1, x3).

We will use the script X notation for metric spaces that may be either infinite or finite, and

the plain X for metric spaces that must be finite. In particular, X will typically denote

a data set sampled from some larger space X , as in the following definition of the nearest

81

neighbor problem.

Let X be a metric space, X ⊂ X , and x be in X but not X. We call a point y∗ ∈ X

a nearest neighbor of x if it is contained in arg miny∈X d(x, y). In most cases y∗ will be

unique (so we will often refer to the nearest neighbor of x). For all ε ≥ 0, we call a point ŷ a

(1+ε)-approximate nearest neighbor (ann) of x if ŷ satisfies d(x, ŷ) ≤ (1+ε) ·d(x, y∗).

In particular, if ŷ is a 1-ann, then ŷ is a nearest neighbor.

4.2 Measuring the size of a metric space

The runtime of nearest neighbor queries depends on the dimension of the data, and there are

many ways to define the dimension of arbitrary metric spaces. The expansion and doubling

dimensions are the two most popular. The expansion dimension can be used to bound the

runtime of either exact or approximate nearest neighbor queries, but it is not robust to

small changes in the data. This lack of robustness can make runtime bounds based on the

expansion dimension trivial (i.e. linear). On the other hand, the doubling dimension can

only be used to bound the runtime of approximate nearest neighbor queries, but it is more

robust than the expansion dimension. Therefore bounds using the doubling dimension are

stronger than those using the expansion dimension. The original runtime bounds for the

cover tree were in terms of the expansion dimension, but Section 4.4 will improve these

bounds to use the doubling dimension in the case of approximate nearest neighbor searches.

This section begins with a detailed discussion of these two dimensions, including important

lemmas used in the proofs in Section 4.4. Then we introduce a novel third dimension called

the hole dimension. We show in this section that the hole dimension is more robust than the

82

expansion dimension, and in Section 4.4 the hole dimension is used to bound the runtime

of exact nearest neighbor queries. This section concludes with a discussion of the aspect

ratio of a metric space. The log of the aspect ratio will bound the height of the cover tree

(Lemma 26 in Section 4.4). In this section, we provide a novel bound showing that under

mild regularity conditions the aspect ratio of i.i.d. data is O(n3), and thus the height of the

cover tree is O(log n). No existing results show that the cover tree is well-balanced in this

way.

4.2.1 Expansion dimension

The expansion dimension is the only notion of dimensionality that has been used for bound-

ing the runtime of exact nearest neighbor queries. It was introduced by Karger and Ruhl

(2002), and was subsequently used in Krauthgamer and Lee (2004), Beygelzimer et al.

(2006), Ram et al. (2009), and Curtin et al. (2015). In this section, we define the expansion

constant and show that it is not a robust measure of a metric’s dimension.

Throughout this section we will work with the metric space (X , d) where the set X

may be either finite or infinite. We let B(x, δ) denote the ball centered around x of radius

δ. That is,

B(x, δ) = {x′ : x′ ∈ X , d(x, x′) ≤ δ}. (4.1)

The expansion dimension of a metric is only valid for metrics that also have a notion of

volume, which is given by the function µ : {X} → R+.1 In finite metric spaces, µX is

defined to be the number of points in X. In the Euclidean space X = Rd, µ is defined to

1 Formally, µ is a measure and {X} is a σ-algebra on X . Since we are primarily interested in the properties
of finite sets, we will not need to formally use measure theory.

83

be the standard Euclidean volume, and in particular µB(x, δ) = Θ(δd).

The expansion dimension of a metric space X is defined as

dimexp = log2 cexp, (4.2)

where cexp is called the expansion constant and defined as

cexp = max
x∈X ,δ∈R+

µB(x, 2δ)

µB(x, δ)
. (4.3)

In words, the expansion dimension measures how the volume of a ball changes as you

increase the radius. The intuition behind why this is a good notion of a metric’s dimension

is that it agrees with the standard dimension in Euclidean space. This is shown formally in

the following standard lemma.

Lemma 8. Let X = Rd with the standard L2 distance function. Then dimexpX = Θ(d).

Proof (sketch). The volume of a Euclidean ball with radius δ is Θ(δd). The expansion

constant is the maximum of the ratio µB(x, 2δ)/µB(x, δ). In Euclidean space this ratio is

independent of x and δ. Letting δ = 1 gives the ratio is µB(x, 2)/µB(x, 1) = Θ(2d). Taking

the log gives that dimexpX = Θ(d).

Unfortunately, the expansion dimension is known to have many defects which make runtime

bounds less useful. The algorithmic consequence of these defects is that runtime bounds

based on the expansion dimension are often trivial.

Example 9. A subset of a metric space may have arbitrarily large expansion dimension

84

compared to the host space. Let xi = 2−i for all i ∈ N, and Xn = {x0, x1, ..., xn}. Xn is a

subset of R, which has expansion number O(1), but Xn has expansion number O(n).

Example 10. Adding a single point to a space may change the expansion dimension by an

arbitrary amount. Let X be a finite metric space with n elements and expansion constant

cexp << n, and let diam(X) be the maximum distance between any two points in X.

Construct a new space Y = X ∪ {y} where y is a point not in X. Define the distance

between y and any point in X to be diam(X). This distance satisfies the triangle inequality,

and so Y is a metric space. The expansion dimension of Y is n.

The doubling dimension discussed next does not suffer from either of the defects

in Examples 9 or 10. Unfortunately, it cannot be used to measure the difficulty of exact

nearest neighbor queries. The hole dimension (introduced in two sections) sits “in between”

the doubling dimension and the expansion dimension. It does not suffer from the defect of

Example 9, but it does suffer from the defect of Example 10. Unlike the doubling dimension,

however, the hole dimension is suitable for measuring the difficulty of exact nearest neighbor

queries.

4.2.2 Doubling dimension

The doubling dimension is more robust than the expansion dimension, but cannot be used

to provide non-trivial runtime bounds for exact nearest neighbor queries (see Theorem 15

below). It has, however, seen widespread application in bounding the runtime of approx-

imate nearest neighbor queries. Krauthgamer and Lee (2005) showed that the doubling

constant is the correct way to measure the difficulty of (1 + ε)-ann queries in the following

85

sense: a (1 + ε)-ann query can be answered in polylogarithmic time using polynomial space

if and only if cdoub = O(log n). No similar result pairing exact nearest neighbor queries to

a metric dimension is known.

The doubling dimension is widely used in computer science and mathematics.

Before formally defining it, we briefly review these many uses. The term doubling dimension

was first used by Gupta et al. (2003) in their study of low dimensional embeddings for nearest

neighbor queries, but the main idea was introduced by Assouad (1979) to study fractals.2

In the context of machine learning, the doubling dimension has found use both statistically

and algorithmically. Statistically, the doubling dimension is a standard tool for proving

regret bounds. For example, Luxburg and Bousquet (2004) uses the doubling dimension

to provide the first large margin bounds for classifiers in metric spaces, and Chapter 27 of

Shalev-Shwartz and Ben-David (2014) shows how to bound the Rademacher complexity of

a classifier using the doubling dimension. A particularly apropos work in this vein is that of

Kontorovich and Weiss (2015), which uses the doubling dimension to derive the first Bayes-

consistent 1-nearest neighbor algorithm. Algorithmically, the doubling dimension is used to

develop approximation algorithms. Chapter 32 of Goodman et al. (2017) provides a survey

of how the doubling dimension is used to approximate a variety of NP-hard problems. In the

context of machine learning, Gottlieb et al. (2014b) shows the first approximation algorithm

for sample compression, and Gottlieb et al. (2014a) and Gottlieb et al. (2017) both create

efficiently realizable approximation algorithms for classification in metric spaces.

The doubling dimension is closely related to the ideas of covering and packing

2 There are many terms in the literature with essentially the same meaning as the doubling dimension.
For example, the terms Assoud dimension and Minkowski dimensions are both used in fractal geometry; and
the terms covering number, packing number, ε-nets, and metric entropy are all used in computer science.

86

numbers, so we introduce these ideas first. A δ-covering of a metric space X is a set

{x1, x2, ..., xn} ⊆ X such that for all x ∈ X , there exists an xi such that d(x, xi) < δ. The

δ-covering number Nδ(X) is the cardinality of the smallest δ-covering. A δ-packing of

a metric space X is a set {x1, x2, ..., xM} ⊆ X such that d(xi, xj) > δ for all i 6= j. The δ-

packing number Mδ(X) is the cardinality of the largest δ-packing. The covering number

and packing number of a set are closely related. We will make heavy use of the following

standard lemma in the analysis of the cover tree.

Lemma 11. For any metric space X and any δ > 0,

M2δ(X) ≤ Nδ(X) ≤Mδ(X). (4.4)

Proof. To prove the first inequality, let P be a 2δ-packing and C be a δ-cover of X . For

every point p ∈ P , there must exist a c ∈ C such that d(p, c) ≤ δ. No other p′ ∈ P can also

satisfy d(p′, c) ≤ δ, because then by the triangle inequality

d(p′, p) ≤ d(p′, c) + d(p, c) ≤ 2δ, (4.5)

which would contradict that P is a 2δ-packing. In other words, for each c ∈ C, there is at

most one p ∈ P . So Nδ ≥ |C| ≥ |P | ≥M2δ.

To prove the second inequality, let X ′ ⊆ X be a maximal δ-packing. Then there

does not exist an x ∈ X such that for all x′ ∈ X ′, d(x, x′) > δ. (Otherwise, X ′ ∪ {x} would

be a packing larger than X ′.) Hence, X ′ is also a δ-cover, and the smallest δ-cover can be

no larger.

87

The doubling dimension of a metric space X is defined to be

dimdoub = log2 cdoub, (4.6)

where cdoub is called the doubling constant and is defined to be

cdoub = max
x∈X ,r∈R+

Nr(BX (x, 2r)). (4.7)

Whereas the expansion dimension measures how the volume of a ball changes as the radius

changes, the doubling dimension measures how the packing number of a ball changes. The

following lemma shows that the doubling dimension (like the expansion dimension) agrees

with the dimension in Euclidean space.

Lemma 12. Let X = Rd with the standard L2 distance function. Then dimdoubX = Θ(d).

Proof (sketch). Follows by direct calculation as in Lemma 8.

The major advantage of the doubling dimension over the expansion dimension is its ro-

bustness. The following standard lemma shows that when a data set changes by a small

amount, the doubling dimension also changes by a small amount.

Lemma 13. Let X be a metric space, X ⊂ X , and x ∈ X . Then,

cdoub(X ∪ {x}) ≤ cdoubX + 1. (4.8)

Proof. Let y ∈ X and δ > 0. Let C be a minimal δ-covering of BX(y, δ). Then the set

88

C ∪ {x} must be a δ-covering for BX∪{x}(y, δ). So we have that

Nδ(BX(y, δ)) ≤ Nδ(BX∪{x}(y, δ)) + 1. (4.9)

Taking the maximum of both sides with respect to y and δ gives (4.8).

Gupta et al. (2003) and Krauthgamer and Lee (2004) provide the following lemma relating

the size of the expansion and doubling dimensions.

Lemma 14. Every finite metric (X , d) satisfies cdoub ≤ c4
exp.

Proof. Fix some ball B(x, δ). We will show that B(x, δ) can be covered by c4
exp balls of

radius δ. Let Y be a δ-cover of B(x, 2δ). Then,

B(x, 2δ) ⊆
⋃
y∈Y

B(y, δ) ⊆ B(x, 4δ) (4.10)

Also, for every y ∈ Y ,

|B(x, 4δ)| ≤ |B(y, 8δ)| ≤ c4
exp|B(y, δ/2)|. (4.11)

We also have that |B(y, δ/2)| = 1.

This lemma can be used to convert runtime bounds using the doubling dimension into

bounds using the expansion dimension. We will not need to directly appeal to this lemma

in our proofs. The following theorem shows that the doubling dimension is not suitable for

bounding the runtime of exact nearest neighbor queries.

89

Theorem 15. There exists an n-point metric with doubling constant cdoub = O(1) such

that answering exact nearest neighbor queries takes time O(n).

Proof (sketch). Take n points arranged in a circle in R2, and let the query point x be the

center of the circle. Select one point y and reduce the distance from x to y by some small

value ε, leaving all other values constant. The resulting distance is non-Euclidean, but still

satisfies the requirements of a metric space. There is no way to tell which point y was

modified in this way without checking all the points, thus the worst case nearest neighbor

runtime is O(n).

4.2.3 Hole dimension

The hole dimension is a novel measure of a set’s dimensionality. The idea is to create

a dimension that is suitable for measuring the difficulty of exact nearest neighbor queries

while being more robust than the expansion dimension. To do this, we modify the definition

of the doubling dimension so that we ignore “holes” around each point in the space. In

particular, the hole number is defined as

chole = max
x∈X ,ε≥0,δ>0

Nδ

(
B(x, ε+ 2δ) \B(x, ε+ δ)

)
(4.12)

s.t. B(x, ε+ δ) \B(x, δ) = {}. (4.13)

The hole dimension is then

dimhole = log2 chole. (4.14)

90

The value of the hole dimension is related to the doubling dimension by the following lemma.

Lemma 16. For any finite metric space, cdoub ≤ chole + 1.

Proof. The inequality is tight when ε = 0 in (4.12). More generally, when the value of ε in

(4.12) is small, then the hole dimension is close to the doubling dimension. When the value

of ε is large, then the hole dimension is larger than the doubling dimension.

We justify calling the hole dimension a “dimension” by the following lemma.

Lemma 17. Let X = Rd with the standard L2 distance function. Then dimholeX = Θ(d).

Proof. For all points x ∈ X , the value of ε in (4.12) is 0. Therefore the hole dimension is

equivalent to the doubling dimension. The result follows by Lemma 12, which bounds the

doubling dimension of Euclidean space.

The following example shows that the hole dimension is more robust than the expansion

dimension.

Example 18. The hole dimension of a metric space may be arbitrarily smaller than the

expansion dimension of the space. We show this using the same metric space as from

Example 9. Let xi = 2−i for all i ∈ N, and Xn = {x0, x1, ..., xn}. Then Xn has expansion

number O(n) and hole dimension O(1).

In Section 4.4, we provide novel runtime bounds for the cover tree based on the hole dimen-

sion. We show that the runtime in terms of the hole dimension is significantly smaller than

the runtime in terms of the expansion dimension (O(c4
hole) vs O(c12

exp). Combined with the

fact that chole can be much smaller than cexp, this implies a bound that is potentially much

stronger for certain datasets.

91

4.2.4 Aspect ratio

Unlike the expansion, doubling, and hole constants, the aspect ratio should not be thought

of as a measure of dimension. This is because the aspect ratio is only applicable to finite

sets. Instead, it should be thought of as a measure of how evenly spread the points in a

metric space are. We will use the aspect ratio to bound the depth of the cover tree.

The diameter of X is the maximum distance between any two points. In notation,

diam(X) = max
x1,x2∈X

d(x1, x2). (4.15)

The codiameter of X is the minimum distance between any two points. In notation,

codiam(X) = min
x1 6=x2∈X

d(x1, x2). (4.16)

The aspect ratio of X , denoted by ∆X , is the ratio of the diameter to the codiameter. Sets

with small aspect ratio are called fat, and sets with large aspect ratio are called skinny.

There is little necessary relationship between the aspect ratio and the inherent

dimension of a space. We emphasize this point with three examples.

Example 19. Let Y = {y1, ..., yn} be the discrete metric space of size n; that is,

d(yi, yj) =

0 i = j

1 otherwise

. (4.17)

Then the aspect ratio of Y is 1 (i.e. as small as possible), and both the expansion and

92

doubling constants of Y are n− 1 (i.e. arbitrarily large).

Example 20. Now construct the set Y ′ = {y′1, y′2, y′3}. Let r > 2, and define the distance

function to be

d(y′i, y
′
j) =

0 i = j

1 i = 1, j = 2

r i = 1, j = 3

r i = 2, j = 3

. (4.18)

Then the aspect ratio is r (i.e. arbitrarily large), but the expansion constant is always 2

and the doubling constant always 1.

Example 21. Let Y = {1
2 ,

1
4 , ...,

1
2n }, and d(y1, y2) = |y1 − y2|. Then the aspect ratio is

2n−1 (i.e. arbitrarily large), the expansion constant is n− 1 (i.e. arbitrarily large), and the

doubling constant is 1.

The following lemma provides the only known relationship.

Lemma 22 (Krauthgamer and Lee (2004)). For any metric space X , we have that |X | ≤

∆
O(dimdoubX)
X .

The aspect ratio and the expansion number share the unattractive property that

adding a single point to a dataset can increase these quantities arbitrarily. Under mild

assumptions, however, we can show that this is unlikely to happen. Specifically, let X be a

metric space, and let X = {x1, ..., xn} ⊂ X be a sample of n i.i.d. points from a distribution

D over X . Our goal is to show that the aspect ratio grows polynomially in n. We will later

93

show that the log of the aspect ratio bounds the depth of the cover tree (see Lemma 26),

and so the depth of the cover tree will be logarithmic in n.

We begin by bounding the diameter of X. We say the distribution D has finite

expected distance if there exists an x̄ ∈ X such that µ = E d(x̄, xi) is finite. Note that

this is a mild condition satisfied by most standard distributions on Euclidean space. For

example, the uniform, Gaussian, exponential, Weibull, and Pareto distributions all have

finite expected distance. Notice that the Weibull and Pareto distributions have heavy tails

but still satisfy the condition. One standard distribution which does not satisfy this property

is the Cauchy distribution (the distribution of the reciprocal of a standard Gaussian random

variable). The following lemma shows that finite expected distance is a sufficient condition

for the diameter to grow polynomial in n.

Lemma 23. Let X and X be defined as above, and assume that D has finite expected

distance. Then, Ediam(X) ≤ 2nµ.

Proof. By the triangle inequality, we have that

diam(X) = max
i,j

d(xi, xj) ≤ max
i,j

(d(x̄, xi) + d(x̄, xj)) = 2 max
i
d(x̄, xi).

We now remove the max using the union bound. This gives

Pr [diam(X) > t] ≤ Pr

[
max
i

2d(x̄, xi) > t

]
≤

n∑
i=1

Pr [2d(x̄, xi) > t] = nPr [2d(x̄, x1) > t] .

The rightmost equality follows because the xis are i.i.d. Finally, since the distances are

94

always nonnegative, we have that

Ediam(X) =

∫ ∞
0

Pr [diam(X) > t] dt ≤
∫ ∞

0
nPr [2d(x̄, x1) > t] dt = 2nE d(x̄, x1).

Next we show that the codiameter cannot shrink too fast. We say that the distri-

bution D has B-bounded density if for all x ∈ X , the density of d(x, xi) is bounded by

B. An immediate consequence is that

max
x∈X

Pr [d(x, xi) ≤ t] ≤ Bt. (4.19)

All the standard distributions in Euclidean space satisfy this condition. The following

lemma shows that having a B-bounded density is sufficient to lower bound the codiameter.

Lemma 24. Let X and X be defined as above, and assume that D has B-bounded density.

Then, E codiam(X) ≥ (2n2B)−1.

Proof. We have that

Pr [codiam(X) ≤ t] = Pr [min{d(xi, xj) : i ∈ {1, ..., n}, j ∈ {i+ 1, ..., n}} ≤ t] (4.20)

≤
n∑
i=1

n∑
j=i+1

Pr [d(xi, xj) ≤ t] (4.21)

≤ n2 max
x∈X

Pr [d(x1, x) ≤ t] (4.22)

≤ n2Bt (4.23)

95

Equation (4.21) follows from the union bound, (4.22) from the fact that the xis are i.i.d.,

and (4.23) from the definition of B-bounded. We further have that since probabilities are

always no greater than 1,

Pr [codiam(X) ≤ t] ≤ min{1, n2Bt}. (4.24)

Finally, since codiam(X) is nonnegative, we have that

E codiam(X) =

∫ ∞
0

(1− Pr [codiam(X) ≤ t]) dt (4.25)

≥
∫ ∞

0
(1−min{1, n2Bt}) dt (4.26)

=

∫ (n2B)−1

0
(1− n2Bt) dt (4.27)

=
1

2n2B
. (4.28)

An immediate consequence of Lemmas 23 and 24 is the following bound on the aspect ratio.

Lemma 25. Let X and X be defined as above. Assume that D has finite expected distance

and B-bounded density. Then, E∆ ≤ 4Bµn3.

4.3 Review of methods for faster nearest neighbors

This section explores three strategies for faster nearest neighbor queries: sample compres-

sion, embedding, and spatial¿ data structures. Sample compression works well when there

are many data points (called tall data sets). Embedding works well when the data is high

96

dimensional (called wide data sets). Both techniques are simple and easy to implement, but

are only suitable for approximate nearest neighbor queries. Spacial data structures work

well for both tall and wide data, and they support both exact and approximate queries.

Their downside is that they are typically more complicated to implement.

A recurring theme throughout this section is that the doubling dimension is widely

used in approximation bounds and the expansion dimension widely used in exact bounds.

Krauthgamer and Lee (2005) showed that the doubling constant exactly characterizes the

difficulty of approximate nearest neighbor queries. In particular, they show that a (1+ε)-ann

can be found in polylogarithmic time using polynomial space if and only if cdoub = O(log n).

Despite the expansion constant’s use in exact nearest neighbor queries, no similar result

is known. This lack motivates our introduction of the hole constant to characterize the

difficulty of nearest neighbor queries.

4.3.1 Sample compression

The method of compression was introduced by Hart (1968), and is arguably the simplest

method for speeding up nearest neighbor classification. Given a data set X, compression

selects a subset X ′ of X satisfying two properties: First, |X ′| should be much smaller than

|X|. This ensures that nearest neighbor queries in X ′ take much less time than queries in X.

Second, given any query point y, the nearest neighbor of y in X and X ′ should have the same

class label. Finding an optimal subset X ′ for exact queries is known to be NP-hard (Zukhba,

2010), so a number of heuristics have been developed for approximate queries. Hart (1968)

gave a heuristic that runs in time O(n3), and Angiulli (2005) provided an improved heuristic

that runs in time O(n2). Unfortunately, neither of these heuristics provides any guarantee

97

that the nearest neighbors in X ′ are likely to have the same class label as the nearest

neighbor in X. Gottlieb et al. (2014b) introduced the first sample compression scheme

providing an approximation guarantee. They also showed that no compression scheme can

perform significantly better than theirs unless P=NP. Their algorithm works in arbitrary

metric spaces and has an impressive O(poly(cdoub)n) runtime. Sample compression can be

easily combined with other techniques to further speed up nearest neighbor queries on the

set X ′.

4.3.2 Embeddings and locality sensitive hashing

High dimensional data can be slow in two ways. First, calculating distances in high dimen-

sions takes longer than calculating distances in low dimensions. But more importantly, the

curse of dimensionality causes high dimensional data to be “less structured” than low

dimensional data. In particular, the variation in the distance between data points decreases

as the dimensionality increases. This causes spatial¿ data structures to become less effi-

cient. Embeddings provide a technique to reduce these two effects of high dimensional data.

Specifically, given a data set X, an embedding is a function f : X → X ′ where the target

X ′ is a lower dimensional space. If the embedding f has low distortion (i.e., distances in

the low dimensional space are close to distances in the high dimensional space), then exact

nearest neighbor queries in the low dimensional space serve as approximate queries in the

high dimensional space.

The target space is typically a low dimensional Lp space. After applying the

embedding, standard techniques for low dimensional Lp spaces like kd-trees can be used to

quickly find the nearest neighbor. The most celebrated embedding is given by the Johnson-

98

Lindenstrauss (JL) lemma in L2 space. The JL lemma states that if f is a random projection

from Rd → RO(1), then f embeds any set of n data points with O(log n) distortion with high

probability (Johnson and Lindenstrauss, 1984). Further research has either simplified the

proof of the JL lemma (Dasgupta and Gupta, 2003; Baraniuk et al., 2008) or reduced the

computation needed to generate and apply the embedding (Achlioptas, 2001). Indyk and

Motwani (1998) and Gionis et al. (1999) introduced the term locality sensitive hashing (LSH)

for random projections where the target space is a low dimensional L1 space (sometimes

called the Hamming cube). Wang et al. (2014) and Wang et al. (2016a) provide good surveys

on LSH techniques with particular emphasis on embeddings that depend on the data (in

contrast to the the JL embedding which does not).

Low dimensional Lp spaces are also popular targets when the host space is a

generic metric space. Bourgain (1985) showed that any n-point doubling metric can be

embedded into Euclidean space with O(poly(cdoub) log n) distortion. Gupta et al. (2003)

improve on Bourgain’s result by showing an embedding with O(log cdoub log n) distortion,

and Krauthgamer et al. (2004) further improve this result by showing an embedding with

O(
√

log cdoub log n) distortion. The best known embeddings into Euclidean space are due

to Chan et al. (2010). They show that every n point metric can be embedded into

O(log cdoub log logn) dimensional Euclidean space with O(log n/
√

log logn) distortion. It

is unfortunately not possible to embed metric spaces into L1 or L2 spaces with arbitrarily

small distortion; however, Neiman (2016) shows how to embed finite metrics into L∞ with

arbitrary small distortion.

Embedding techniques are widely used in practice because they are easy to imple-

99

ment and work well in real world data. Somewhat surprisingly, however, they are provably

non-optimal. ODonnell et al. (2014) provide lower bounds on the quality of LSH embeddings

of Euclidean data, and Andoni et al. (2014) proposed a data structure with performance

better than these lower bounds.

4.3.3 Spacial data structures

The simplest and oldest of spatial¿ data structure is the ball tree (Omohundro, 1989). The

ball tree is a type of binary search tree that divides data points into subtrees using a number

of possible heuristic rules. Although attractive for its simplicity, ball trees provide only the

trivial runtime guarantee that queries will take time O(n). In practice, a good choice of

heuristic can greatly speed up some queries, and a number of heuristics have been developed.

See Zezula et al. (2006) and Mao et al. (2016) for surveys. Despite the lack of guarantees,

ball trees continue to be used in practice. For example, they are the only method for

fast nearest neighbor queries in metric spaces provided in Python’s popular scikit-learn

library (Pedregosa et al., 2011). Unfortunately there are no detailed experimental results

justifying the use of these heuristic data structures over methods with more theoretical

justification.

Clarkson (1997) introduced the first data structure to provide theoretical guaran-

tees. Clarkson’s data structure, called the M(S,Q) solved the all-nearest neighbor prob-

lem in expected time O(poly(cdoub)n(log n)2(log ∆)2) using space O(n log ∆). The M(S,Q)

structure works only in probability and requires that query data points have a similar dis-

tribution to the data used in construction. Clarkson also introduced a novel notion of

dimensionality called the γ-dominator bound. This bound is closely related to the dou-

100

bling constant, but somewhat harder to use in practice. No subsequent work uses this

bound on dimension. The next advance came when Karger and Ruhl (2002) introduced

the metric skip list and the expansion dimension. This data structure requires O(n log n)

space, finds nearest neighbors in time O(poly(cexp) log n), and inserts new data in time

O(poly(cexp) log n log logn). The expansion dimension is not as good a notion of dimen-

sionality as the doubling dimension.

The navigating net was the first data structure to use the doubling dimension. It

requires quadratic space, polynomial dependency on the doubling constant, and logarithmic

dependence on the aspect ratio (Krauthgamer and Lee, 2004). The navigating net inspired

a flurry of subsequent results. Hildrum et al. (2004) modified the navigating net into a

randomized data structure requiring only linear space. Krauthgamer and Lee (2005) further

improve on the navigating net by replacing the logarithmic dependence on the aspect ratio

with a logarithmic dependence on the number of data points. Har-Peled and Mendel (2006)

provides a data structure for approximate nearest neighbors. Cole and Gottlieb (2006)

provides a data structure for approximate nearest neighbor search with dynamic point sets

that does not depend on the aspect ratio.

Beygelzimer et al. (2006) introduce the cover tree, which also uses only linear

space but is fully deterministic. The downside of the cover tree is that the analysis is in terms

of the less robust expansion constants. Ram et al. (2009) and Curtin et al. (2015) improve

the runtime bounds of cover trees and extend the use of cover trees to non-nearest neighbor

problems. Curtin et al. (2013c) provide a generic framework for solving distance problems.

Of all the spatial¿ data structures, the cover tree has seen the most widespread adoption.

101

For example, cover trees have been used to speed up support vector machines (Segata

and Blanzieri, 2010), dimensionality reduction (Lisitsyn et al., 2013), gaussian processes

(Moore and Russell, 2014), and reinforcement learning (Tziortziotis et al., 2014). This

widespread adoption is likely due to the fast, easy to use reference implementation provided

by Beygelzimer et al. (2006).

4.4 The original cover tree

The cover tree data structure was first described by Beygelzimer et al. (2006). The original

presentation was in terms of an infinitely large tree, only a finite subset of which actually

gets implemented. In this section we provide an alternative (but equivalent) definition that

is more concrete. This presentation more closely matches the implementation in code and

serves to highlight the differences between the original cover tree and the simplified cover

tree presented in the next section. In addition to presenting the original cover tree, we

present a novel algorithm for (1 + ε)-ann queries on the original cover tree that improves

the runtime of the algorithm developed by Beygelzimer et al. (2006).

A cover tree is a tree data structure where each node in the tree contains a single

point in the underlying metric space. When needed for disambiguation, dp(p) will refer

to the data point stored at node p; however, when clear from context we will omit the dp

function. Thus the distance between the two points stored in nodes p1 and p2 in a cover

tree can be specified by either d(dp(p1),dp(p2)) or more succinctly as d(p1, p2). A valid

cover tree must satisfy the following three invariants.

1. Nesting invariant. Every node p has an associated integer level(p). For all nodes

102

q ∈ children(p), level(q) = level(p) − 1. If children(p) is non-empty, then children(p)

contains a node with the same data point as p.

2. Covering invariant. Every node p has an associated real number covdist(p) =

2level(p). For all nodes q ∈ children(p), d(p, q) ≤ covdist(p).3

3. Separating invariant. For all nodes q1, q2 ∈ descendants(p) satisfying level(q1) =

level(q2) = i, d(q1, q2) ≥ 2i.

It will be useful to define the function

maxdist(p) = arg max
q∈descendants(p)

d(p, q). (4.29)

In words, maxdist(p) is the greatest distance from p to any of its descendants. This value is

upper bounded by 2level(p)+1, and its exact value can be cached within the data structure.

4.4.1 Properties of the cover tree

Before we present algorithms for manipulating the cover tree, we present two lemmas that

bound the shape of the tree. These lemmas are a direct consequence of the cover tree’s

invariants and motivate the invariants’ selection. Beygelzimer et al. (2006) present similar

lemmas bounding the shape of the cover tree in terms of the expansion number. The bounds

in this section, however, are in terms of the aspect ratio and doubling number.

Lemma 26. Let p be any non-leaf node in a cover tree. Denote by height(p) the maximum

number of edges between p and any of its descendants. We have that height(p) ≤ log2 ∆X .

3 Beygelzimer et al. (2006) observe that practical performance is improved on most datasets by redefining
covdist(p) = 1.3level(p). All of our experiments use this modified definition.

103

Proof. We will show that the following chain of inequalities holds:

∆X =
diam(X)

codiam(X)

(1)

≥ diam(X)

covdist(p)/2height(p)−1

(2)

≥ diam(X)

diam(X)/2height(p)
= 2height(p). (4.30)

Solving for height(p) then gives the desired result. For inequality (1), consider a point q

that is exactly i edges away from p. By the covering invariant,

d(q,parent(q)) ≤ covdist(parent(q)) ≤ covdist(parent(parent(q)))/2 ≤ covdist(p)/2i−1.

(4.31)

In particular, if ` is a leaf node height(p) edges away from p, then codiam(X) ≤ d(p, `) ≤

2height(p)−1. For inequality (2), observe that there must exist a child q of p such d(p, q) ≥

covdist(p)/2. Otherwise, level(p) could be reduced by one, which would violate the leveling

invariant. Therefore, diam(X) ≥ d(p, q) ≥ covdist(p)/2.

Lemma 27. For every node p in a cover tree, we have that |children(p)| ≤ c2
doub.

Proof. To simplify notation, we let δ = covdist(p). The separating invariant ensures that

the children of p form a δ/2-packing of B(p, δ). So by the definition of Mδ/2 and Lemma

11, we have

|children(p)| ≤Mδ/2(B(p, δ)) ≤ Nδ/4(B(p, δ)). (4.32)

We now show that Nδ/4(B(p, δ)) ≤ cdoub. Let Y be a δ/2-covering of B(p, δ). For each

yi ∈ Y , let Yi be a minimum δ/4-covering ofB(yi, δ/2). The union of the Yis is a δ/4-covering

of B(p, δ). There are at most cdoub Yis, and each Yi contains at most cdoub elements. So

their union contains at most c2
doub elements.

104

4.4.2 Approximate nearest neighbor query for a single point

We present two algorithms for answering (1+ε)-ann queries. The first is shown in Algorithm

9 as the findnn orig function. This algorithm was first presented by Beygelzimer et al.

(2006) in the original cover tree paper. Here, we provide an improved runtime analysis.

Whereas Beygelzimer et al. (2006) show that exact nearest neighbor queries can be found

in time O(c12
exp log n), we show that exact nearest neighbor queries can be found in time

O(c4
hole log n). Lemma 16 showed that chole ≤ cexp, so this is a major improvement. The

second algorithm is a novel modification to findnn orig that improves the runtime and is

described in the next subsection.

The findnn orig function finds a (1 + ε)-ann of a data point x in a set of cover

trees P . The function would typically be called with only a single tree in the input set P ;

but in subsequent recursive calls, P may contain many subtrees. On each call, findnn orig

iterates over Q (the children of nodes in P), and constructs a set Qx ⊆ Q of subtrees that

will be recursively searched. We typically have that |Qx| << |Q|, so only a small portion of

the tree is searched. We now prove the algorithm’s correctness and runtime. The correctness

proof is essentially the same as that of Beygelzimer et al. (2006), but the runtime proof is

novel.

Theorem 28. findnn orig({p}, x, ε) returns a (1 + ε)-ann of x in data(p). In particular,

findnn orig({p}, x, 0) returns the exact nearest neighbor of x.

Proof. We show that every q̂ satisfying the if statement in line 3 is a (1 + ε)-ann. For the

first case where Q = {q̂}, we show that q̂ must be the true nearest neighbor. Let y∗ denote

105

Algorithm 9 findnn orig(set of cover trees P , query point x, tolerance ε)

returns a (1 + ε)-ann of x in data(P)

1: let Q = {q : q ∈ children(p), p ∈ P}
2: let q̂ = arg minq∈Q d(q, x)
3: if Q = {q̂} or d(x, q̂) ≥ 2 · covdist(q̂)(1 + 1/ε) then
4: return q̂
5: else
6: let Qx = {q : q ∈ Q, d(x, q) ≤ d(x, q̂) + maxdist(q)}
7: return findnn orig(Qx, x, ε)
8: end if

the true nearest neighbor of x in data(p). Assume for induction that y∗ is in data(P) and

hence in data(Q). Let q∗ denote the node in Q that contains y∗. Then we have that

d(x, q∗) ≤ d(x, y∗) + d(y∗, q∗) ≤ d(x, q̂) + maxdist(q∗). (4.33)

The set Qx is defined to be all elements of q satisfying (4.33). So q∗ is always included in

Qx, which becomes P in subsequent recursive calls.

Now consider the case where d(x, q̂) ≥ 2 · covdist(q̂)(1 + 1/ε). We have,

d(x, q̂) ≤ d(x, q∗) (4.34)

≤ d(x, y∗) + d(y∗, q∗) (4.35)

≤ d(x, y∗) + 2 · covdist(q∗) (4.36)

≤ d(x, y∗) +
d(x, q̂)

1 + 1/ε
(4.37)

= (1 + ε)d(x, y∗) (4.38)

Line (4.35) is the triangle inequality, line (4.36) uses the maximum distance between any

106

node and a descendent, line (4.37) uses the condition in the if statement, and line (4.38)

follows from algebraic manipulations.

Theorem 29. For any ε ≥ 0, findnn orig({p}, x, ε) finds a (1+ε)-ann in time O(c4
hole log ∆).

In particular, findnn orig finds exact nearest neighbors in this time.

Proof. The total runtime is bounded by the product of the number of recursive calls and

the time spent in each call. The number of recursions is bounded by the height of the tree

because findnn orig descends one level of the tree with each recursion. This height is

bounded by O(log ∆) in Lemma 26. The cost of each call is O(|Q|), since we perform one

distance computation for each node in Q. The size of Q is the size of P times the number

of children per node. The maximum number of children per node is O(c2
doub) = O(c2

hole) by

Lemma 27. The size of P is the same as the size of Qx in the previous recursion. So we

have that the overall runtime is O(|Qx|c2
doub log ∆), and all that remains is to bound |Qx|.

Let γ = d(x, q̂) and δ = covdist(q̂). By definition of Qx on line 6, all q ∈ Qx satisfy

d(x, q) ≤ d(x, q̂) + maxdist(q) ≤ γ + 2δ. (4.39)

So Qx is a subset of A(x, γ, 2δ), and by the global separating invariant Qx is a δ-packing of

this annulus. By Lemma 11,

|Qx| ≤MδA(x, γ, 2δ) ≤ Nδ/2A(x, γ, 2δ) ≤ c2
hole. (4.40)

The overall runtime is then bounded by O(c4
hole log ∆).

107

Algorithm 10 findnn(set of cover trees P , query point x, tolerance ε)

returns a (1 + ε)-ann of x in data(P) faster than findnn orig

1: let Q = {q : q ∈ children(p), p ∈ P}
2: let q̂ = arg minq∈Q d(q, x)
3: if Q = {q̂} or d(x, q̂) ≥ 2 · covdist(q̂)(1 + 1/ε) then
4: return q̂
5: else
6: let Qx = {q : q ∈ Q, d(x, q) ≤ d(x, q̂) /(1 + ε) + maxdist(q)} ∪{q̂}
7: return findnn(Qx, x, ε)
8: end if

4.4.3 Improved approximate nearest neighbor query for a single point

Algorithm 10 presents the findnn function, which is a novel improvement to the findnn orig

algorithm. The changes are minor and highlighted in yellow. Recall that the set Qx con-

tains all the points that will be descended on each recursive call. The improved function

findnn uses a smaller set Qx, reducing the total runtime of the algorithm. Proving the

correctness of findnn requires an entirely different strategy.

Theorem 30. findnn({p}, x, ε) returns an (1 + ε)-ann of x in p.

Proof. Let y∗ denote the true nearest neighbor of x in data(p). We will show that on each

recursion, either y∗ ∈ Qx or q̂ is an (1 + ε)-ann. Since the algorithm only terminates when

Qx is empty, the returned q̂ must be an (1 + ε)-ann.

In the first recursive call where y∗ 6∈ data(Qx), we must have that y∗ ∈ data(Q).

Let q∗ be the node in Q such that y∗ ∈ data(q∗). Then by the definition of Qx, we have

that

d(x, q∗) > d(x, q̂)/ε+ maxdist(q∗). (4.41)

108

Using the triangle inequality on the left and the definition of maxdist on the right gives

d(x, y∗) + d(y∗, q∗) ≥ (4.41)... ≥ d(x, q̂)/ε+ d(y∗, q∗). (4.42)

Subtracting d(y∗, q∗) from each side gives

d(x, y∗) ≥ d(x, q̂)/ε, (4.43)

and so q̂ is an (1 + ε)-ann. In the recursive call on line 7, we call findnn with P = Qx∪{q̂}

to ensure that on all future iterations, the distance between q̂ and x is non-increasing.

4.4.4 Inserting a single point

Our insertion algorithm is essentially the same as that of Beygelzimer et al. (2006), but

we improve the runtime bounds. Whereas they show runtime bounds of O(c6
exp log n), we

show a bound of O(c3
doub log n). Notice that our bound for insertion is in terms of the

doubling dimension, which is the strongest notion of intrinsic dimensionality available for

metric spaces. In particular, Lemma 16 shows that cdoub ≤ cexp, and Example 21 shows

that cdoub can be arbitrarily smaller than cexp.

The algorithm for inserting points is split into two functions. The most important

is insert loop (Algorithm 12). Like findnn, insert loop recursively traverses a set of

input trees to find a suitable location for insertion. On each iteration, a setQx is created that

contains all the subtrees that will be descended. The global separating invariant requires

that we traverse several subtrees simultaneously to ensure that the distance between x is

109

Algorithm 11 insert(cover tree p, data point x)

1: q̂ = arg minq∈Q d(q, x)
2: if d(p, x) > covdist(p) then
3: create a cover tree rooted at x with level = dlog2 d(p, x)e and children = {p}
4: else if d(q̂, x) ≥ covdist(p)/2 then
5: insert x as a child into p
6: else
7: insert loop(children(p), x)
8: end if

Algorithm 12 insert loop(set of cover trees P , data point x)

Precondition 1: d(x, p̂) ≤ covdist(p̂)
Precondition 2: P contains all nodes at level i with distance to x less than 2i

1: let Q = {q : q ∈ children(p), p ∈ P}
2: let q̂ = arg minq∈Q d(q, x)
3: if d(q̂, x) ≥ covdist(q̂) then
4: let p̂ = arg minp∈P d(p, x)
5: insert x as a child into p̂
6: else
7: let Qx = {q : q ∈ Q, d(q, x) ≤ covdist(q)}
8: insert loop(Qx, x)
9: end if

not too close to other nodes on the same level in a different subtree. (A simple depth first

search as done in Algorithm 13 for the simplified cover tree would not ensure this property.)

insert loop requires that the inserted data point be “close enough” to one of the sub trees

to be inserted as a child. This prerequisite will not be satisfied by all data, so insert

(Algorithm 11) is the main interface for insertion. It handles the case when the inserted

data point is relatively far away, then calls insert loop if the data point is close and a

recursive descent is required. We now prove the correctness and runtime of insertion.

Theorem 31. If p is a valid cover tree, then insert(p, x) inserts x into p.

Proof. If x is too far from p to be a child, then line 3 creates a new node at x with p as its

110

only child. The level of this new node is calculated to exactly satisfy the covering invariant.

If x can be inserted as a child of p without breaking the separating invariant, line 5 does

so. Otherwise, x must be inserted as a descendent of some p ∈ P . The fact that x did not

satisfy the condition on line 4 means that children(p) and x must satisfy the preconditions

of insert loop. So insert calls this helper function.

insert loop takes as input a set of cover trees P and inserts a data point x into one

of them. Let i+ 1 be the level of the nodes in Q. The if statement on line 3 checks whether

adding x to level i+ 1 would violate the global separating invariant. Precondition 2 ensures

that all such nodes in level i+ 1 are children of some node in p. If the separating invariant

cannot be satisfied, then x must be inserted at a lower level. In the else clause on line 6,

we form a set Qx of nodes that x may be inserted under, and recursively call insert loop.

The definition of Qx ensures that insert loop’s preconditions will be met.

Theorem 32. The runtime of insert(p, x) is O(c3
doub log ∆).

Proof. The runtime of insert excluding the call to insert loop takes only constant time.

So the overall runtime is the runtime of insert loop. The bound on the runtime of

insert loop follows the same pattern as the bound on findnn.

The total runtime of insert loop is bounded by the product of the number of

recursive calls and the time spent in each call. The number of recursions is bounded by the

height of the tree because insert loop descends one level of the tree with each recursive

call. This height is bounded by O(log ∆) in Lemma 26.

The cost of each recursive call isO(|Q|), since we perform one distance computation

for each node in Q. The size of Q is the size of P times the of children per node. To bound

111

the size of P , we will bound the size of Qx (since P is always Qx of the previous iteration).

Let δ = 2i−1. Then Qx is a δ-packing of B(x, δ) by construction. So,

|Qx| ≤Mδ(B(x, δ)) ≤ Nδ/2(B(x, δ)) ≤ cdoub. (4.44)

Each node in P has at most c2
doub children by Lemma 27, so |Q| ≤ c3

doub.

4.5 The simplified cover tree

The simplified cover tree was introduced by Izbicki and Shelton (2015). It maintains

three invariants that are simpler than the invariants of the original cover tree.

1. Leveling invariant. Every node p has an associated integer level(p). For all nodes

q ∈ children(p), level(q) = level(p)− 1.

2. Covering invariant. Every node p has an associated real number covdist(p) =

2level(p). For all nodes q ∈ children(p), d(p, q) ≤ covdist(p).

3. Local separating invariant. For all nodes q1, q2 ∈ children(p), d(q1, q2) ≥ covdist(p)/2.

The covering invariant is the same as in the original cover tree, but the leveling and local

separating invariants are modified.

The leveling invariant does not require that data points exist at multiple levels

of the tree. This is in contrast to the nesting invariant that requires all non-leaf nodes

to have a child containing the same data point. Therefore, the simplified cover tree has

fewer nodes, which reduces both the overhead from traversing the data structure and the

number of required distance comparisons. Figure 4.1 shows the reduction in nodes by using

112

the simplified cover tree on benchmark datasets taken from the MLPack test suite (Curtin

et al., 2013a). Section 4.6 contains more details on these datasets, and Figure 4.3 in the same

section shows how this reduced node count translates into improved query performance.

The local separating invariant only requires that children of the same node be

separated from each other. This is in contrast to the separating invariant of the original

cover tree that requires all nodes at a particular level to be separated even if they do not

share a parent. As the following subsections show, the local separating invariant decreases

the complexity of cover tree construction, but increases the complexity of nearest neighbor

queries. Our experiments in Section 4.6 demonstrate that this is a useful tradeoff.

4.5.1 Properties of the simplified cover tree

The simplified cover tree obeys the following two structural lemmas with the same proofs

as the original cover tree.

Lemma 33. Let p be any non-leaf node in a simplified cover tree. Denote by height(p) the

number of edges between p and its most distant leaf. We have that height(p) ≤ log2 ∆X .

Lemma 34. For every node p in a simplified cover tree, we have that |children(p)| ≤ c2
doub.

4.5.2 Approximate nearest neighbor queries

Algorithms 9 and 10 from Section 4.4 correctly answer (1 + ε)-ann queries in both the

simplified and original cover trees. Unfortunately, Izbicki and Shelton (2015) incorrectly

stated that the simplified cover tree obeys the same runtime bounds as the original cover

tree for nearest neighbor queries. This is not true in the worst case. The proofs of Theorems

113

0

0.1
0.2

0.3

0.4

0.5
0.6

0.7

0.8
0.9

1

yearpredict

tw
itter

tinyIm
ages

m
nist

corel

covtype

artificial40

faces

fr
ac

ti
on

o
f

n
o
d

es
in

th
e

or
ig

in
a
l

co
ve

r
tr

ee
re

q
u

ir
ed

fo
r

th
e

si
m

p
li

fi
ed

co
v
er

tr
ee

Figure 4.1: Fraction of nodes required for the simplified cover tree. Fewer nodes means
less overhead from traversing the tree and fewer distance comparisons. See Table 4.1 for
information on the datasets.

29 critically depend on the global nature of the separating invariant to bound the size of

Qx in each recursive call of findnn orig and findnn. It is possible that an amortized

or average case analysis could achieve similar runtimes, however the difficulty of such an

analysis does not seem worth the effort. The experiments in Section 4.6 demonstrate that

this theoretical difficulty is not an issue in practice as the simplified cover tree performs

nearest neighbor queries faster than the original on real world problems.

4.5.3 Inserting a single point

Insertion into a simplified cover tree is faster and simpler than the original cover tree.

Algorithms 13 and 14 show the procedure. It is divided into two cases. In the first case, we

cannot insert our data point x into the tree without violating the covering invariant. So we

raise the level of the tree p by taking any leaf node and using that as the new root. Because

114

Algorithm 13 insert(cover tree p, data point x)

1: if d(p, x) > covdist(p) then
2: while d(p, x) > 2covdist(p) do
3: Remove any leaf q from p
4: p′ ← tree with root q and p as only child
5: p← p′

6: end while
7: return tree with x as root and p as only child
8: end if
9: return insert loop(p,x)

Algorithm 14 insert loop(cover tree p, data point x)

prerequisite: d(p, x) ≤ covdist(p)

1: for q ∈ children(p) do
2: if d(q, x) ≤ covdist(q) then
3: q′ ← insert loop(q, x)
4: p′ ← p with child q replaced with q′

5: return p′

6: end if
7: end for
8: return p with x added as a child

maxdist(p) ≤ 2covdist(p), we are guaranteed that d(p, x) ≤ covdist(x), and so we do not

violate the covering constraint. In the second case, the insert loop function recursively

descends the tree. On each function call, we search through children(p) to find a node we

can insert into without violating the covering invariant. If we find such a node, we recurse;

otherwise, we know we can add x to children(p) without violating the separating invariant.

In all cases, exactly one node is added per data point, so the resulting tree will have exactly

n nodes. The following theorem shows that inserting into a simplified cover tree has a better

dependence on cdoub than inserting into the original cover tree (c2
doub vs c3

doub).

Theorem 35. The runtime of insert loop(p, x) is O(c2
doub log ∆). For i.i.d. data satisfy-

ing the regularity conditions of Lemma 25, the expected runtime is O(c2
doub log n).

115

Proof. On each recursive call, the algorithm visits each child node at most once, then either

descends a level or terminates. The number of children is bounded by O(c2
doub) by Lemma

27, and the height of the tree is bounded by O(log ∆) by Lemma 26. In the i.i.d. case,

Lemma 25 states that ∆ = O(n3).

4.5.4 The nearest ancestor invariant

A further advantage of the simplified cover tree is that it is easier to add new invariants

that improve performance. In this section, we exploit a similarity between simplified cover

trees and binary search trees (BSTs). Insertion into both trees follows the same procedure:

Perform a depth first search to find the right location to insert the point. In particular,

there is no rebalancing after the insertion. Many alternatives to plain BSTs produce better

query times by introducing new invariants. These invariants force the insertion algorithm

to rebalance the tree during the insertion step. Our definition of the simplified cover tree

makes adding similar invariants easy. We now introduce one possible invariant.

A nearest ancestor cover tree is a simplified cover tree where every point p has the

nearest ancestor invariant: If q1 is an ancestor of p and q2 is a sibling of q1, then

d(p, q1) ≤ d(p, q2)

In other words, the nearest ancestor cover tree ensures that for every data point, each of its

ancestors is the “best possible” ancestor for it at that level.4 Figure 4.2 shows a motivating

one dimensional example.

4 The nearest ancestor invariant is incompatible with the global separating invariant of the original cover

116

10

8

7 11

12

9 13

10

8

7 9

12

11 13

level 3

level 2

level 1

Figure 4.2: Example of a simplified cover tree. Using the metric d(a, b) = |a−b|, both trees
are valid simplified cover trees; but only the right tree is a valid nearest ancestor cover tree.
Moving the 9 and 11 nodes reduces the value of maxdist for their ancestor nodes. This
causes pruning to happen more often during nearest neighbor queries, resulting in fewer
distance comparisons.

Algorithm 15 shows how to insert a point into a nearest ancestor cover tree. It uses

the same insert function as 13, but the helper function insert loop is slightly modified in

two ways (shown with an underline). First, we sort children(p) according to their distance

from the data point x. This sorting ensures that our newly inserted point will satisfy the

nearest ancestor invariant. But this new point x may cause other points to violate the

nearest ancestor invariant. In particular, if x has a sibling q; q has a descendent r; and

d(r, x) < d(r, q); then r now violates the nearest ancestor invariant. Our second step is to

call rebalance, which finds all these violating data points and moves them underneath x.

Most of the work of the rebalance function happens in the helper rebalance loop.

rebalance loop returns a valid nearest ancestor cover tree and a set of points that still

need to be inserted; rebalance just inserts those extra points. rebalance loop takes two

tree. There are data sets that cannot simultaneously satisfy both.

117

nearest ancestor cover trees p and q (where p is an ancestor of q) and a point x. Its goal

is to “extract” all points from q that would violate the nearest ancestor invariant if x be-

came a sibling of p. It returns three values: a modified version of q, a set of points that

cannot remain in any point along the path from p to q called the moveset , and a set of

points that need to be reinserted somewhere along the path from p to q called the stayset .

There are two cases. In the first case, the data point at node q must move. We then filter

the descendants of q into the moveset or stayset as appropriate and return null for our

modified q. In the second case, the data point at node q must stay. We recursively ap-

ply rebalance loop to each of q’s children; we use the results to update the corresponding

child, the moveset and the stayset variables. Finally, we try to reinsert any nodes in stayset .

If rebalance loop was called with q a child of p, then the return value of stayset will be

empty; any children that could not be directly reinserted must be in the moveset .

The rebalance loop function loops over all O(c2
doub) children of a node, and the

maximum depth of the recursion isO(log ∆). Therefore the overall runtime isO(c2
doub log ∆).

It may be called up to O(c2
doub) times within rebalance, so the body of the for loop on

line 14 executes O(c4
doub log ∆) times. Unfortunately, we have no bound on the size of

moveset, except to note that it is usually small in practice. On the datasets in our experi-

ments (see Table 4.1), the value is usually zero or at worst in the single digits. Figure 4.3(a)

shows that nearest ancestor cover tree construction is not that much slower in practice, and

Figure 4.3(b) shows that this slowdown is overshadowed by the resulting speedup in nearest

neighbor queries.

118

Algorithm 15 insert loop(cover tree p, data point x)

1: for q ∈ children(p) sorted by distance to x do
2: if d(q, x) ≤ covdist(q) then
3: q′ ← insert loop(q, x)
4: p′ ← p with child q replaced with q′

5: return p′

6: end if
7: end for
8: return rebalance(p, x)

function rebalance(cover trees p, data point x)
prerequisites: x can be added as a child of p without violating the covering or separating
invariants

1: create tree x′ with root node x at level level(p)− 1 x′ contains no other points
2: p′ ← p
3: for q ∈ children(p) do
4: (q′,moveset, stayset)← rebalance loop(p, q, x)
5: p′ ← p′ with child q replaced with q′

6: for r ∈ moveset do
7: x′ ← insert(x′, r)
8: end for
9: end for

10: return p′ with x′ added as a child

119

Algorithm 16 rebalance loop(cover trees p and q, point x)

prerequisites: p is an ancestor of q

1: if d(p, q) > d(q, x) then
2: moveset, stayset← ∅
3: for r ∈ descendants(q) do
4: if d(r, p) > d(r, x) then
5: moveset← moveset ∪ {r}
6: else
7: stayset← stayset ∪ {r}
8: end if
9: end for

10: return (null,moveset, stayset)
11: else
12: moveset ′, stayset ′ ← ∅
13: q′ ← q
14: for r ∈ children(q) do
15: (r′,moveset, stayset)←rebalance loop(p, r, x)
16: moveset ′ ← moveset ∪moveset ′

17: stayset ′ ← stayset ∪ stayset ′

18: if r′ = null then
19: q′ ← q with the subtree r removed
20: else
21: q′ ← q with the subtree r replaced by r′

22: end if
23: end for
24: for r ∈ stayset′ do
25: if d(r, q)′ ≤ covdist(q)′ then
26: q′ ← insert(q′, r)
27: stayset ′ ← stayset ′ − {r}
28: end if
29: end for
30: return (q′,moveset′, stayset′)
31: end if

120

4.5.5 Merging simplified cover trees

In this section we discuss parallelism on shared-memory, multiprocessor machines. Previous

chapters discussed parallelism in the more restrictive model of distributed architectures. In

distributed architectures, communication between processors is expensive and so must be

minimized. In the shared memory model, communication is cheap and so we make no effort

to minimize it.

Querying in parallel is easy. Since the results of neighbor queries for a data point

do not depend on other data points, we can divide the points among the processors and

have each processor traverse the tree independently. More difficult is constructing the tree

in parallel. Our strategy is to split the data, create one cover tree on each processor, then

merge these trees together. Previous work on parallelizing cover trees applied only to the

GPU (Kumar and Ramareddy, 2010). Our approach is suitable for any shared-memory

multiprocessor machine. We give a detailed description for merging simplified cover trees

and discuss at a high level how to extend this procedure to nearest ancestor cover trees.

Algorithm 17 shows the merging procedure. The merge function’s main purpose

is to satisfy the prerequisites for mergeHelper, which has two phases. First, we find all

the subtrees of q that can be inserted directly into p without violating any invariants, and

we insert them. Second, we insert the remaining nodes from q into p directly via the

insert function.

The mergeHelper function returns a partially merged tree and a set of nodes called

the leftovers that still need to be inserted into the tree. The first phase uses the for loop

121

Algorithm 17 merge(cover tree p, cover tree q)

1: if level(q) > level(p) then
2: swap p and q
3: end if
4: while level(q) < level(p) do
5: move a node from the leaf of q to the root;
6: this raises the level of q by 1
7: end while
8: (p, leftovers)← mergeHelper(p, q)
9: for r ∈ leftovers do

10: p← insert(p, r)
11: end for
12: return p

starting on line 3 to categorize the children of q into three disjoint sets. The uncovered set

contains all of q’s children that would violate the covering invariant if inserted into p. The

sepcov set contains all of q’s children that would not violate the separating or covering invari-

ants when inserted into p. Both of these sets are unused in the second phase of mergeHelper.

Every child of q that is not inserted into the uncovered or sepcov sets gets merged with a

suitable node in children(p). This is done by recursively calling the mergeHelper function.

Any points that could not be inserted into the results of mergeHelper get added to the

leftovers set.

In the second phase of mergeHelper, we insert as many nodes as possible into our

merged tree p′. First update the children with the subtrees in sepcov . Then insert the root

of q. We know that d(p, q) ≤ covdist(p), so this insertion is guaranteed not to change the

level of p′. Finally, we loop over the elements in leftovers and insert them into p′ only if it

would not change the level of p′. Any elements of leftovers that cannot be inserted into p′

get inserted into leftovers ′ and returned. It is important to do this insertion of leftovers at

the lowest level possible (rather than wait until the recursion ends and have the insertion

122

Algorithm 18 mergeHelper(cover tree p, cover tree q)

prerequisite: level(p) = level(q), d(p, q) ≤ covdist(p)

1: children ′ ← children(p) . Phase 1
2: uncovered , sepcov , leftovers ← ∅
3: for r ∈ children(q) do
4: if d(p, r) < covdist(p) then
5: foundmatch ←false
6: for s ∈ children ′ do
7: if d(s, r) ≤ sepdist(p) then
8: (s′, leftoverss)← mergeHelper(s, r)
9: children ′ ← children ′ ∪ {s′} − {s}

10: leftovers ← leftovers ∪ leftoverss
11: foundmatch ← true
12: break from inner loop
13: end if
14: end for
15: if not foundmatch then
16: sepcov ← sepcov ∪ {r}
17: end if
18: else
19: uncovered ← uncovered ∪ {r}
20: end if
21: end for
22: children ′ ← children ′ ∪ sepcov . Phase 2
23: p′ ← tree rooted at p with children(p′) = children ′

24: p′ ← insert(p′, q)
25: leftovers ′ ← ∅
26: for r ∈ leftovers do
27: if d(r, p)′ ≤ covdist(p)′ then
28: p′ ← insert(p′, r)
29: else
30: leftovers ′ ← leftovers ′ ∪ {r}
31: end if
32: end for
33: return (p′, leftovers ′ ∪ uncovered)

123

performed in merge) to avoid unnecessary distance computations.

The merge function does not maintain the nearest ancestor invariant. A modified

version of merge that calls the rebalance function appropriately could, however this would

significantly complicate the procedure. Experimental evidence shows that this complication

is not necessary. In our experiments below, we use the provided merge function in Algorithm

17 to parallelize both simplified and nearest ancestor tree construction. In practice, this

retains the benefits of the nearest ancestor cover tree because the nearest ancestor invariant

is violated in only a few places.

Providing explicit bounds on the runtime of merge is difficult. But in practice it

is fast. When parallelizing on two processors, approximately 1% of the distance calcula-

tions occur within merge. So this is not our bottleneck. Instead, the main bottleneck of

parallelism is cache performance. On modern desktop computers, last level cache is shared

between all cores on a CPU. Cover tree construction results in many cache misses, and this

effect is exaggerated when the tree is constructed in parallel.

4.5.6 Cache efficiency

One of the biggest sources of overhead in modern data structures is cache misses. Our last

improvement is to make cover trees more cache efficient for queries. A simple way to reduce

cache misses for tree data structures is to use the van Emde Boas tree layout (Frigo et al.,

1999). This layout arranges nodes in memory according to a depth first traversal of the tree.

This arrangement creates a cache oblivious data structure. That is, the programmer does

not need any special knowledge about the cache sizes to obtain optimal speedup—the van

Embde Boas tree layout works efficiently on any cache architecture. This layout has been

124

known for a long time in the data structures community, but it seems unused in machine

learning libraries. Frigo et al. (1999) provides a detailed tutorial.

Our implementation of the cache oblivious cover tree is static. That is, we first

construct the cover tree, then we call a function pack that rearranges the tree in memory.

This means we do not get the reduced cache misses while constructing the tree, but only

while querying the tree. The pack function is essentially free to run because it requires only

a single traversal through the dataset and no distance computations. Figure 4.4 shows that

the van Emde Boas tree layout reduces cache misses by 5 to 20 percent. This results in a

reduction of stalled CPU cycles by 2 to 15 percent.

4.6 Experiments

We now validate our improvements to the cover tree empirically. Our first experiments use

the Euclidean distance on a standard benchmark suite (described in Table 4.1). Our last

experiments use non-Euclidean metrics on data from bioinformatics and computer vision.

In each experiment, we use the all nearest neighbors experimental setup. That is, we

first construct the cover trees on the dataset. Then, for each point in the dataset, we find

its nearest neighbor. This is a standard technique for measuring the efficiency of nearest

neighbor algorithms.

4.6.1 Cover tree type comparison

Our first experiment compares the performance of the three types of cover trees: original,

simplified, and nearest ancestor. We measure the number of distance comparisons required

125

dataset num data points num dimensions

yearpredict 515345 90
twitter 583250 78
tinyImages 100000 384
mnist 70000 784
corel 68040 32
covtype 581012 55
artificial40 10000 40
faces 10304 20

Table 4.1: All MLPack benchmark datasets with at least 20 dimensions and 10000 points,
arranged in descending order by runtime of all nearest neighbor search.

to build the tree on a dataset in Figure 4.3(a) and the number of distance comparisons

required to find each data point’s nearest neighbor in Figure 4.3(b). Distance comparisons

are a good proxy measure of runtime performance because the majority of the algorithm’s

runtime is spent computing distances, and it ignores the possible unwanted confounding

variable of varying optimization efforts. As expected, the simplified tree typically outper-

forms the original tree, and the nearest ancestor tree typically outperforms the simplified

tree. We reiterate that this reduced need for distance comparisons translates over to all

other queries provided by the space tree framework Curtin et al. (2013b).

4.6.2 Cover tree implementation comparison

We next compare our implementation against two good cover tree implementations currently

in widespread use: the reference implementation used in the original paper Beygelzimer et al.

(2006) and MLPack’s implementation Curtin et al. (2013a). Both of these programs were

written in C++ and compiled using g++ 4.4.7 with full optimizations. Our implementation

was written in Haskell and compiled with ghc 7.8.4 also with full optimizations.5 All tests

5Our code can be downloaded at http://github.com/mikeizbicki/hlearn#covertree.

126

http://github.com/mikeizbicki/hlearn#covertree

0

1

2

3

4

5

yearpredict

tw
itter

tinyIm
ages

m
nist

corel

covtype

artificial40

faces

n
u

m
b

er
o
f

d
is

ta
n

ce
co

m
p

a
ri

so
n

s
in

tr
ee

co
n

st
ru

ct
io

n
o
n

ly
(n

o
rm

a
li

ze
d

b
y

th
e

o
ri

g
in

a
l

co
v
er

tr
ee

)
19.1

(a)

0

0.2

0.4

0.6

0.8

1

1.2

yearpredict

tw
itter

tinyIm
ages

m
nist

corel

covtype

artificial40

faces

n
u

m
b

er
o
f

d
is

ta
n

ce
co

m
p

a
ri

so
n

s
in

tr
ee

co
n

st
ru

ct
io

n
a
n

d
qu

er
y

(n
o
rm

a
li

ze
d

b
y
n
2
)

(b)

O
ri

g
in

a
l

c.
t.

S
im

p
li

fi
ed

c.
t.

N
ea

re
st

a
n

ce
st

o
r

c.
t.

Figure 4.3:]
(a) Constructing a nearest ancestor query tree usually takes longer than the original cover
tree and the simplified cover tree. (b) Construction plus querying is faster in the nearest

ancestor cover tree. On most datasets, this faster query time more than offsets the
increased construction cost, giving an overall speedup.

were run on an Amazon Web Services c3.8x-large instance with 60 GB of RAM and 32

Intel Xeon E5-2680 CPU cores clocked at 2.80GHz. Half of those cores are hyperthreads,

so for simplicity we only parallelize out to 16 cores.

Since the reference implementation and MLPack only come with the Euclidean

distance built-in, we only use that metric when comparing the three implementations. Fig-

ure 4.4 shows the cache performance of all three libraries. Figure 4.5 shows the runtime of

all three libraries. Our implementation’s cache performance and parallelization speedup is

shown on the nearest ancestor cover tree. Neither the original implementation nor MLPack

support parallelization.

127

0

0.2

0.4

0.6

0.8

1

yearpredict

tw
itter

tinyIm
ages

m
nist

corel
covtype

artificial40

faces

ca
ch

e
m

is
s

ra
te

(c
ac

h
e

m
is

se
s

/
ca

ch
e

ac
ce

ss
es

)

(a)

0

0.2

0.4

0.6

0.8

1

yearpredict

tw
itter

tinyIm
ages

m
nist

corel
covtype

artificial40

faces

st
al

le
d

C
P

U
cy

cl
e

ra
te

(s
ta

ll
ed

cy
cl

es
/

to
ta

l
cy

cl
es

)

(b)

R
ef

er
en

ce
M

L
P

a
ck

O
u

rs
(u

n
p

a
ck

ed
)

O
u

rs
(p

a
ck

ed
)

Figure 4.4: (a) Comparison of our packed nearest ancestor cover tree to our unpacked tree
and other implementations, demonstrating better cache performance. (b) A stalled CPU
cycle is when the CPU does no work because it must wait for a memory access. Reducing
the number of cache misses results in fewer stalled cycles, and so faster runtimes. We used
the Linux perf stat utility to measure the cache-references, cache-misses, cycles,
and stalled-cycles-frontend hardware counters. perf stat uses a sampling strategy
with negligible affect on program performance.

2−4

2−3

2−2

2−1

2+0

2+1

yearpredict

(77sec)

tw
itter

(107sec)

tinyIm
ages

(65sec)

m
nist(12sec)

n
or

m
al

iz
ed

tr
ee

co
n

st
ru

ct
io

n
ti

m
e

1

2

4

8
16

number of processors

(a)

2−4

2−3

2−2

2−1

2+0

2+1

yearpredict

(277m
in)

tw
itter

(51m
in)

tinyIm
ages

(34m
in)

m
nist(30m

in)

n
or

m
al

iz
ed

to
ta

l
ru

n
ti

m
e

(b
ot

h
co

n
st

ru
ct

io
n

an
d

qu
er

y
)

1

1

1

2

4

8

16

(b)

R
ef

er
en

ce
M

L
P

a
ck

O
u

rs

Figure 4.5: Run times on the “all nearest neighbor” procedure for only those datasets
that take more than 5 minutes. (a) Tree construction. A single cover tree merge takes
about 1% of the computation time; the main reason for the lack of perfect parallel speedup
is the increased number of cache misses caused by inserting into multiple trees simultane-
ously. (b) Comparison on total performance to reference and MLPack implementations.
Runtimes in both figures are divided by that of our single processor implementation (shown
in parenthesis).

128

4.6.3 Alternative methods for Euclidean nearest neighbors

Next we compare our cover tree implementation to non-cover tree based nearest neighbor

libraries. Specifically, we compare to a kd-tree implemented in the Fast Library for Ap-

proximate Nearest Neighbor (FLANN; Muja and Lowe, 2014), a kd-tree implemented in

Julia (Bezanson et al., 2017), the original cover tree implementation (Beygelzimer et al.,

2006), a kd-tree and cover tree implemented in MLPack (Curtin et al., 2013a), a kd-tree

and ball tree implemented in Python’s scikit learn (Pedregosa et al., 2011), and a kd-tree

implemented in R (R Development Core Team, 2008). The results are shown in Figures 4.6

and 4.7. Without parallelization, our implementation is faster than most of the alternatives

on most of the datasets. With parallelization it is faster than all of the alternatives on all

of the datasets.

4.6.4 Graph kernels and protein function

An important problem in bioinformatics is to predict the function of a protein based on

its 3d structure. State of the art solutions model the protein’s 3d structure as a graph

and use support vector machines (with a graph kernel) for prediction. Computing graph

kernels is relatively expensive, however, so research has focused on making the graph kernel

computation faster (Vishwanathan et al., 2010; Shervashidze et al., 2011). Such research

makes graph kernels scale to larger graphs, but does not help in the case where there are

more graphs. Our contribution is to use cover trees to reduce the number of required kernel

computations, letting us scale to more graphs. The largest dataset in previous research

contained about 1200 proteins. With our cover tree, we perform nearest neighbor queries

129

0:00

0:30

1:00

1:30

2:00

2:30

HLearn
(sim

plified cover tree)

FLANN
(kd-tree)

Julia(kd-tree)

Langford
(cover tree)

M
LPack

(kd-tree)

M
LPack

(cover tree)

scikit-learn

(ball tree)

scikit-learn

(kd tree)

R
(kd-tree)

0:17.11

ru
n

tim
e

(h
r:

m
in

)
MNIST dataset (70000 datapoints; 784 dimensions)

0:00

0:30

1:00

1:30

2:00

2:30

HLearn
(sim

plified cover tree)

FLANN
(kd-tree)

Julia(kd-tree)

Langford
(cover tree)

M
LPack

(kd-tree)

M
LPack

(cover tree)

scikit-learn

(ball tree)

scikit-learn

(kd tree)

R
(kd-tree)

0:13.6

ru
n

tim
e

(h
r:

m
in

)

TinyImages100k dataset (100000 datapoints; 384 dimensions)

0:00

0:30

1:00

1:30

2:00

2:30

HLearn
(sim

plified cover tree)

FLANN
(kd-tree)

Julia(kd-tree)

Langford
(cover tree)

M
LPack

(kd-tree)

M
LPack

(cover tree)

scikit-learn

(ball tree)

scikit-learn

(kd tree)

R
(kd-tree)

0:26.5

ru
n

tim
e

(h
r:

m
in

)

Twitter dataset (583250 datapoints; 78 dimensions)

took more than 5 hours

0:00

1:00

2:00

3:00

4:00

5:00

HLearn
(sim

plified cover tree)

FLANN
(kd-tree)

Julia(kd-tree)

Langford
(cover tree)

M
LPack

(kd-tree)

M
LPack

(cover tree)

scikit-learn

(ball tree)

scikit-learn

(kd tree)

R
(kd-tree)

3:12.2

ru
n

tim
e

(h
r:

m
in

)

YearPredict dataset (515345 datapoints; 90 dimensions)

took more than 5 hours

Figure 4.6: Using only a single processor, our nearest ancestor cover tree performs the
fastest on each dataset except for YearPredict.

0:00

1:00

2:00

3:00

4:00

1 2 4 8 16

ru
n

tim
e

(h
r:

m
in

)

Number of cores

Parallel scaling on YearPredict dataset

perfect speedup

observed speedup

MLPack’s kd-tree (one core only)

Figure 4.7: Using multiple processors, our implementation is now also the fastest on
the YearPredict dataset by a wide margin. (FLANN is the only other library supporting
parallelism, but in my tests with this dataset parallelism actually slowed it down for some
reason.)

130

on all 100,000 proteins currently registered in the Protein Data Bank (Berman et al., 2000).

We use the random walk graph kernel in our experiment. It performs well on

protein classification and is conceptually simple. See Vishwanathan et al. (2010) for more

details. A naive computation of this kernel takes time O(v6), where v is the number of

vertices in the graph. Vishwanathan et al. (2010) present faster methods that take time

only O(v3). While considerably faster, it is still a relatively expensive distance computation.

The Protein Data Bank (Berman et al., 2000) contains information on the 3d

primary structure of approximately one hundred thousand proteins. To perform our exper-

iment, we follow a procedure similar to that used by the PROTEIN dataset used in the

experiments in Vishwanathan et al. (2010). This procedure constructs secondary structure

graphs from the primary structures in the Protein Data Bank using the tool VLPG (Schäfer

et al., 2012). The Protein Data Bank stores the 3d structure of the atoms in the protein in a

PDB file. From this PDB file, we calculate the protein’s secondary structure using the DSSP

tool (Joosten et al., 2011). Then, the tool VLPG (Schäfer et al., 2012) generates graphs

from the resulting secondary structure. Some PDB files contain information for multiple

graphs, and some do not contain enough information to construct a graph. In total, VLPG

generates 250,000 graphs, and a typical graph has between 5-120 nodes and 0.1-3 edges per

node. Figure 4.8 shows the scaling behavior of all three cover trees on this dataset. On all

of the data, the total construction and query cost are 29% that of the original cover tree.

131

0

200

400

600

800

1000

1200

1400

1600

0 50 100 150 200 250to
ta

l
d

is
ta

n
ce

co
m

p
a
ri

so
n

s
(m

il
li

on
s)

number of data points (thousands)

original c.t.
simplified c.t.

nearest ancestor c.t.
construction

only
construction
and query

Figure 4.8: The effect on runtime as we increase the number of data points on the bionfor-
matics data. The relationship is roughly linear, indicating protein graphs have a relatively
low intrinsic dimensionality. As expected, the nearest ancestor cover tree performs the best.

4.6.5 Earth mover’s distance

The Earth Mover’s Distance (EMD) is a distance metric between histograms designed for

image classification (Rubner et al., 1998). In our tests, we convert images into 3d histograms

of the pixel values in LabCIE color space. LabCIE is a color space that represents colors

in three dimensions. It is similar to the more familiar RGB and CMYK color spaces, but

the distances between colors more accurately match human perception. We construct the

histogram such that each dimension has 8 equally spaced intervals, for a total of 512 bins.

We then create a “signature” of the histogram by recording only the 20 largest of the 512

bins.

Previous research on speeding up EMD focused on computing EMD distances

132

number
of

cores

simplified tree nearest ancestor tree
construction construction

time speedup time speedup

1 70.7 min 1.0 210.9 min 1.0
2 36.6 min 1.9 94.2 min 2.2
4 18.5 min 3.8 48.5 min 4.3
8 10.2 min 6.9 25.3 min 8.3
16 6.7 min 10.5 12.0 min 17.6

Table 4.2: Parallel cover tree construction using the earth movers distance. On this large
dataset with an expensive metric, we see better parallel speedup than on the datasets with
the cheaper L2 metric. The nearest ancestor cover tree gets super-linear parallel speedup
because we are merging with Algorithm 17, which does not attempt to rebalance.

faster. The EMD takes a base distance as a parameter. For an arbitrary base distance, EMD

requires O(b3 log b) time where b is the size of the histogram signature. Faster algorithms

exist for specific base metrics. For example, with an L1 base metric the EMD can be

computed in time O(b2) (Ling and Okada, 2007); and if the base metric is a so-called

“thresholded metric,” we can get an order of magnitude constant factor speed up (Pele and

Werman, 2009). We specifically chose the LabCIE color space because there is no known

faster EMD algorithm, so it stress-tests our cover tree implementation.

In this experiment, we use the Yahoo! Flickr Creative Commons dataset. The

dataset contains 1.5 million images in its training set, and we construct simplified and

nearest ancestor cover trees in parallel on this data. Construction times are shown in Table

4.2. Using the cheap L2 distance with smaller datasets, tree construction happens quickly

and so parallelization is less important. But with an expensive distance on this larger

dataset, parallel construction makes a big difference.

133

4.7 Conclusion

This chapter presented a number of improvements to the cover tree data structure. We

tightened the runtime bounds for the cover tree and introduced the simplified cover tree

with improved practical performance. In particular, we introduced a merge procedure, so

the simplified cover tree fits into the mergeable learning algorithm framework of Chapter

2. This merge procedure provides the first parallel construction algorithm and fast cross

validation algorithms for the cover tree.

134

Chapter 5

Conclusion

This thesis has argued that mergeable learning algorithms are an important tool in design-

ing large scale learning systems. Chapter 2 reviewed 32 published examples of mergeable

algorithms and derived a novel fast cross validation procedure suitable for each of these

algorithms. Then Chapters 3 and 4 introduced new mergeable algorithms that have better

statistical guarantees than previously existing algorithms.

An important open question remains: What is the best possible merge procedure

for models? Liu and Ihler (2014) provide a partial answer. As discussed in Section 2.4.2.2,

they present a theorem showing that in the important special case of regularized loss min-

imization (RLM), merge procedures that do not depend on the data must incur a loss

proportional to the statistical curvature of a problem. This is only a partial answer for two

reasons. First, many learning problems do not fit the RLM framework. For example, there

are no known bounds on the performance of merging MCMC estimators. Second, the OWA

algorithm of Chapter 3 shows that good merge algorithms can be developed that depend on

135

the data. OWA’s theoretical guarantees only apply in the linear RLM case. It is possible

that similar data dependent merge procedures could work well in more general settings. We

believe that the next few years is likely to see the development of new and better mergeable

algorithms.

136

Bibliography

Mart́ın Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro,
Greg S Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, et al. Tensorflow: Large-scale
machine learning on heterogeneous distributed systems. arXiv preprint arXiv:1603.04467,
2016.

Ittai Abraham, Yair Bartal, and Ofer Neimany. Advances in metric embedding theory.
In Proceedings of the Thirty-Eighth Annual ACM Symposium on Theory of Computing,
pages 271–286. ACM, 2006.

Ittai Abraham, Yair Bartal, and Ofer Neiman. Embedding metrics into ultrametrics and
graphs into spanning trees with constant average distortion. In Proceedings of the Eigh-
teenth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 502–511. Society
for Industrial and Applied Mathematics, 2007.

Ittai Abraham, Yair Bartal, Ofer Neiman, and Leonard J Schulman. Volume in general
metric spaces. Discrete & Computational Geometry, 52(2):366–389, 2014.

Ittai Abraham, Shiri Chechik, Robert Krauthgamer, and Udi Wieder. Approximate Nearest
Neighbor Search in Metrics of Planar Graphs. In Approximation, Randomization, and
Combinatorial Optimization., pages 20–42, 2015.

Dimitris Achlioptas. Database-friendly random projections. In Proceedings of the Twentieth
ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, pages
274–281. ACM, 2001.

Rados law Adamczak and Witold Bednorz. Exponential concentration inequalities for addi-
tive functionals of Markov chains. ESAIM: Probability and Statistics, 19:440–481, 2015.

Alekh Agarwal, Olivier Chapelle, and John Langford. A reliable effective terascale linear
learning system. Journal of Machine Learning Research, 15(1):1111–1133, 2014.

Sungjin Ahn and Max Welling. Bayesian posterior sampling via stochastic gradient Fisher
scoring. In International Conference of Machine Learning, 2012.

Yacine Aı̈t-Sahalia. Maximum likelihood estimation of discretely sampled diffusions: A
closed-form approximation approach. Econometrica, 70(1):223–262, 2002.

S. Amari. Information Geometry and Its Applications. Springer Japan, 2016.

137

Shun-Ichi Amari. Differential geometry of curved exponential families-curvatures and in-
formation loss. The Annals of Statistics, pages 357–385, 1982.

Senjian An, Wanquan Liu, and Svetha Venkatesh. Fast cross-validation algorithms for least
squares support vector machine and kernel ridge regression. Pattern Recognition, 40(8):
2154–2162, 2007.

Alexandr Andoni, Dorian Croitoru, and Mihai Patrascu. Hardness of nearest neighbor under
l-infinity. In Foundations of Computer Science, 2008. FOCS’08. IEEE 49th Annual IEEE
Symposium on, pages 424–433. IEEE, 2008.

Alexandr Andoni, Piotr Indyk, Huy L Nguyn, and Ilya Razenshteyn. Beyond locality-
sensitive hashing. In Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 1018–1028. SIAM, 2014.

Alexandr Andoni, Thijs Laarhoven, Ilya Razenshteyn, and Erik Waingarten. Lower
bounds on time-space trade-offs for approximate near neighbors. arXiv preprint
arXiv:1605.02701, 2016.

Christophe Andrieu, Nando De Freitas, Arnaud Doucet, and Michael I Jordan. An intro-
duction to MCMC for machine learning. Machine learning, 50(1-2):5–43, 2003.

Christophe Andrieu, Matti Vihola, et al. Convergence properties of pseudo-marginal Markov
chain Monte Carlo algorithms. The Annals of Applied Probability, 25(2):1030–1077, 2015.

Christophe Andrieu, Matti Vihola, et al. Establishing some order amongst exact approxi-
mations of MCMCs. The Annals of Applied Probability, 26(5):2661–2696, 2016.

Fabrizio Angiulli. Fast condensed nearest neighbor rule. In Proceedings of the 22nd Inter-
national Conference on Machine Learning, pages 25–32. ACM, 2005.

Sylvain Arlot, Alain Celisse, et al. A survey of cross-validation procedures for model selec-
tion. Statistics Surveys, 4:40–79, 2010.

Sunil Arya, Theocharis Malamatos, and David M Mount. Space-time tradeoffs for approx-
imate nearest neighbor searching. Journal of the ACM (JACM), 57(1):1, 2009.

Patrice Assouad. Étude d’une dimension métrique liée à la possibilité de plongements dans
Rn. In C. R. Acad. Sci. Paris Sr, 1979.

Laleh Badriasl, Thuraiappah Sathyan, and Sanjeev Arulampalam. A novel closed-form esti-
mator for 3d tma using heterogeneous sensors. IEEE Transactions on Signal Processing,
2015.

John Baez and Mike Stay. Physics, topology, logic and computation: a rosetta stone. In
New Structures for Physics, pages 95–172. Springer, 2010.

Natalia Bahamonde and Helena Veiga. A robust closed-form estimator for the garch (1, 1)
model. Journal of Statistical Computation and Simulation, 86(8):1605–1619, 2016.

138

Zheng-Jian Bai, Raymond H Chan, and Franklin T Luk. Principal component analysis for
distributed data sets with updating. In International Workshop on Advanced Parallel
Processing Technologies, 2005.

C Bailer-Jones and K Smith. Combining probabilities. Data Processing and Analysis Con-
sortium (DPAS), GAIA-C8-TN-MPIA-CBJ-053, 2011.

Richard Baraniuk, Mark Davenport, Ronald DeVore, and Michael Wakin. A simple proof
of the restricted isometry property for random matrices. Constructive Approximation, 28
(3):253–263, 2008.

Rafael Barbosa, Alina Ene, Huy Nguyen, and Justin Ward. The power of randomization:
Distributed submodular maximization on massive datasets. In International Conference
on Machine Learning, pages 1236–1244, 2015.

Rafael da Ponte Barbosa, Alina Ene, Huy L Nguyen, and Justin Ward. A new framework
for distributed submodular maximization. In Foundations of Computer Science (FOCS),
2016 IEEE 57th Annual Symposium on, pages 645–654. Ieee, 2016.

Omer Barkol and Yuval Rabani. Tighter bounds for nearest neighbor search and related
problems in the cell probe model. In Proceedings of the Thirty-Second Annual ACM
Symposium on Theory of Computing, pages 388–396. ACM, 2000.

Yair Bartal, Nathan Linial, Manor Mendel, and Assaf Naor. On metric ramsey-type phe-
nomena. In Proceedings of the Thirty-Fifth Annual ACM Symposium on Theory of Com-
puting, pages 463–472. ACM, 2003.

Yair Bartal, Lee-Ad Gottlieb, and Ofer Neiman. On the impossibility of dimension reduction
for doubling subsets of p. SIAM Journal on Discrete Mathematics, 29(3):1207–1222, 2015.

Maurice S Bartlett. Tests of significance in factor analysis. British Journal of Mathematical
and Statistical Psychology, 3(2):77–85, 1950.

Heather Battey, Jianqing Fan, Han Liu, Junwei Lu, and Ziwei Zhu. Distributed estimation
and inference with statistical guarantees. arXiv preprint arXiv:1509.05457, 2015.

Aurélien Bellet, Amaury Habrard, and Marc Sebban. A survey on metric learning for
feature vectors and structured data. arXiv preprint arXiv:1306.6709, 2013.

James Bergstra and Yoshua Bengio. Random search for hyper-parameter optimization.
Journal of Machine Learning Research, 13(Feb):281–305, 2012.

Helen M. Berman, John Westbrook, Zukang Feng, Gary Gilliland, T. N. Bhat, Helge Weis-
sig, Ilya N. Shindyalov, and Philip E. Bourne. The Protein Data Bank. Nucleic Acids
Research, 28(1):235–242, 2000.

Alina Beygelzimer, Sham Kakade, and John Langford. Cover trees for nearest neighbor.
In Proceedings of the 23rd International Conference on Machine Learning, pages 97–104.
ACM, 2006.

139

Jeff Bezanson, Alan Edelman, Stefan Karpinski, and Viral B Shah. Julia: A fresh approach
to numerical computing. SIAM Review, 59(1):65–98, 2017.

Aditya Bhaskara, Afshin Rostamizadeh, Jason Altschuler, Morteza Zadimoghaddam,
Thomas Fu, and Vahab Mirrokni. Greedy column subset selection: New bounds and
distributed algorithms. In ICML, 2016.

S Bhattacharya, J Haslett, et al. Importance re-sampling MCMC for cross-validation in
inverse problems. Bayesian Analysis, 2(2):385–407, 2007.

David M Blei, Alp Kucukelbir, and Jon D McAuliffe. Variational inference: A review for
statisticians. Journal of the American Statistical Association, 2017.

Guy E Blelloch. Prefix sums and their applications. Technical Report, 1990.

Luke Bornn, Arnaud Doucet, and Raphael Gottardo. An efficient computational approach
for prior sensitivity analysis and cross-validation. Canadian Journal of Statistics, 38(1):
47–64, 2010.

Allan Borodin, Rafail Ostrovsky, and Yuval Rabani. Lower bounds for high dimensional
nearest neighbor search and related problems. In Proceedings of the Thirty-First Annual
ACM Symposium on Theory of Computing, pages 312–321. ACM, 1999.

Léon Bottou. Large-scale machine learning with stochastic gradient descent. In Proceedings
of COMPSTAT’2010, pages 177–186. Springer, 2010.

Léon Bottou and Yann LeCun. Large scale online learning. In Advances in Neural Infor-
mation Processing Systems, pages 217–224, 2004.

Jean Bourgain. On lipschitz embedding of finite metric spaces in hilbert space. Israel
Journal of Mathematics, 52(1):46–52, 1985.

Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, and Jonathan Eckstein. Distributed
optimization and statistical learning via the alternating direction method of multipliers.
Foundations and Trends in Machine Learning, 3(1):1–122, 2011.

Oscar Boykin, Sam Ritchie, Ian O’Connell, and Jimmy Lin. Summingbird: A framework
for integrating batch and online mapreduce computations. Proceedings of the VLDB
Endowment, 7(13):1441–1451, 2014.

Mark Braverman, Ankit Garg, Tengyu Ma, Huy L Nguyen, and David P Woodruff. Commu-
nication lower bounds for statistical estimation problems via a distributed data processing
inequality. Symposium on the Theory of Computing, 2016.

Tamara Broderick, Nicholas Boyd, Andre Wibisono, Ashia C Wilson, and Michael I Jordan.
Streaming variational Bayes. In Advances in Neural Information Processing Systems,
pages 1727–1735, 2013.

140

Kenneth S Brown. Semigroup and ring theoretical methods in probability. Representations
of Finite Dimensional Algebras and Related Topics in Lie Theory and Geometry, 40:3–26,
2004.

José Camacho and Alberto Ferrer. Cross-validation in pca models with the element-wise
k-fold (ekf) algorithm: theoretical aspects. Journal of Chemometrics, 26(7):361–373,
2012.

Trevor Campbell and Jonathan P How. Approximate decentralized bayesian inference.
arXiv preprint arXiv:1403.7471, 2014.

Kevin Canini, Lei Shi, and Thomas Griffiths. Online inference of topics with latent dirichlet
allocation. In Artificial Intelligence and Statistics, pages 65–72, 2009.

Raymond B Cattell. The scree test for the number of factors. Multivariate Behavioral
Research, 1(2):245–276, 1966.

Gavin C Cawley and Nicola LC Talbot. Efficient approximate leave-one-out cross-validation
for kernel logistic regression. Machine Learning, 71(2):243–264, 2008.

Hubert TH Chan, Anupam Gupta, Bruce M Maggs, and Shuheng Zhou. On hierarchi-
cal routing in doubling metrics. In Proceedings of the Sixteenth Annual ACM-SIAM
Symposium on Discrete Algorithms, pages 762–771. Society for Industrial and Applied
Mathematics, 2005.

T-H Hubert Chan, Anupam Gupta, and Kunal Talwar. Ultra-low-dimensional embeddings
for doubling metrics. Journal of the ACM (JACM), 57(4):21, 2010.

Yiu-Tong Chan and KC Ho. A simple and efficient estimator for hyperbolic location. IEEE
Transactions on Signal Processing, 42(8):1905–1915, 1994.

Yiu-Tong Chan and Samuel M Thomas. An approximate maximum likelihood linear es-
timator of circle parameters. Graphical Models and Image Processing, 59(3):173–178,
1997.

Moses Charikar, Chandra Chekuri, Ashish Goel, Sudipto Guha, and Serge Plotkin. Approx-
imating a finite metric by a small number of tree metrics. In Foundations of Computer
Science, 1998. Proceedings. 39th Annual Symposium on, pages 379–388. IEEE, 1998.

Kamalika Chaudhuri and Claire Monteleoni. Privacy-preserving logistic regression. In
Advances in Neural Information Processing Systems, pages 289–296, 2009.

Kamalika Chaudhuri, Claire Monteleoni, and Anand D Sarwate. Differentially private em-
pirical risk minimization. Journal of Machine Learning Research, 12(Mar):1069–1109,
2011.

Edgar Chávez, Gonzalo Navarro, Ricardo Baeza-Yates, and José Luis Marroqúın. Searching
in metric spaces. ACM Computing Surveys (CSUR), 33(3):273–321, 2001.

141

Peter Cheeseman, Bob Kanefsky, and William M Taylor. Where the really hard problems
are. IJCAI, 1991.

Yilun Chen, Ami Wiesel, and Alfred O Hero. Shrinkage estimation of high dimensional
covariance matrices. In Acoustics, Speech and Signal Processing, 2009. ICASSP 2009.
IEEE International Conference on, pages 2937–2940. IEEE, 2009.

Cheng-Tao Chu, Sang K Kim, Yi-An Lin, YuanYuan Yu, Gary Bradski, Kunle Olukotun,
and Andrew Y Ng. Map-reduce for machine learning on multicore. In Advances in neural
information processing systems, pages 281–288, 2007.

Kenneth L Clarkson. Nearest neighbor queries in metric spaces. In Proceedings of the
Twenty-Ninth Annual ACM Symposium on Theory of Computing, pages 609–617. ACM,
1997.

Kenneth L Clarkson. Nearest-neighbor searching and metric space dimensions. Technical
Report, 2006.

Richard Cole and Lee-Ad Gottlieb. Searching dynamic point sets in spaces with bounded
doubling dimension. In Proceedings of the Thirty-Eighth Annual ACM Symposium on
Theory of Computing, pages 574–583. ACM, 2006.

Michael Collins, Sanjoy Dasgupta, and Robert E Schapire. A generalization of principal
components analysis to the exponential family. In Advances in Neural Information Pro-
cessing Systems, pages 617–624, 2002.

Michael Connor and Piyush Kumar. Fast construction of k-nearest neighbor graphs for
point clouds. IEEE Transactions on Visualization and Computer Graphics, 16(4):599–
608, 2010.

Thomas Cover and Peter Hart. Nearest neighbor pattern classification. IEEE Transactions
on Information Theory, 13(1):21–27, 1967.

Ryan R. Curtin, James R. Cline, Neil P. Slagle, William B. March, P. Ram, Nishant A.
Mehta, and Alexander G. Gray. MLPACK: A scalable C++ machine learning library.
Journal of Machine Learning Research, 14:801–805, 2013a.

Ryan R Curtin, William B March, Parikshit Ram, David V Anderson, Alexander G Gray,
and Charles L Isbell Jr. Tree-independent dual-tree algorithms. In Proceedings of The
30th International Conference on Machine Learning, pages 1435–1443, 2013b.

Ryan R Curtin, William B March, Parikshit Ram, David V Anderson, Alexander G
Gray, and Charles L Isbell Jr. Tree-independent dual-tree algorithms. arXiv preprint
arXiv:1304.4327, 2013c.

Ryan R Curtin, Dongryeol Lee, William B March, and Parikshit Ram. Plug-and-play dual-
tree algorithm runtime analysis. Journal of Machine Learning Research, 16:3269–3297,
2015.

142

Michael Curtiss, Iain Becker, Tudor Bosman, Sergey Doroshenko, Lucian Grijincu, Tom
Jackson, Sandhya Kunnatur, Soren Lassen, Philip Pronin, Sriram Sankar, et al. Unicorn:
A system for searching the social graph. Proceedings of the VLDB Endowment, 6(11):
1150–1161, 2013.

Artur Czumaj and Christian Sohler. Sublinear-time algorithms. Property Testing, 6390:
41–64, 2010.

Eric Dal Moro and Yuriy Krvavych. Probability of sufficiency of solvency ii reserve risk
margins: Practical approximations. ASTIN Bulletin: The Journal of the IAA, pages
1–49, 2017.

Sanjoy Dasgupta and Anupam Gupta. An elementary proof of a theorem of johnson and
lindenstrauss. Random Structures & Algorithms, 22(1):60–65, 2003.

Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data processing on large clus-
ters. Communications of the ACM, 51(1):107–113, 2008.

Trip Denton, M Fatih Demirci, Jeff Abrahamson, Ali Shokoufandeh, and Sven Dickinson.
Selecting canonical views for view-based 3-d object recognition. In Pattern Recognition,
2004. ICPR 2004. Proceedings of the 17th International Conference on, volume 2, pages
273–276. IEEE, 2004.

Giancarlo Diana and Chiara Tommasi. Cross-validation methods in principal component
analysis: a comparison. Statistical Methods & Applications, 11(1):71–82, 2002.

Chris Ding and Xiaofeng He. K-means clustering via principal component analysis. In
Proceedings of the Twenty-First International Conference on Machine learning, page 29.
ACM, 2004.

Mathias Drton, Bernd Sturmfels, and Seth Sullivant. Lectures on algebraic statistics, vol-
ume 39. Springer Science & Business Media, 2008.

John C Duchi, Michael I Jordan, Martin J Wainwright, and Yuchen Zhang. Optimality
guarantees for distributed statistical estimation. arXiv preprint arXiv:1405.0782, 2014.

Cynthia Dwork, Aaron Roth, et al. The algorithmic foundations of differential privacy.
Foundations and Trends R© in Theoretical Computer Science, 9(3–4):211–407, 2014.

HT Eastment and WJ Krzanowski. Cross-validatory choice of the number of components
from a principal component analysis. Technometrics, 24(1):73–77, 1982.

B Efron et al. Bootstrap methods: Another look at the jackknife. The Annals of Statistics,
7(1):1–26, 1979.

Bradley Efron. Defining the curvature of a statistical problem (with applications to second
order efficiency). The Annals of Statistics, pages 1189–1242, 1975.

Sanne Engelen and Mia Hubert. Fast cross-validation in robust pca. Proceedings of Com-
putational Statistics, 2004.

143

Martin Erwig and Steve Kollmansberger. Functional pearls: Probabilistic functional pro-
gramming in haskell. Journal of Functional Programming, 16(1):21–34, 2006.

Facebook Datacenter FAQ. URL http://www.datacenterknowledge.com/

the-facebook-data-center-faq. Accessed: 05 September 2017.

Matthias Feurer, Aaron Klein, Katharina Eggensperger, Jost Springenberg, Manuel Blum,
and Frank Hutter. Efficient and robust automated machine learning. In Advances in
Neural Information Processing Systems, pages 2962–2970, 2015.

Jerome H Friedman, Jon Louis Bentley, and Raphael Ari Finkel. An algorithm for finding
best matches in logarithmic expected time. Transactions on Mathematical Software, 3
(3):209–226, 1977.

Matteo Frigo, Charles E Leiserson, Harald Prokop, and Sridhar Ramachandran. Cache-
oblivious algorithms. In Foundations of Computer Science, 1999. 40th Annual Symposium
on, pages 285–297, 1999.

Dan Garber and Elad Hazan. Fast and simple pca via convex optimization. arXiv preprint
arXiv:1509.05647, 2015.

Ankit Garg, Tengyu Ma, and Huy Nguyen. On communication cost of distributed statistical
estimation and dimensionality. In Advances in Neural Information Processing Systems,
pages 2726–2734, 2014.

Adria Gascon, Phillipp Schoppmann, Borja Balle, Mariana Raykova, Jack Doerner, Samee
Zahur, and David Evans. Privacy-preserving distributed linear regression on high-
dimensional data. Proceedings on Privacy Enhancing Technologies, 4:248–267, 2017.

Dan Geiger and Christopher Meek. Graphical models and exponential families. In Proceed-
ings of the Fourteenth Conference on Uncertainty in Artificial Intelligence, pages 156–165.
Morgan Kaufmann Publishers Inc., 1998.

Dan Geiger, David Heckerman, Henry King, and Christopher Meek. Stratified exponential
families: graphical models and model selection. Annals of Statistics, pages 505–529, 2001.

Samuel Gershman, Matt Hoffman, and David Blei. Nonparametric variational inference.
ICML, 2012.

Fabian Gieseke, Justin Heinermann, Cosmin Oancea, and Christian Igel. Buffer k-d trees:
Processing massive nearest neighbor queries on gpus. In Tony Jebara and Eric P. Xing,
editors, Proceedings of the 31st International Conference on Machine Learning, pages
172–180, 2014.

Jennifer A Gillenwater, Rishabh K Iyer, Bethany Lusch, Rahul Kidambi, and Jeff A Bilmes.
Submodular hamming metrics. In Advances in Neural Information Processing Systems,
pages 3141–3149, 2015.

Aristides Gionis, Piotr Indyky, and Rajeev Motwaniz. Similarity search in high dimensions
via hashing. In VLDB, 1999.

144

http://www.datacenterknowledge.com/the-facebook-data-center-faq
http://www.datacenterknowledge.com/the-facebook-data-center-faq

Gene H Golub, Michael Heath, and Grace Wahba. Generalized cross-validation as a method
for choosing a good ridge parameter. Technometrics, 21(2):215–223, 1979.

Jacob E Goodman, Joseph O’Rourke, and Csaba D Toth. Handbook of discrete and com-
putational geometry. CRC press, 2017.

Alkis Gotovos, Hamed Hassani, and Andreas Krause. Sampling from probabilistic submod-
ular models. In Advances in Neural Information Processing Systems, pages 1945–1953,
2015.

Lee-Ad Gottlieb. A light metric spanner. In Foundations of Computer Science (FOCS),
2015 IEEE 56th Annual Symposium on, pages 759–772. IEEE, 2015.

Lee-Ad Gottlieb and Liam Roditty. An optimal dynamic spanner for doubling metric spaces.
In European Symposium on Algorithms, pages 478–489. Springer, 2008.

Lee-Ad Gottlieb and Shay Solomon. Light spanners for snowflake metrics. In Proceedings
of the Thirtieth Annual Symposium on Computational Geometry, page 387. ACM, 2014.

Lee-Ad Gottlieb, Aryeh Kontorovich, and Robert Krauthgamer. Efficient classification for
metric data. IEEE Transactions on Information Theory, 60(9):5750–5759, 2014a.

Lee-Ad Gottlieb, Aryeh Kontorovich, and Pinhas Nisnevitch. Near-optimal sample com-
pression for nearest neighbors. In Advances in Neural Information Processing Systems,
pages 370–378, 2014b.

Lee-Ad Gottlieb, Aryeh Kontorovich, and Robert Krauthgamer. Efficient regression in
metric spaces via approximate lipschitz extension. IEEE Transactions on Information
Theory, 2017.

Ben Green. Approximate algebraic structure. International Congress of Mathematicians,
2014.

Qintian Guo and Norman C Beaulieu. An approximate ml estimator for the location pa-
rameter of the generalized gaussian distribution with p = 5. IEEE Signal Processing
Letters, 20(7):677–680, 2013.

Anupam Gupta, Robert Krauthgamer, and James R Lee. Bounded geometries, fractals,
and low-distortion embeddings. In Foundations of Computer Science, 2003. Proceedings.
44th Annual IEEE Symposium on, pages 534–543. IEEE, 2003.

Nathan Halko, Per-Gunnar Martinsson, and Joel A Tropp. Finding structure with ran-
domness: Probabilistic algorithms for constructing approximate matrix decompositions.
SIAM review, 53(2):217–288, 2011.

Jun Han and Qiang Liu. Bootstrap model aggregation for distributed statistical learning.
Advances in Neural Information Processing Systems, 2016.

Sariel Har-Peled and Manor Mendel. Fast construction of nets in low-dimensional metrics
and their applications. SIAM Journal on Computing, 35(5):1148–1184, 2006.

145

Peter Hart. The condensed nearest neighbor rule. IEEE Transactions on Information
Theory, 1968.

Xinran He, Junfeng Pan, Ou Jin, Tianbing Xu, Bo Liu, Tao Xu, Yanxin Shi, Antoine
Atallah, Ralf Herbrich, Stuart Bowers, et al. Practical lessons from predicting clicks on
ads at facebook. In Proceedings of the Eighth International Workshop on Data Mining
for Online Advertising, pages 1–9. ACM, 2014.

Michael J Healy. Colimits in memory: category theory and neural systems. In Neural
Networks, 1999. IJCNN’99. International Joint Conference on, volume 1, pages 492–496.
IEEE, 1999.

Michael J Healy. Category theory applied to neural modeling and graphical representa-
tions. In Neural Networks, 2000. IJCNN 2000, Proceedings of the IEEE-INNS-ENNS
International Joint Conference on, volume 3, pages 35–40. IEEE, 2000.

Michael J Healy and Thomas P Caudell. A categorical semantic analysis of art architectures.
In Neural Networks, 2001. Proceedings. IJCNN’01. International Joint Conference on,
volume 1, pages 38–43. IEEE, 2001.

Michael J Healy, Thomas P Caudell, and Yunhai Xiao. From categorical semantics to
neural network design. In Neural Networks, 2003. Proceedings of the International Joint
Conference on, volume 3, pages 1981–1986. IEEE, 2003.

Leonhard Held, Birgit Schrödle, and H̊avard Rue. Posterior and cross-validatory predictive
checks: a comparison of MCMC and inla. Statistical Modelling and Regression Structures,
pages 91–110, 2010.

Martin Hildebrand et al. A survey of results on random random walks on finite groups.
Probability Surveys, 2:33–63, 2005.

Kirsten Hildrum, John Kubiatowicz, Sean Ma, and Satish Rao. A note on the nearest
neighbor in growth-restricted metrics. In Proceedings of the Fifteenth Annual ACM-
SIAM Symposium on Discrete Algorithms, pages 560–561. Society for Industrial and
Applied Mathematics, 2004.

Matthew Hoffman, Francis R Bach, and David M Blei. Online learning for latent dirichlet
allocation. In Advances in Neural Information Processing Systems, pages 856–864, 2010.

Matthew D Hoffman, David M Blei, Chong Wang, and John Paisley. Stochastic variational
inference. The Journal of Machine Learning Research, 14(1):1303–1347, 2013.

H Hotelling. Analysis of a complex of statistical variables into principle components. Journal
of Educational Psychology, 1933.

Daniel Hsu, Sham M Kakade, Tong Zhang, et al. A tail inequality for quadratic forms of
subgaussian random vectors. Electron. Commun. Probab, 17(52):1–6, 2012.

Yingyao Hu and Yuya Sasaki. Closed-form estimation of nonparametric models with non-
classical measurement errors. Journal of Econometrics, 185(2):392–408, 2015.

146

Chung-Jung Huang, Chia-Wei Dai, Tsung-Yu Tsai, Wei-Ho Chung, and Ta-Sung Lee. A
closed-form phase-comparison ml doa estimator for automotive radar with one single
snapshot. IEICE Electronics Express, 10(7):20130086–20130086, 2013.

Zaijing Huang and Andrew Gelman. Sampling for bayesian computation with large datasets.
Available at SSRN: https://ssrn.com/abstract=1010107, 2005.

Piotr Indyk and Rajeev Motwani. Approximate nearest neighbors: towards removing the
curse of dimensionality. In Proceedings of the Thirtieth Annual ACM Symposium on
Theory of Computing, pages 604–613. ACM, 1998.

Piotr Indyk and Assaf Naor. Nearest-neighbor-preserving embeddings. ACM Transactions
on Algorithms (TALG), 3(3):31, 2007.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network train-
ing by reducing internal covariate shift. In International Conference on Machine Learning,
pages 448–456, 2015.

Rishabh Iyer and Jeffrey Bilmes. Submodular point processes with applications to machine
learning. In Artificial Intelligence and Statistics, pages 388–397, 2015.

Mike Izbicki. Algebraic classifiers: a generic approach to fast cross validation, online train-
ing, and parallel training. In ICML, pages 1162–1170, 2013.

Mike Izbicki and Christian Shelton. Faster cover trees. In Proceedings of the 32nd Interna-
tional Conference on Machine Learning (ICML-15), pages 1162–1170, 2015.

Martin Jaggi, Virginia Smith, Martin Takác, Jonathan Terhorst, Sanjay Krishnan, Thomas
Hofmann, and Michael I Jordan. Communication-efficient distributed dual coordinate
ascent. In Advances in Neural Information Processing Systems, pages 3068–3076, 2014.

Joonas Jälkö, Onur Dikmen, and Antti Honkela. Differentially private variational inference
for non-conjugate models. arXiv preprint arXiv:1610.08749, 2016.

William B Johnson and Joram Lindenstrauss. Extensions of lipschitz mappings into a
hilbert space. Contemporary Mathematics, 26(189-206):1, 1984.

William B Johnson and Assaf Naor. The johnson-lindenstrauss lemma almost character-
izes hilbert space, but not quite. In Proceedings of the twentieth Annual ACM-SIAM
Symposium on Discrete Algorithms, pages 885–891. Society for Industrial and Applied
Mathematics, 2009.

Robbie P. Joosten, Tim A. H. te Beek, Elmar Krieger, Maarten L. Hekkelman, Rob W. W.
Hooft, Reinhard Schneider, Chris Sander, and Gert Vriend. A series of PDB related
databases for everyday needs., January 2011.

Michael I Jordan, Zoubin Ghahramani, Tommi S Jaakkola, and Lawrence K Saul. An
introduction to variational methods for graphical models. Machine learning, 37(2):183–
233, 1999.

147

Michael I. Jordan, Jason D. Lee, and Yun Yang. Communication-efficient distributed sta-
tistical inference. arXiv preprint arXiv:1605.07689, 2016.

Julie Josse and François Husson. Selecting the number of components in principal com-
ponent analysis using cross-validation approximations. Computational Statistics & Data
Analysis, 56(6):1869–1879, 2012.

Pooria Joulani, András György, and Csaba Szepesvári. Fast cross-validation for incremental
learning. In IJCAI, 2015.

Ravi Kannan, Santosh Vempala, and David Woodruff. Principal component analysis and
higher correlations for distributed data. In Maria Florina Balcan, Vitaly Feldman, and
Csaba Szepesvri, editors, Proceedings of The 27th Conference on Learning Theory, vol-
ume 35 of Proceedings of Machine Learning Research, pages 1040–1057, Barcelona, Spain,
13–15 Jun 2014. PMLR.

David R Karger and Matthias Ruhl. Finding nearest neighbors in growth-restricted metrics.
In Proceedings of the Thiry-Fourth Annual ACM Symposium on Theory of Computing,
pages 741–750. ACM, 2002.

Howard Karloff, Siddharth Suri, and Sergei Vassilvitskii. A model of computation for
mapreduce. In Proceedings of the Twenty-first Annual ACM-SIAM Symposium on Dis-
crete Algorithms, pages 938–948. Society for Industrial and Applied Mathematics, 2010.

Vishesh Karwa, Dan Kifer, and Aleksandra B Slavković. Private posterior distributions
from variational approximations. arXiv preprint arXiv:1511.07896, 2015.

Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

Ariel Kleiner, Ameet Talwalkar, Purnamrita Sarkar, and Michael Jordan. The big data
bootstrap. ICML, 2012.

Ariel Kleiner, Ameet Talwalkar, Purnamrita Sarkar, and Michael I Jordan. A scalable
bootstrap for massive data. Journal of the Royal Statistical Society: Series B (Statistical
Methodology), 76(4):795–816, 2014.

Ron Kohavi. A study of cross-validation and bootstrap for accuracy estimation and model
selection. In IJCAI, 1995.

Imre Risi Kondor. Group theoretical methods in machine learning. Columbia University,
2008.

Aryeh Kontorovich and Roi Weiss. A Bayes consistent 1-nn classifier. In Artificial Intelli-
gence and Statistics, pages 480–488, 2015.

D Kotschick. What is... a quasi-morphism. Notices AMS, 51(2):208–209, 2004.

Andreas Krause and Daniel Golovin. Submodular function maximization. In Tractability:
Practical Approaches to Hard Problems. Cambridge University Press, February 2014.

148

Robert Krauthgamer and James R Lee. Navigating nets: simple algorithms for proxim-
ity search. In Proceedings of the Fifteenth Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 798–807. Society for Industrial and Applied Mathematics, 2004.

Robert Krauthgamer and James R Lee. The black-box complexity of nearest-neighbor
search. Theoretical Computer Science, 348(2-3):262–276, 2005.

Robert Krauthgamer, James R Lee, Manor Mendel, and Assaf Naor. Measured descent: A
new embedding method for finite metrics. In Foundations of Computer Science, 2004.
Proceedings. 45th Annual IEEE Symposium on, pages 434–443. IEEE, 2004.

Dennis Kristensen and Oliver Linton. A closed-form estimator for the garch (1, 1) model.
Econometric Theory, 22(2):323–337, 2006.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep
convolutional neural networks. In Advances in neural information processing systems,
pages 1097–1105, 2012.

WJ Krzanowski. Cross-validation in principal component analysis. Biometrics, pages 575–
584, 1987.

Alex Kulesza and Ben Taskar. k-dpps: Fixed-size determinantal point processes. In Pro-
ceedings of the 28th International Conference on Machine Learning (ICML-11), pages
1193–1200, 2011.

Brian Kulis. Metric learning: A survey. Foundations and Trends R© in Machine Learning, 5
(4):287–364, 2013.

R. Deepak Kumar and K. Ramareddy. Design and implementation of cover tree algorithm
on cuda-compatible gpu. International Journal of Computer Applications, 3(7):24–27,
June 2010. Published By Foundation of Computer Science.

Richard E Ladner and Michael J Fischer. Parallel prefix computation. Journal of the ACM
(JACM), 27(4):831–838, 1980.

John Langford. Vowpal wabbit open source project. URL https://github.com/

JohnLangford/vowpal_wabbit. Accessed: 05 September 2017.

Krzysztof Latuszyński, B lażej Miasojedow, Wojciech Niemiro, et al. Nonasymptotic bounds
on the estimation error of MCMC algorithms. Bernoulli, 19(5A):2033–2066, 2013.

Jason D Lee, Yuekai Sun, Qiang Liu, and Jonathan E Taylor. Communication-efficient
sparse regression: a one-shot approach. Journal of Machine Learning Research, 2017.

Erich Leo Lehmann. Elements of large-sample theory. Springer Science & Business Media,
1999.

Longhai Li, Shi Qiu, Bei Zhang, and Cindy X Feng. Approximating cross-validatory predic-
tive evaluation in bayesian latent variable models with integrated is and waic. Statistics
and Computing, 26(4):881–897, 2016.

149

https://github.com/JohnLangford/vowpal_wabbit
https://github.com/JohnLangford/vowpal_wabbit

Mu Li, David G Andersen, and Jun Woo Park. Scaling distributed machine learning with
the parameter server. In OSDI, 2014.

Yingyu Liang, Maria-Florina Balcan, and Vandana Kanchanapally. Distributed pca and
k-means clustering. In The Big Learning Workshop at NIPS, 2013.

Chin-Yew Lin. Rouge: A package for automatic evaluation of summaries. In Text Summa-
rization Branches Out: Proceedings of the ACL-04 Workshop (Vol. 8), 2004.

Hui Lin and Jeff Bilmes. Multi-document summarization via budgeted maximization of
submodular functions. In Human Language Technologies: The 2010 Annual Conference
of the North American Chapter of the Association for Computational Linguistics, pages
912–920. Association for Computational Linguistics, 2010.

Hui Lin and Jeff Bilmes. A class of submodular functions for document summarization. In
Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics:
Human Language Technologies-Volume 1, pages 510–520. Association for Computational
Linguistics, 2011.

Hui Lin and Jeff A Bilmes. Learning mixtures of submodular shells with application to
document summarization. arXiv preprint arXiv:1210.4871, 2012.

Erik Lindström. Estimating parameters in diffusion processes using an approximate maxi-
mum likelihood approach. Annals of Operations Research, 151(1):269–288, 2007.

Haibin Ling and Kazunori Okada. An efficient earth mover’s distance algorithm for robust
histogram comparison. PAMI, 29:853, 2007.

Sergey Lisitsyn, Christian Widmer, and Fernando J. Iglesias Garcia. Tapkee: An efficient
dimension reduction library. Journal of Machine Learning Research, 14:2355–2359, 2013.

Bo Liu, Xiao-Tong Yuan, Yang Yu, Qingshan Liu, and Dimitris N Metaxas. Decentralized
robust subspace clustering. In AAAI, 2016.

Qiang Liu and Alexander Ihler. Distributed parameter estimation via pseudo-likelihood.
arXiv preprint arXiv:1206.6420, 2012.

Qiang Liu and Alexander T Ihler. Distributed estimation, information loss and exponential
families. In Advances in Neural Information Processing Systems, pages 1098–1106, 2014.

László Lovász. Submodular functions and convexity. In Mathematical Programming The
State of the Art, pages 235–257. Springer, 1983.

Mario Lucic, Olivier Bachem, Morteza Zadimoghaddam, and Andreas Krause. Horizontally
scalable submodular maximization. In ICML, pages 2981–2989, 2016.

Ulrike von Luxburg and Olivier Bousquet. Distance-based classification with lipschitz func-
tions. Journal of Machine Learning Research, 5(Jun):669–695, 2004.

150

Chenxin Ma, Virginia Smith, Martin Jaggi, Michael I Jordan, Peter Richtárik, and Mar-
tin Takáč. Adding vs. averaging in distributed primal-dual optimization. International
Conference of Machine Learning, 2015.

Yanyuan Ma and Anastasios A Tsiatis. On closed form semiparametric estimators for
measurement error models. Statistica Sinica, pages 183–193, 2006.

Gustavo Malkomes, Matt J Kusner, Wenlin Chen, Kilian Q Weinberger, and Benjamin
Moseley. Fast distributed k-center clustering with outliers on massive data. In Advances
in Neural Information Processing Systems, pages 1063–1071, 2015.

Yury Malkov, Alexander Ponomarenko, Andrey Logvinov, and Vladimir Krylov. Approx-
imate nearest neighbor algorithm based on navigable small world graphs. Information
Systems, 45:61–68, 2014.

Rui Mao, Peihan Zhang, Xingliang Li, Xi Liu, and Minhua Lu. Pivot selection for metric-
space indexing. International Journal of Machine Learning and Cybernetics, 2(7):311–
323, 2016.

EC Marshall and DJ Spiegelhalter. Approximate cross-validatory predictive checks in dis-
ease mapping models. Statistics in Medicine, 22(10):1649–1660, 2003.

Jǐŕı Matoušek. On variants of the Johnson–Lindenstrauss lemma. Random Structures &
Algorithms, 33(2):142–156, 2008.

Peter McCullagh. What is a statistical model? Annals of Statistics, pages 1225–1267, 2002.

Ryan McDonald, Mehryar Mohri, Nathan Silberman, Dan Walker, and Gideon S Mann.
Efficient large-scale distributed training of conditional maximum entropy models. In
Advances in Neural Information Processing Systems, pages 1231–1239, 2009.

H Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, et al. Communication-
efficient learning of deep networks from decentralized data. AISTATS, 2017.

Ted Meeds and Max Welling. Optimization Monte Carlo: Efficient and embarrassingly
parallel likelihood-free inference. In Advances in Neural Information Processing Systems,
pages 2080–2088, 2015.

Xiangrui Meng, Michael A Saunders, and Michael W Mahoney. Lsrn: A parallel itera-
tive solver for strongly over-or underdetermined systems. SIAM Journal on Scientific
Computing, 36(2):C95–C118, 2014.

Xiangrui Meng, Joseph Bradley, Burak Yavuz, Evan Sparks, Shivaram Venkataraman,
Davies Liu, Jeremy Freeman, DB Tsai, Manish Amde, Sean Owen, et al. Mllib: Machine
learning in apache spark. The Journal of Machine Learning Research, 17(1):1235–1241,
2016.

Bart Mertens, Tom Fearn, and Michael Thompson. The efficient cross-validation of principal
components applied to principal component regression. Statistics and Computing, 5(3):
227–235, 1995.

151

Srujana Merugu and Joydeep Ghosh. Privacy-preserving distributed clustering using gener-
ative models. In Data Mining, 2003. ICDM 2003. Third IEEE International Conference
on, pages 211–218. IEEE, 2003.

Message Passing Forum. MPI: A message-passing interface standard. 1994.

Stanislav Minsker, Sanvesh Srivastava, Lizhen Lin, and David Dunson. Scalable and robust
bayesian inference via the median posterior. In International Conference on Machine
Learning, pages 1656–1664, 2014.

Baharan Mirzasoleiman, Amin Karbasi, Rik Sarkar, and Andreas Krause. Distributed sub-
modular maximization: Identifying representative elements in massive data. In Advances
in Neural Information Processing Systems, pages 2049–2057, 2013.

Baharan Mirzasoleiman, Amin Karbasi, Ashwinkumar Badanidiyuru, and Andreas Krause.
Distributed submodular cover: Succinctly summarizing massive data. In Advances in
Neural Information Processing Systems, pages 2881–2889, 2015.

Baharan Mirzasoleiman, Amin Karbasi, Rik Sarkar, and Andreas Krause. Distributed
submodular maximization. Journal of Machine Learning Research, 17(238):1–44, 2016.

David A Moore and Stuart J Russell. Fast gaussian process posteriors with product trees.
In UAI, pages 613–622, 2014.

Yadong Mu and Shuicheng Yan. Non-metric locality-sensitive hashing. In AAAI, 2010.

Marius Muja and David G Lowe. Scalable nearest neighbor algorithms for high dimensional
data. IEEE Transactions on Pattern Analysis and Machine Intelligence, 36(11):2227–
2240, 2014.

Sahand Negahban, Bin Yu, Martin J Wainwright, and Pradeep K Ravikumar. A unified
framework for high-dimensional analysis of m-estimators with decomposable regularizers.
In Advances in Neural Information Processing Systems, pages 1348–1356, 2009.

Ofer Neiman. Low dimensional embeddings of doubling metrics. Theory of Computing
Systems, 58(1):133–152, 2016.

Willie Neiswanger, Chong Wang, and Eric Xing. Asymptotically exact, embarrassingly
parallel MCMC. Uncertainty in Artificial Intelligence, 2014.

Willie Neiswanger, Chong Wang, and Eric Xing. Embarrassingly parallel variational infer-
ence in nonconjugate models. arXiv preprint arXiv:1510.04163, 2015.

Christopher Nemeth and Chris Sherlock. Merging MCMC subposteriors through gaussian-
process approximations. arXiv preprint arXiv:1605.08576, 2016.

George L Nemhauser, Laurence A Wolsey, and Marshall L Fisher. An analysis of approx-
imations for maximizing submodular set functionsi. Mathematical Programming, 14(1):
265–294, 1978.

152

Andrew Y Ng and Michael I Jordan. On discriminative vs. generative classifiers: A compar-
ison of logistic regression and naive Bayes. In Advances in Neural Information Processing
Systems, pages 841–848, 2002.

Richard Nickl and Benedikt M Pötscher. Bracketing metric entropy rates and empirical cen-
tral limit theorems for function classes of besov-and sobolev-type. Journal of Theoretical
Probability, 20(2):177–199, 2007.

Yanzhi Niu, Yi Wang, Gordon Sun, Aden Yue, Brian Dalessandro, Claudia Perlich, and
Ben Hamner. The tencent dataset and KDD-cup’12. 2012.

David Novak, Martin Kyselak, and Pavel Zezula. On locality-sensitive indexing in generic
metric spaces. In Proceedings of the Third International Conference on SImilarity Search
and APplications, pages 59–66. ACM, 2010.

Stephen Malvern Omohundro. Five balltree construction algorithms. Technical Report
89-063, International Computer Science Institute, December 1989.

Ryan ODonnell, Yi Wu, and Yuan Zhou. Optimal lower bounds for locality-sensitive hashing
(except when q is tiny). ACM Transactions on Computation Theory (TOCT), 6(1):5,
2014.

R Kelley Pace and Dongya Zou. Closed-form maximum likelihood estimates of nearest
neighbor spatial dependence. Geographical Analysis, 32(2):154–172, 2000.

Lior Pachter and Bernd Sturmfels. Tropical geometry of statistical models. Proceedings of
the National Academy of Sciences of the United States of America, 101(46):16132–16137,
2004.

Lior Pachter and Bernd Sturmfels. Algebraic statistics for computational biology, volume 13.
Cambridge University Press, 2005.

Tapio Pahikkala, Jorma Boberg, and Tapio Salakoski. Fast n-fold cross-validation for reg-
ularized least-squares. In Scandenavian Conference on Artificial Intelligence (SCAI),
2006.

Rina Panigrahy, Kunal Talwar, and Udi Wieder. A geometric approach to lower bounds
for approximate near-neighbor search and partial match. In Foundations of Computer
Science, 2008. FOCS’08. IEEE 49th Annual IEEE Symposium on, pages 414–423. IEEE,
2008.

Mijung Park, James Foulds, Kamalika Chaudhuri, and Max Welling. Variational Bayes in
private settings (vips). arXiv preprint arXiv:1611.00340, 2016.

Mihai Patrascu. Unifying the landscape of cell-probe lower bounds. SIAM Journal on
Computing, 40(3):827–847, 2011.

Karl Pearson. Liii. on lines and planes of closest fit to systems of points in space. The
London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 2(11):
559–572, 1901.

153

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python.
Journal of Machine Learning Research, 12:2825–2830, 2011.

Ofir Pele and Michael Werman. Fast and robust earth mover’s distances. In ICCV, 2009.

Avi Pfeffer. Figaro: An object-oriented probabilistic programming language. Charles River
Analytics Technical Report, 137:96, 2009.

Jun Qi and Javier Tejedor. Robust submodular data partitioning for distributed speech
recognition. In Acoustics, Speech and Signal Processing (ICASSP), 2016 IEEE Interna-
tional Conference on, pages 2254–2258. IEEE, 2016.

Yongming Qu, George Ostrouchov, Nagiza Samatova, and Al Geist. Principal component
analysis for dimension reduction in massive distributed data sets. In ICDM, 2002.

Matias Quiroz, Mattias Villani, and Robert Kohn. Speeding up MCMC by efficient data
subsampling. arXiv:1404.4178, 2015.

R Development Core Team. R: A Language and Environment for Statistical Computing. R
Foundation for Statistical Computing, Vienna, Austria, 2008. ISBN 3-900051-07-0.

Parikshit Ram, Dongryeol Lee, William March, and Alexander G Gray. Linear-time algo-
rithms for pairwise statistical problems. In Advances in Neural Information Processing
Systems, pages 1527–1535, 2009.

Parikshit Ram, Dongryeol Lee, William March, and Alexander G. Gray. Linear-time Algo-
rithms for Pairwise Statistical Problems. In Advances in Neural Information Processing
Systems, 2010.

Norman Ramsey and Avi Pfeffer. Stochastic lambda calculus and monads of probability
distributions. In ACM SIGPLAN Notices, volume 37, pages 154–165. ACM, 2002.

Rajesh Ranganath, Linpeng Tang, Laurent Charlin, and David Blei. Deep exponential
families. In Artificial Intelligence and Statistics, pages 762–771, 2015.

R Bharat Rao, Glenn Fung, and Romer Rosales. On the dangers of cross-validation. an
experimental evaluation. In Proceedings of the 2008 SIAM International Conference on
Data Mining, pages 588–596. SIAM, 2008.

Benjamin Recht, Christopher Re, Stephen Wright, and Feng Niu. Hogwild: A lock-free
approach to parallelizing stochastic gradient descent. In Advances in neural information
processing systems, pages 693–701, 2011.

Exequiel Rivas and Mauro Jaskelioff. Notions of computation as monoids. arXiv preprint
arXiv:1406.4823, 2014.

Jonathan D Rosenblatt and Boaz Nadler. On the optimality of averaging in distributed
statistical learning. Information and Inference, 5(4):379–404, 2016.

154

Yossi Rubner, Carlo Tomasi, and Leonidas J Guibas. A metric for distributions with
applications to image databases. In Sixth International Conference on Computer Vision,
pages 59–66, 1998.

Liyang Rui and KC Ho. Efficient closed-form estimators for multistatic sonar localization.
IEEE Transactions on Aerospace and Electronic Systems, 51(1):600–614, 2015.

Tim Schäfer, Patrick May, and Ina Koch. Computation and Visualization of Protein Topol-
ogy Graphs Including Ligand Information. In German Conference on Bioinformatics
2012, volume 26, pages 108–118, Dagstuhl, Germany, 2012.

Ioannis D Schizas and Abiodun Aduroja. A distributed framework for dimensionality re-
duction and denoising. IEEE Transactions on Signal Processing, 63(23):6379–6394, 2015.

Adam Ścibior, Zoubin Ghahramani, and Andrew D Gordon. Practical probabilistic pro-
gramming with monads. In ACM SIGPLAN Notices, volume 50, pages 165–176. ACM,
2015.

Steven L Scott, Alexander W Blocker, Fernando V Bonassi, Hugh A Chipman, Edward I
George, and Robert E McCulloch. Bayes and big data: The consensus Monte Carlo
algorithm. International Journal of Management Science and Engineering Management,
11(2):78–88, 2016.

Nicola Segata and Enrico Blanzieri. Fast and scalable local kernel machines. Journal of
Machine Learning Research, 11:1883–1926, August 2010.

Shai Shalev-Shwartz and Shai Ben-David. Understanding machine learning: From theory
to algorithms. Cambridge University Press, 2014.

Ohad Shamir. Fundamental limits of online and distributed algorithms for statistical learn-
ing and estimation. In Advances in Neural Information Processing Systems 27, pages
163–171, 2014.

Nino Shervashidze, Pascal Schweitzer, Erik Jan van Leeuwen, Kurt Mehlhorn, and
Karsten M. Borgwardt. Weisfeiler-lehman graph kernels. Journal of Machine Learn-
ing Research, 12:2539–2561, November 2011.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van
Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc
Lanctot, et al. Mastering the game of go with deep neural networks and tree search.
Nature, 529(7587):484–489, 2016.

Ian Simon, Noah Snavely, and Steven M Seitz. Scene summarization for online image
collections. In Computer Vision, 2007. ICCV 2007. IEEE 11th International Conference
on, pages 1–8. IEEE, 2007.

Pinaki Sinha and Ramesh Jain. Extractive summarization of personal photos from life
events. In Multimedia and Expo (ICME), 2011 IEEE International Conference on, pages
1–6. IEEE, 2011.

155

Pinaki Sinha, Sharad Mehrotra, and Ramesh Jain. Summarization of personal photologs
using multidimensional content and context. In Proceedings of the 1st ACM International
Conference on Multimedia Retrieval, page 4. ACM, 2011.

Scott A Sisson and Yanan Fan. Likelihood-free MCMC. Chapman & Hall/CRC, New
York.[839], 2011.

Vidyashankar Sivakumar, Arindam Banerjee, and Pradeep K Ravikumar. Beyond sub-
gaussian measurements: High-dimensional structured estimation with sub-exponential
designs. In Advances in Neural Information Processing Systems, pages 2206–2214, 2015.

Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical bayesian optimization of
machine learning algorithms. In Advances in Neural Information Processing Systems,
pages 2951–2959, 2012.

Vladimir Spokoiny. Parametric estimation. finite sample theory. The Annals of Statistics,
40(6):2877–2909, 2012.

Nitish Srivastava, Geoffrey E Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhut-
dinov. Dropout: a simple way to prevent neural networks from overfitting. Journal of
machine learning research, 15(1):1929–1958, 2014.

Sanvesh Srivastava, Volkan Cevher, Quoc Dinh, and David Dunson. Wasp: Scalable Bayes
via barycenters of subset posteriors. In Artificial Intelligence and Statistics, pages 912–
920, 2015.

Seth Sullivant. Algebraic statistics. 2017.

Zoltan Szabo, Arthur Gretton, Barnabas Poczos, and Bharath Sriperumbudur. Two-stage
sampled learning theory on distributions. In Guy Lebanon and S. V. N. Vishwanathan,
editors, Proceedings of the Eighteenth International Conference on Artificial Intelligence
and Statistics, volume 38 of Proceedings of Machine Learning Research, pages 948–957,
San Diego, California, USA, 09–12 May 2015. PMLR.

Zoltán Szabó, Bharath Sriperumbudur, Barnabás Póczos, and Arthur Gretton. Learning
theory for distribution regression. Journal of Machine Learning Research, 17(152):1–40,
2016.

Yaniv Taigman, Ming Yang, Marc’Aurelio Ranzato, and Lior Wolf. Deepface: Closing
the gap to human-level performance in face verification. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 1701–1708, 2014.

Kunal Talwar. Bypassing the embedding: algorithms for low dimensional metrics. In
Proceedings of the Thirty-Sixth Annual ACM Symposium on Theory of Computing, pages
281–290. ACM, 2004.

Yongqiang Tang. On the multiple imputation variance estimator for control-based and
delta-adjusted pattern mixture models. Biometrics, 2017.

156

Eric J Tchetgen Tchetgen. On a closed-form doubly robust estimator of the adjusted odds
ratio for a binary exposure. American Journal of Epidemiology, 177(11):1314–1316, 2013.

Eric Sadit Tellez and Edgar Chavez. On locality sensitive hashing in metric spaces. In
Proceedings of the Third International Conference on SImilarity Search and APplications,
pages 67–74. ACM, 2010.

Pascal Tesson and Denis Thérien. Monoids and computations. International Journal of
Algebra and Computation, 14(05n06):801–816, 2004.

Pascal Tesson and Denis Thérien. Bridges between algebraic automata theory and com-
plexity theory. Bulletin of the EATCS, 2006.

Sebastian Tschiatschek, Rishabh K Iyer, Haochen Wei, and Jeff A Bilmes. Learning mix-
tures of submodular functions for image collection summarization. In Advances in Neural
Information Processing Systems, pages 1413–1421, 2014.

Nikolaos Tziortziotis, Christos Dimitrakakis, and Konstantinos Blekas. Cover Tree Bayesian
Reinforcement Learning. Journal of Machine Learning Research, 15, 2014.

Pamela Vagata and Kevin Wilfong. Scaling the facebook data warehouse
to 300 pb. URL https://code.facebook.com/posts/229861827208629/

scaling-the-facebook-data-warehouse-to-300-pb. Accessed: 05 September
2017.

A. W. van der Vaart. Asymptotic statistics. Cambridge Series in Statistical and Probabilistic
Mathematics. 1998. ISBN 0-521-49603-9.

Aki Vehtari, Janne Ojanen, et al. A survey of bayesian predictive methods for model
assessment, selection and comparison. Statistics Surveys, 6:142–228, 2012.

Roman Vershynin. Introduction to the non-asymptotic analysis of random matrices. In
Y. Eldar and G. Kutyniok, editors, Compressed Sensing, Theory and Applications, chap-
ter 5. 2012.

S. V. N. Vishwanathan, Nicol N. Schraudolph, Risi Kondor, and Karsten M. Borgwardt.
Graph kernels. Journal of Machine Learning Research, 11:1201–1242, August 2010.

Jan Vondrák. Submodularity and curvature: The optimal algorithm (combinatorial opti-
mization and discrete algorithms). RIMS Kokyuroku Bessatsu, 2010.

Chong Wang, John Paisley, and David Blei. Online variational inference for the hierarchical
dirichlet process. In Proceedings of the Fourteenth International Conference on Artificial
Intelligence and Statistics, pages 752–760, 2011.

Jingdong Wang, Heng Tao Shen, Jingkuan Song, and Jianqiu Ji. Hashing for similarity
search: A survey. arXiv preprint arXiv:1408.2927, 2014.

Jun Wang, Wei Liu, Sanjiv Kumar, and Shih-Fu Chang. Learning to hash for indexing big
dataa survey. Proceedings of the IEEE, 104(1):34–57, 2016a.

157

https://code.facebook.com/posts/229861827208629/scaling-the-facebook-data-warehouse-to-300-pb
https://code.facebook.com/posts/229861827208629/scaling-the-facebook-data-warehouse-to-300-pb

Xiangyu Wang and David B Dunson. Parallelizing MCMC via weierstrass sampler. arXiv
preprint arXiv:1312.4605, 2013.

Xiangyu Wang, Fangjian Guo, Katherine A Heller, and David B Dunson. Parallelizing
MCMC with random partition trees. In Advances in Neural Information Processing
Systems, pages 451–459, 2015.

Xiangyu Wang, David B Dunson, and Chenlei Leng. Decorrelated feature space partitioning
for distributed sparse regression. In D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon,
and R. Garnett, editors, Advances in Neural Information Processing Systems 29, pages
802–810. Curran Associates, Inc., 2016b.

Max Welling. Herding dynamical weights to learn. In Proceedings of the 26th Annual
International Conference on Machine Learning, pages 1121–1128. ACM, 2009.

SR White, Theodore Kypraios, and SP Preston. Piecewise approximate bayesian compu-
tation: fast inference for discretely observed Markov models using a factorised posterior
distribution. Statistics and Computing, 25(2):289–301, 2015.

Svante Wold. Cross-validatory estimation of the number of components in factor and prin-
cipal components models. Technometrics, 20(4):397–405, 1978.

David H Wolpert and David R Wolf. Estimating functions of probability distributions from
a finite set of samples. Physical Review E, 52(6):6841, 1995.

Minjie Xu, Balaji Lakshminarayanan, Yee Whye Teh, Jun Zhu, and Bo Zhang. Distributed
bayesian posterior sampling via moment sharing. In Advances in Neural Information
Processing Systems, pages 3356–3364, 2014.

Eunho Yang, Aurelie Lozano, and Pradeep Ravikumar. Elementary estimators for high-
dimensional linear regression. In Proceedings of the 31st International Conference on
Machine Learning (ICML-14), pages 388–396, 2014.

Eunho Yang, Aurélie C Lozano, and Pradeep K Ravikumar. Closed-form estimators for
high-dimensional generalized linear models. In Advances in Neural Information Processing
Systems, pages 586–594, 2015.

Zhi-Sheng Ye and Nan Chen. Closed-form estimators for the gamma distribution derived
from likelihood equations. The American Statistician, 2016.

Brent A Yorgey. Monoids: theme and variations (functional pearl). In ACM SIGPLAN
Notices, volume 47, pages 105–116. ACM, 2012.

Jialin Yu. Closed-form likelihood approximation and estimation of jump-diffusions with an
application to the realignment risk of the chinese yuan. Journal of Econometrics, 141(2):
1245–1280, 2007.

Jun Yu. Empirical characteristic function estimation and its applications. Econometric
Reviews, 23(2):93–123, 2004.

158

Vicente Zarzoso, Frank Herrmann, and Asoke K Nandi. Weighted closed-form estimators
for blind source separation. In Statistical Signal Processing, 2001. Proceedings of the 11th
IEEE Signal Processing Workshop on, pages 456–459. IEEE, 2001.

Bohdan Zelinka. Tolerance in algebraic structures. Czechoslovak Mathematical Journal, 20
(2):179–183, 1970.

Bohdan Zelinka. Tolerance in algebraic structures. ii. Czechoslovak Mathematical Journal,
25(2):175–178, 1975.

Pavel Zezula, Giuseppe Amato, Vlastislav Dohnal, and Michal Batko. Similarity search:
the metric space approach, volume 32. Springer Science & Business Media, 2006.

Yuchen Zhang, Martin J Wainwright, and John C Duchi. Communication-efficient algo-
rithms for statistical optimization. In Advances in Neural Information Processing Sys-
tems, pages 1502–1510, 2012.

Yuchen Zhang, John Duchi, Michael I Jordan, and Martin J Wainwright. Information-
theoretic lower bounds for distributed statistical estimation with communication con-
straints. In Advances in Neural Information Processing Systems, pages 2328–2336, 2013a.

Yuchen Zhang, John Duchi, and Martin Wainwright. Divide and conquer kernel ridge
regression. In Conference on Learning Theory, pages 592–617, 2013b.

Yuchen Zhang, John C Duchi, and Martin J Wainwright. Divide and conquer kernel ridge
regression: a distributed algorithm with minimax optimal rates. Journal of Machine
Learning Research, 16:3299–3340, 2015.

Shen-Yi Zhao, Ru Xiang, Ying-Hao Shi, Peng Gao, and Wu-Jun Li. Scope: Scalable
composite optimization for learning on spark. AAAI, 2017.

Martin Zinkevich, Markus Weimer, Lihong Li, and Alex J Smola. Parallelized stochastic
gradient descent. In Advances in Neural Information Processing Systems, pages 2595–
2603, 2010.

AV Zukhba. Np-completeness of the problem of prototype selection in the nearest neighbor
method. Pattern Recognition and Image Analysis, 20(4):484–494, 2010.

159

	List of Figures
	List of Tables
	Introduction
	Mergeable learning algorithms
	Ridge regression as a motivating example
	A formal definition of mergeable learning algorithms
	Model selection and fast/distributed cross validation
	Example mergeable algorithms
	Estimators with closed form solutions
	Exponential family distributions
	Naive Bayes

	Approximate regularized loss minimization
	When are approximate merge procedures appropriate?
	Averaging based methods
	Principle component analysis
	Submodular optimization

	Bayesian methods
	Bernstein-von Mises
	Variational inference
	Markov chain Monte Carlo

	Conclusion

	The optimal weighted average
	The problem of merging linear models
	The algorithm
	Warmup: the full OWA estimator
	The OWA estimator
	Implementing OWA with existing optimizers

	Analysis
	Experiments
	Synthetic data
	Real world advertising data

	Nonlinear OWA
	Notation
	Merging neural networks
	Experiments

	Conclusion

	The cover tree
	Definitions
	Measuring the size of a metric space
	Expansion dimension
	Doubling dimension
	Hole dimension
	Aspect ratio

	Review of methods for faster nearest neighbors
	Sample compression
	Embeddings and locality sensitive hashing
	Spacial data structures

	The original cover tree
	Properties of the cover tree
	Approximate nearest neighbor query for a single point
	Improved approximate nearest neighbor query for a single point
	Inserting a single point

	The simplified cover tree
	Properties of the simplified cover tree
	Approximate nearest neighbor queries
	Inserting a single point
	The nearest ancestor invariant
	Merging simplified cover trees
	Cache efficiency

	Experiments
	Cover tree type comparison
	Cover tree implementation comparison
	Alternative methods for Euclidean nearest neighbors
	Graph kernels and protein function
	Earth mover's distance

	Conclusion

	Conclusion

