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ABSTRACT OF THE DISSERTATION

Automatic Co-Clustering for Social Network and Medical Data

by

Juan Ignacio Casse

Doctor of Philosophy, Graduate Program in Computer Science
University of California, Riverside, December 2014

Dr. Christian Shelton, Chairperson

The task of clustering is a fundamental task in many important human endeavors. In

machine learning parlance, it is an unsupervised learning tool for discovering patterns in

data. Specifically, its goal is to find groups of objects in the data that are similar in

some sense. Some important fields where clustering is used include medical diagnostics,

bioinformatics, social network analysis and market analysis. Clustering is also used “behind

the scenes” as a preprocessing step to other tasks, such as Web search and recommender

systems.

Co-clustering can be viewed as a generalization of clustering to a wider range of

data. While clustering methods work on affinity data (data describing similarity between

objects), co-clustering methods can also work on relational data (data describing relation-

ships between objects). An example of affinity data is customers in market analysis, where

each customer is described by a set of features (attributes), such as age, gender and income.

A similarity measure between pairs of customers can be computed from their features, for

example Euclidean distance. An example of relational data is persons in a social network,
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where a link between two persons indicate that they are friends. Here persons are compared

on their connections to other persons and not on their intrinsic features.

In this dissertation we study the application of co-clustering to social network data

and to medical data. In particular, we present a general formulation of co-clustering that fits

most methods in the literature and provide solutions to three main problems: (1) clustering

relational data under regular equivalence in social network analysis, (2) finding a symmetric

clustering of asymmetric data and (3) clustering patients based on high-dimensional, time-

varying, sparse physiologic data.

We define implicit similarity measures, by way of criterion functions for co-clustering,

that solve the problems we target. We demonstrate and compare our co-clustering methods

on real world data sets.
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Chapter 1

Introduction

Finding regularities in data is a universally fundamental and important task in

most human endeavors, from the learning of one’s mother’s voice when we are born to the

advancement of science. As an example of its impact to humanity as a whole, consider

Johannes Kepler’s discovery of the empirical laws of planetary motion, which allowed the

development of classical mechanics. These discoveries were possible by the astronomical

observations of Tycho Brahe in the 16th century.

In machine learning, clustering is the unsupervised learning task of discovering

patterns (or regularities) by finding groups of examples in the data that are similar in some

predetermined sense. Clustering can also be viewed as assigning labels to data points, where

the labels represent the groups (or classes) to which the data points belong. Clustering is

used in a wide variety of problems in many fields. In computer vision, image segmentation

is the task of partitioning a digital image into segments by assigning a label to each pixel

such that pixels with the same label are spatially close to each other and have the same
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color (Shi and Malik, 1997). Image segmentation is typically used to identify objects in a

scene, which can have many applications in may fields, from face recognition to medical

imaging. In information retrieval, clustering is used to make searches more efficient by

scanning only through clusters of similar documents instead of the entire database (Cut-

ting et al., 1992). (In this case, clustering is used as a preprocessing step and not as the

end goal.) In market analysis, clustering is used to find groups of customers with similar

purchasing behaviors (Punj and Stewart, 1983). In sociology, clustering is used to discover

social positions (Lorrain and White, 1971). More recently, clustering of patients based on

electronic health records (EHRs) is being studied for the purpose of providing more accurate

and timely prognoses and effective treatment (Marlin et al., 2012).

Co-clustering can be viewed as a generalization of clustering to a wider range of

data. While clustering methods work on affinity data (data describing similarity between

objects), co-clustering methods can also work on relational data (data describing a rela-

tionship between objects). An example of affinity data is a data set of customers in market

analysis, where each customer is described by a set of features (attributes), such as age,

gender and income. A similarity measure between pairs of customers can be designed based

on their features. An example of relational data is a data set of persons in a social network,

where a link between two persons indicate that they are friends. Here persons are compared

by their connections to other persons and not by their features.

Clustering is an exploratory task used usually as a first step in understanding

something about the data by discovering patterns (or regularities). Due to this nature of

the unknown, clustering has two intrinsic difficulties. First, different notions of similarity
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can yield different clusterings. As an example, consider the tomato: fruit or vegetable?

Botanically, the tomato is considered a fruit because it has seeds. However, tomatoes have

a much lower sugar content than the other fruits and this has led to the culinary use of

tomatoes as vegetables. In Nix v. Hedden, 149 U.S. 304 (1893), the U.S. Supreme Court

settled a controversy caused by a set of tariff laws that imposed a duty on vegetables, but

not on fruits, by declaring the tomato a vegetable, based on the popular definition that

classifies vegetables by culinary use—they are generally served with dinner rather than

dessert. Therefore, a recurring question when confronted with the task of clustering is what

similarity measure to use.

The other difficulty with clustering is determining the number of clusters. As an

exploratory endeavor, the number of clusters is just as unknown as the cluster assignments.

Several approaches exist that use a separate measure to choose from cluster assignments for

different number of clusters (Thorndike, 1953; Goutte et al., 2001; Sugar et al., 2003; Llet́ı

et al., 2004; Sibson, 1973; Defays, 1977; Ankerst et al., 1999). Again, we are faced with the

problem of which measure to use.

Kleinberg (2002) proved an impossibility theorem for clustering that states that

no clustering algorithm can exist that satisfies the following three properties: (1) scale

invariance: changes in the scale of the distance measure between data points should not

change the resulting clustering, (2) richness: every possible clustering of the data should

be attainable by the algorithm provided the appropriate distance measure be used, and (3)

consistency: if the distances between points within clusters are made shorter and distances

between points from different clusters are made larger, the output of the algorithm should
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not change.

Given all of these difficulties, clustering is inherently tied to its application and

no universal clustering method exists. In this dissertation we study the application of co-

clustering to social network data and to medical data. In particular, we provide solutions

to three main problems: (1) clustering with regular equivalence in social network analysis,

(2) finding a symmetric clustering of asymmetric data and (3) clustering patients based on

their high-dimensional, time-varying, sparse physiologic data.

1.1 Background

Before we delve into the details, we discuss the type of clustering we perform,

co-clustering. Specifically, we review different methods in traditional one-mode clustering

and in co-clustering, and discuss why co-clustering is the right method for the applications

we target.

1.1.1 Clustering (one-mode)

The traditional way of approaching the task of clustering has been to base the

grouping of objects on an explicitly predefined notion of similarity. Two aspects charac-

terize this approach. First, traditional clustering algorithms work on affinity data—data

describing the similarity between objects. Data normally consist of a set of feature vectors,

each describing one object. An explicit similarity function must be designed to transform

the input feature data into affinity data before employing these algorithms. Second, tradi-

tional clustering makes sense only when dealing with one-mode data. In one-mode data, all
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objects are of the same type. In some applications, such as social network analysis, data can

be two-mode since we are dealing with relations between objects, which may be of different

types. Two-mode data will be explained in more detail in Section 2.1, where we introduce

relational data.

Given the exploratory nature of clustering, a myriad of methods have been studied

in the literature, each one discovering different types of structure in the data. They can

broadly be placed in three categories based on the type of structure they find: flat clustering,

hierarchical clustering and overlapping (non-partitional) clustering. Maimon and Rokach

(2005) presents a summary of the most well-known methods.

Flat clustering methods

A flat clustering of a set of objects is a partition of the objects: A division into a

set of collectively exhaustive, disjoint subsets.

Centroid-based clustering. These methods assume data are clustered around K cen-

troids (cluster IDs) which, in the case of the K-means algorithm (MacQueen, 1967) (a very

popular centroid-based method), are the means of the data in the clusters. The goal is to

find the centroids that best cluster the data by optimizing a measure of compactness of the

clusters, usually an intra-cluster homogeneity measure. For example, k-means minimizes

the sum-of-squares of the distance of all points to their assigned cluster centroids. These

methods often employ an alternating optimization scheme: they alternate between assigning

each object to the closest centroid and updating the centroids of the newly formed clusters

(Lloyd, 1982). This process monotonically reduces the cost function and thus is guaranteed
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to converge to a local optimum. An initial set of centroids must be chosen in advanced.

Picking different initial centroids can produce different clusterings. The clusters found by

centroid-based methods are spherical (convex) in Euclidean space (Jain et al., 2000).

Graph-theoretic clustering. These methods seek to partition a graph by identifying

a minimum cut. A cut is a graph partition—a clustering—obtained by the removal of a

set of edges, known as the cutset, which disconnects the components (clusters) of a graph.

A minimum cut is one whose cutset has a minimum sum of weights. The arc weights are

analogous to the similarity measure between pairs of objects. The connected components

in the graph are the clusters. The minimum cut method seeks to optimize an inter-cluster

separability criterion as opposed to an intra-cluster homogeneity such as in k-means. To

sidestep the possibility of skewed partitions—with degenerate clusters of a single node—

measures of normalized cuts have been proposed (Shi and Malik, 1997).

Spectral clustering. These methods project the points onto a lower-dimensional space,

which preserves most of the information from the original space, formed by the K largest

eigenvectors in the range of eigenvectors, or spectra, of the Laplacian (Shi and Malik, 2000;

Dhillon et al., 2004). The projected points are then clustered by a simple centroid-based

algorithm, such as K-means (Ng et al., 2001). Spectral methods have an advantage over

centroid-based methods in that they can discover more complex, non-convex clusters: In

spectral methods, objects are clustered together because they are linked and not because

they are close to each other.
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Hierarchical clustering methods

Hierarchical methods produce hierarchical clusterings—clusters within other clus-

ters. Each level in the hierarchy represents a different clustering. At the lowest level, each

object is in its own cluster. Each successive level contains one fewer cluster after merging

the two closest clusters from the previous layer. At the top level, all the objects are in

the same cluster. This hierarchy is represented by a tree structure, called a dendrogram.

Johnson (1967) gives a detailed description. It is possible to output a flat clustering by

specifying an additional criterion for selecting among the levels. Ding and He (2002) gives

a review of hierarchical methods.

Agglomerative. These methods work from the bottom up by initially placing each object

into its own singleton cluster (at the lowest level) and iteratively merging pairs of clusters in

order of pairwise distance among clusters until all objects are in one cluster (at the top level)

(Guha et al., 1999). In addition to specifying a pairwise similarity measure between objects,

a distance measure between pairs of clusters is also required, that is used to determine the

next pair of clusters to merge (the closest ones). Various distance measures have been

proposed. Single linkage (Sibson, 1973) measures the distance between two clusters as the

shortest distance between two elements, one from one cluster. Complete linkage (Defays,

1977) uses the two elements that are farthest away. Complete linkage avoids the problem

of single linkage, where otherwise distant clusters are merged because on element happens

to be close to the other cluster. Complete linkage tends to find clusters of approximately

equal diameters Everitt et al. (2009).
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Divisive. These methods work in the opposite direction as agglomerative methods. Start-

ing with all objects in a single cluster, iteratively split clusters one by one (Gunoche et al.,

1991). These methods rely on the use of flat clustering methods (as a subroutine) to perform

the splitting. Some have argued that divisive methods may perform better than agglomer-

ative methods: In text clustering, documents belonging to different classes may be placed

in the same cluster at the earliest stages of agglomerative clustering and these “mistakes”

cannot be fixed once they happen (Steinbach et al., 2000).

Overlapping clustering methods

Other methods are based on probabilistic generative models1. These methods pro-

duce clusterings that are not partitions of the data: Objects may belong to more than one

cluster. Instead, the assignment of each point to a cluster is a probability distribution over

the clusters. Probabilistic methods assume that each data point is generated by one of

K predefined probability distributions—the most popular being Gaussian distributions in

Gaussian mixture models (GMMs)—with some probability, also usually following a multi-

nomial distribution. The goal is to find the parameters of the Gaussians and the probability

distribution over these Gaussians that had the highest probability (maximum likelihood)

of generating the data. Some of the most popular methods used for model parameter esti-

mation include the expectation maximization (EM) algorithm (Dempster et al., 1977) and

Markov chain Monte Carlo methods such as Gibbs sampling (Geman and Geman, 1984).

1The other previous methods can be classified as discriminative methods, to contrast with generative
methods. Generative methods learn a joint probability distribution p(x, y), where x is the data and y is the
cluster assignment, which can be used to determine the posterior p(y|x) that assigns a cluster to an item
as well as used to generate new samples. On the other hand, discriminative methods learn the posterior
directly, that is, the cluster assignments. See Ng and Jordan (2001) and Lasserre and Bishop (2007).
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The EM algorithm similar in structure to K-means: The model is initialized with arbitrary

parameters and then alternates between calculating the probability for each data point of

being generated by each cluster, based on the given parameters, (E-step) and updating

the parameters of each cluster using the previously computed probabilities (M-step). The

Gibbs sampling algorithm is a randomized algorithm (useful when the joint distribution is

not known or explicitly or difficult to sample from) that estimates the model parameters by

repeatedly drawing samples from their corresponding full conditional distributions (condi-

tional on the rest of the parameters). The sequence of samples form a Markov chain whose

stationary distribution is the sought-after joint distribution (Gelman et al., 1995).

1.1.2 Co-clustering (two-mode)

Co-clustering is a method of clustering that seeks to simultaneously cluster the

rows and columns of a two-dimensional data matrix. Data in many applications exist

as two-dimensional matrices: word-document co-occurrence tables in text analysis, gene-

experimental condition expression data in bioinformatics, consumer-product purchasing

data in market analysis, and actor-actor relation data in social network analysis. Dif-

ferent from affinity data, these data represent relationships between pairs of objects: An

entry in the matrix relates an object from the rows with an object from the columns.

Instead, of defining an explicit similarity measure as a criterion for clustering two

objects together, co-clustering searches for patterns in the data in the form of sub-matrices

(or blocks) that conform to some measure of homogeneity. These matrix blocks, in turn,

induce a partition on the rows and on the columns. The induced clustering on the rows and
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columns can be different and thus, co-clustering can handle data matrices where the rows

and columns index two different sets of objects (two-mode data).

Co-clustering can be regarded as a more general method than traditional one-mode

clustering because it can cluster both relational data and affinity data (and feature data

without an explicit affinity measure). Feature data can be arranged in matrix form, where

each row of the matrix is a feature vector describing some object. Applying co-clustering to

feature data produces a clustering of the features as as well as a clustering of the objects.

By clustering the features, co-clustering performs an implicit dimensionality reduction, so

fewer parameters are estimated, resulting in an implicit “regularized” clustering (Dhillon

et al., 2003). In other words, co-clustering has the potential for generalizing better than

one-mode clustering. This makes co-clustering less susceptible, than traditional one-mode

clustering, to missing or corrupted values (Banerjee et al., 2004) and irrelevant features.

Co-clustering is considered to perform at least as well as traditional one-mode clustering

(Rohe and Yu, 2012).

Co-clustering has proved to be very effective and has been studied in various fields

under different names. One of the earliest works (in statistics) calls it direct clustering

(Hartigan, 1972) because it uses the data directly instead of a precomputed similarity

measure as in traditional clustering. In computer science it has been studied under various

names: co-clustering (Dhillon et al., 2003), cross-associations (Chakrabarti et al., 2004), bi-

clustering (Cheng and Church, 2000) and box-clustering (Mirkin et al., 1995). In sociology,

it is most commonly known as blockmodeling (Batagelj et al., 1992b).

10



1.2 Contributions

In this dissertation we study co-clustering to solve several problems. In particular,

we show how most co-clustering methods in the literature conform to a general formulation

and define implicit similarity measures for the following tasks: (1) clustering social network

data, (2) finding a symmetric co-clustering for asymmetric one-mode data and (3) clustering

medical data.

In social network analysis, sociologists have long been in need of a principled

method for blockmodeling under regular equivalence; they have relied on assigning arbitrary

penalties in their cost functions to obtain a desired blockmodeling (Doreian et al., 2004a,

2005; Brusco and Steinley, 2009, 2011). We provide a cost function based on compression

theory that allows a co-clustering algorithm to automatically select among structural and

regular blocks in a matrix.

In some applications in social network analysis we may have data matrices where

the rows and columns index the same set of objects, and thus we seek a single clustering for

both rows and columns. However, these matrices may be asymmetric, and applying straight

up co-clustering will most likely produce a different clustering of the rows and columns. For

this, we provide a general framework that can be applied to most co-clustering algorithms

to obtain a single clustering.

Clustering medical data presents several challenges. Here, each patient is described

by multi-dimensional longitudinal data that are both sparse and incomplete. Our solution

tackles two main issues: (1) how to compare patients based on such complex data and (2)

how to transform these data to fixed-length vectors for each patient is not obvious.

11



In the next subsection we present a general formulation for co-clustering that fits

most methods in the literature. A description of our work on the targeted applications is

presented in subsequent chapters.

1.2.1 General Formulation

Here we articulate a general formulation for co-clustering that fits most methods

in the literature. Let X = [xi,j] denote an M ×N , binary data matrix, where i = 1, . . . ,M

and j = 1, . . . , N index the rows and columns, respectively. Denote by K and L the number

of disjoint row and column clusters, respectively. A co-clustering of K × L co-clusters is a

pair of mappings (φ,ψ):

φ : {1, 2, . . . ,M} 7→ {1, 2, . . . ,K},
ψ : {1, 2, . . . , N} 7→ {1, 2, . . . , L}.

The general co-clustering problem can be formulated as an optimization problem

where we are interested in finding a co-clustering (φ⋆, ψ⋆) that minimizes a cost function:

(φ⋆, ψ⋆) = argmin
φ,ψ

F (φ,ψ) (1.1)

where F (φ,ψ) is the cost of a co-clustering (φ,ψ). In most cases, F takes on a particular

form:

F (φ,ψ) = min
Z∈Z

∑

i,j

f(X,Z, i, j, φ(i), ψ(j)) . (1.2)

The auxiliary variable Z = [zkl] encodes some type of information about the co-clusters

(matrix blocks) and f(X,Z, i, j, φ(i), ψ(j)) computes a goodness of fit of a matrix element

xij to the co-cluster zφ(i),ψ(j) to which it has been assigned. For example, Batagelj et al.

12



(1992b) present a method for blockmodeling binary matrices where each matrix block is

described as either being a block of all zeros or a block of all ones, that is, each block

is either a zero-block or a one-block, Z = {0, 1}K×L. The goodness of fit of each matrix

element xij is its difference to the assigned block, f(X,Z, i, j, φ(i), ψ(j)) = |xij − zφ(i),ψ(j)|.

In fact, most objective functions for co-clustering in the literature conform to

Equation 1.2. Following are a few examples. If X is a real-valued matrix, constant-block co-

clustering (Hartigan, 1972) can be formulated as Z = R
K×L (the means of the co-clusters)

and f(X,Z, i, j, k, l) = (xij − zkl)2.

Information-theoretic co-clustering (Dhillon et al., 2003) assumes X represents a

joint probability distribution and approximates it according to its block structure. The

approximation, Z = {Z ∈ [0, 1]M×M×K×L | zijkl = zklzikzjl and
∑

ijkl zijkl = 1}, is a

distribution over row-index, column-index, row-cluster, and column-cluster that obeys a

particular factorization. The goodness of fit, f(X,Z, i, j, k, l) = xij ln(xij/zijkl), is the

KL-divergence between X and Z. As an example, consider the data matrix below that

corresponds to the joint probability distribution of random variables A and B:

X = p(A,B) =







.15 .15 0 0

.15 .10 0 0
0 0 .15 .15
0 0 0 .15







Looking at the row distributions, it is natural to group the rows into two clusters:

â1 = {a1, a2} and â2 = {a3, a4}. Similarly, a natural clustering of the columns is b̂1 =

{b1, b2} and b̂2 = {b3, b4}. Given this co-clustering, let us compute the approximation of

element x1,2 = p(a1, b2) as q(a1, b2): The probability of the matrix block of which x1,2 is a

member is p(â1, b̂1) =
∑

i|φ(i)=φ(1),j|ψ(j)=ψ(2) xij = .55. The conditional probability of row

13



1 given row cluster 1 is p(a1|â1) = (
∑

j x1,j)/p(â1, b̂1) = .55. Similarly, the conditional

probability of column 2 given column cluster 1 is .45. The approximation of x1,2 based on

this co-clustering is then q(a1, b2) = p(â1, b̂1)p(a1|â1)p(b2|b̂1) = .55 · .55 · .45 = .136. The

approximation of the entire data matrix given the co-clustering is

q(A,B) =







.166 .136 0 0

.136 .111 0 0
0 0 .099 .202
0 0 .049 .099







The best co-clustering is then the one that minimizes the KL divergence between the original

data and its approximation. Banerjee et al. (2004) has a more general treatment of the same

style, allowing for different constraints on the set Z and different distance measures f .

The work of Chakrabarti et al. (2004) considers binary matrices X. Z = {Z ∈

[0, 1]K×L} describes each matrix block by the frequency of 1s in the block. f(X,Z, i, j, k, l) =

xij lg zkl + (1 − xij) lg(1 − zkl) computes the number of bits, by way of Shannon’s entropy

(Shannon, 1948), required to encode the matrix element xij according to the Bernoulli

distribution described by the matrix block zφ(i),ψ(j). The Shannon entropy computes the

theoretical minimum number of bits, on average, required to encode discrete data according

to the distribution of values. Multiplying the Shannon entropy by the number of elements in

a binary matrix sub block gives the formula for f . Their formulation also considers changes

to K and L (the number of clusters) through minimum description length (MDL) model

selection.

Given an optimization criterion with the form of Equation 1.2, the proposed so-

lution algorithms (for instance in the work cited above) have the same coordinate ascent

form. Starting from a randomly selected φ,ψ, they repeatedly hold φ and ψ fixed and find
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Input: X,φ(0), ψ(0)

Output: (φ∗, ψ∗)
1 begin
2 s← 0
3 repeat

4 Z(s+1) ← updatez(φ
(s), ψ(s))

5 φ(s+2) ← updateφ(ψ
(s), Z(s+1))

6 Z(s+3) ← updatez(φ
(s+2), ψ(s))

7 ψ(s+4) ← updateψ(φ
(s+2), Z(s+3))

8 s← s+ 4

9 until no more changes to (φ,ψ)

Figure 1.1: Base co-clustering algorithm. The functions updatez, updateφ and updateψ
are specific to each application problem.

an optimal Z, and then hold Z and ψ (or Z and φ) fixed and optimize φ (or ψ). Because of

the additive nature of F , this second optimization can be done separately for each φ(i) (or

ψ(j)). That is, in optimizing φ (or ψ) we can consider each row (or column) independently

and select the best cluster for it. In particular, the algorithms select (for some fixed K,L)

φ(i) = argmin
k

∑

j

f(X,Z, i, j, k, ψ(j))

ψ(j) = argmin
l

∑

i

f(X,Z, i, j, φ(i), l) . (1.3)

For example, in the case of constant-block co-clustering (Hartigan, 1972), row i will be

assigned to the row cluster k that minimizes
∑

j(xij − zk,ψ(j))2.

The differences among the methods are in the choices of f and the resulting meth-

ods for minimizing Z given a fixed co-clustering. Figure 1.1 presents the “base” co-clustering

algorithm we use in our work. Lines 4 and 6 correspond to optimizing Z given a fixed co-

clustering. Lines 5 and 7 correspond to updating the row and column cluster assignments,

according to the chosen f .
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Chapter 2

Co-clustering for Social Network

Data

We present a new criterion function for blockmodeling two-way two-mode relation

matrices when the number of blocks as well as the equivalence relation are unknown. For

this, we specify a measure of fit based on data compression theory, which allows for the

comparison of blockmodels of different sizes and block types from different equivalence

relations. We demonstrate that the method reproduces consensual blockings of three real

world data sets without any pre-specification. We perform a simulation study where we

compare our compression-based criterion to the commonly used criterion that measures the

number of inconsistencies with an ideal blockmodel.
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2.1 Relational data

Relational data, as the name suggests, encode pairwise relationships between ob-

jects. Our goal is to group objects together based on how they relate to each other and not on

their intrinsic properties—features. Relational data are also known in social network anal-

ysis as dyadic data, where a relation is defined for each pair of entities—a dyad. Relational

data can be binary (either there exists a relation or not between two entities), categorical

(relations are categorized by type), or numerical (relations have associated strengths). One

example of binary relational data is an “acquaintance” network, where two individuals ei-

ther know each other or not. An example of numerical data is world trade data, which

measure the amount of trade of a specific product between pairs of countries. Relational

data can also be symmetric or asymmetric. As an example of symmetric data consider the

co-worker network, which encodes the “works with” relation. If employee a “works with”

employee b, then employee b necessarily “works with” employee a. A world trade network

that encodes the “exports to” relation is an example of asymmetric data. These data are

asymmetric because if country a exports product x to country b, it is likely that country b

does not export product x back to country a; the relation has a direction associated with

it.

Relational data can be represented as a two-dimensional matrix, where a matrix

entry relates an object from the rows to an object from the columns. It can also be repre-

sented by a graph with either unweighted edges (binary data) or weighted edges (numerical

data), where an edge {u, v} represents a relationship between objects u and v. A directed

graph can also be used to encode asymmetric data. For example, world trade data encoding
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the “exports to” relation can be represented as a graph where a directed edge (u, v) indi-

cates that country u exports to country v, and the weight of the edge denotes the amount

of trade.

Dyadic data can also be one-mode or two-mode. Two-mode data are defined for

two sets of objects, relating objects in one set to objects in the other. The world trade data

is one-mode because the rows and the columns index the same set of objects. The most

studied two-mode data set in the social network analysis literature is the Deep South data

set, collected by Davis et al. (1941), of a set of women attending social events over a period

of nine months. Here the two modes are the women and the social events they attended (or

did not attend).

2.1.1 Clustering Relational Data

A reasonable question to ask is why cannot we use traditional one-mode clustering

algorithms to cluster relational data? First, traditional one-mode clustering only works for

affinity data, which is both one-mode and symmetric. But, assuming the data at hand is

one-mode and symmetric, what makes relational data different from affinity data?

The network depicted in Figure 2.1 is an idealized example of one-mode symmetric

binary relational data. These data form a bipartite graph with to sets of nodes, A and B,

that have edges between them, but not within each set. This is often the case with relational

data. In social network analysis, where the data encode pairwise relationships, the nodes in

set A are considered similar because they have the same relationship with the same other

set of nodes, B, and not because they are connected among themselves, which they are not
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0 0 0 0 0
0 0 0 0 0
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0 0 0 0 0
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1 1 1 1 1
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1 1 1 1 1
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8
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1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

Figure 2.1: Idealized one-mode symmetric binary network with ten nodes and two clus-
ters: A and B. The graph representation, a bipartite graph, on the left and the matrix
representation, with complete blocks off the main diagonal, on the right.

at all in this example. This is different from affinity data, where the criterion for clustering

items together is that they must be connected between them.

Given that traditional clustering has a different clustering criterion, the clustering

produced by any such algorithms should not be expected to be the desired one. Indeed that

is the case in this example. Here we seek a cluster assignment sequence of AAAAABBBBB.

Applying the Matlab spectral clustering implementation SpectraLIB1 gives the clustering

BABBABABAA. Similarly, applying the normalized cut-based graph partitioning algo-

rithm Graclus2 produces the clustering BAABBABBBA. By interpreting graph edges as

affinities, graph clustering algorithms will try to cluster together nodes from A and B.

A quick look at the matrix representation in Figure 2.1 and we can see how the

data can be easily divided into four sub-matrices (or blocks), and these blocks induce a

partition on the rows and the columns equal to A and B in the graph representation. The

blocks with all zeros encode the absence of a relationship between the nodes within a group

1Obtained from http://www.stat.washington.edu/spectral/
2Obtained from http://www.cs.utexas.edu/users/dml/Software/graclus.html
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1 1 1 1 1

Figure 2.2: Network obtained by flipping the bits in the network of Figure 2.1. The graph
representation, with two connected components, on the left and the matrix representation,
with complete blocks on the main diagonal, on the right.

and the blocks with all ones encode the existence of a relationship between nodes of the

two groups.

In social network analysis the absence of ties between actors does not necessarily

imply that they are not similar. In sociology, similarity is often defined by the concept of

structural equivalence (Lorrain and White, 1971). Two nodes in a graph are structurally

equivalent if they are adjacent to the same set of nodes, other than each other. Thus

in a friendship network, two individuals are structurally equivalent if they have the same

friends. Note that two nodes are perfectly equivalent without actually being connected to

each other—the existence or not of an edge between them is not important. This condition

can be modeled by a bipartite graph (Figure 2.1), where the set of nodes can be divided

into two subsets such that for each edge (u, v) ∈ E, node u is in one subset and node v is

in the other.

Given that traditional clustering will not produce the correct clustering on re-

lational data, can we transform relational data into an equivalent affinity data? If this

20



A

0

1

2

3

4

B

5

6

7

8

9

C

10

11

12

13 14

A B C
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

A

0
1
2
3
4

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

B

5
6
7
8
9

1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

C

10
11
12
13
14

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

Figure 2.3: Idealized one-mode symmetric binary network of 15 nodes with three complete
blocks, both on and off the main diagonal, and three clusters, A, B and C.

transformation could be done cheaply, traditional one-mode clustering may be used.

If we flip the bits in the network of Figure 2.1, we obtain the network in Figure 2.2.

The matrix representation in the figure depicts a matrix with blocks along the main diag-

onal. This type of structure in a matrix corresponds to connected components in a graph

representation, such as depicted in the same figure. This is the kind of network for which

one-mode clustering is intended.

By flipping the bits we have effectively transformed the relational data in this

example to affinity data. The intuition for why this transformation worked is that an edge

was placed between any pair of nodes that have an edge to the same other node. By doing

this as a first step, the bipartite network can be clustered by a traditional method to obtain

the desired clustering of AAAAABBBBB.

However, this simple transformation of flipping the bits does not work in the gen-

eral case. Consider the network in Figure 2.3. Flipping the bits of this network does not get
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Figure 2.4: Network obtained by flipping the bits in the network of Figure 2.3.

rid of off-diagonal blocks, which form bipartite sub-graphs that one-mode clustering cannot

handle. Here we seek a clustering of AAAAABBBBBCCCCC. Applying the Matlab spec-

tral clustering implementation SpectraLIB gives the clustering AABBBCCCCCBAAAB.

Applying the normalized cut-based graph partitioning algorithm Graclus gives the cluster-

ing AAABABCCCCCABBB.

To be able to apply one-mode clustering on the network of Figure 2.3, we would

need to transform it so that we end up with three connected components. This would

require placing edges between nodes according to two opposing criteria: (1) if nodes have

edges to the same other nodes in the original network, clusters A and B, and (2) if nodes

are connected in the original network, cluster C. Deciding whether to connect two nodes

because they are connected to the same other node or because the are connected in the

original network would require knowing the desired clustering in the first place. Figure 2.4
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Figure 2.5: Example of a regular block of a binary network that encodes the “mother-of”
relation. Persons along the rows are mothers of the persons along the columns.

shows the network after a simple flipping of the bits.

For all the examples above, with the bits flipped or not, co-clustering can determine

the correct clusters by discovering the blocked structure of the matrix. Co-clustering is, in

this way, more general than traditional one-mode clustering as it can cluster both affinity

(blocks along the diagonal) and relational (blocks on and off the diagonal) data.

2.1.2 Regular Equivalence

Regular equivalence is a generalization of structural equivalence (White et al.,

1976; Sailer, 1978; Pattison, 1982; White and Reitz, 1983; Kim and Roush, 1984; Everett

and Borgatti, 1993; Pattison, 1993; Boyd and Everett, 1999). Under regular equivalence

two actors are equivalent to each other if they have ties to similar actors, but not necessarily

the same actors. As a concrete example, consider a network that encodes the “mother of”

relation (Figure 2.5). Mothers will be grouped together because they are all mothers of

children (also grouped together). However, it is clear that two mothers cannot be mothers

of the same child.

Regular equivalence can form matrix blocks that are not completely homogeneous,

as opposed to structural equivalence. The basic type of regular blocks are 1-covered blocks.

A 1-covered block is defined as having at least one 1 in each row and each column—every
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0 0 0 0
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0 0 0 0

null

0 0 0 1
1 0 0 1
0 0 1 0
0 1 0 1

1-covered

Figure 2.6: Examples of the two basic block types under regular equivalence.

row and column is covered. Figure 2.6 shows examples of the two basic types of blocks under

regular equivalence: null and 1-covered. Other types exist, such as row-regular and column-

regular, where only the rows are covered and only the columns are covered, respectively.

Doreian et al. (1994, 2004a) defines additional types of regular blocks.

While regular equivalence is theoretically appealing, some have questioned its gen-

erality. For example, Boyd and Jonas (2001) and Boyd (2002) argue that data should not

be assumed to contain regular blocks. They showed, by way of a permutation test, that

regular blocks found on three well studied data sets had more errors than regular blocks

found by random permutations of the data. Nevertheless, the authors concede that some

data in nature exhibit regular equivalence. Situations where an “exclusion principle” holds,

such as in the mother-of example in Figure 2.5, have regular equivalence relations.

2.2 Related Work

Blockmodeling tools were developed in the social network literature to partition

actors in a network into clusters. One of the earliest works (Batagelj et al., 1992a,b) called

it “direct” blockmodeling (uses the data directly) to contrast it to the traditional clustering

approach, which operates on the data “indirectly” via a dissimilarity measure of the actual
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network values.

The task of clustering two-mode data has been well studied in the sociology litera-

ture and a number of methods have been proposed (refer to Krolak-Schwerdt (2003); Meche-

len et al. (2004) for two surveys), with the relocation algorithm with multiple restarts being

the predominant approach (Brusco and Steinley, 2011). Mirkin et al. (1995) introduced

additive box clustering as an improvement over a previous error-variance box clustering by

Eckes and Orlik (1993), which sequentially builds matrix blocks by adding matrix elements,

guided by a criterion function based on sum-of-squares. Hansohm (2002) proposed a genetic

algorithm and compared it to an alternating exchanges algorithm (a local search in the same

spirit of the relocation algorithm) by Gaul and Schader (1996). The study showed that the

genetic algorithm was not superior for two-mode partitioning problems. Trejos and Castillo

(2000) presented a simulated annealing version of the alternating exchanges algorithm by

Gaul and Schader (1996). Their simulated annealing version provided superior solutions

than the alternating exchanges algorithm at the expense of a substantial increase in running

time, as expected (Aarts and Korst, 1989). Brusco and Steinley (2011) presented a tabu

search heuristic that provided better solutions than the relocation heuristic over an exten-

sive study where the two methods were allowed the same amount of computation time. In

a comparative study by van Rosmalen et al. (2009), a two-mode k-means algorithm outper-

formed implementations of various other methods, including simulated annealing and tabu

search. Brusco and Steinley (2007) did a simulation study comparing a two-mode variable

neighborhood search algorithm with a more efficient, but less exhaustive, k-means-based

search, finding that the results given by the two were comparable when both algorithms
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were allowed to run for the same amount of time.

As stated by Doreian et al. (2004a), many blockmodeling tools in the literature

have required that the block types and/or their locations on the network be pre-specified by

the analyst. In more recent works, such as Doreian et al. (2005); Brusco and Steinley (2007,

2011), exploratory methods have been presented that do not require the image matrix3 to

be pre-specified. Brusco and Steinley (2009) presented an integer program that guarantees

an optimal solution for a given image matrix. They suggest a two-stage procedure where

a heuristic method is first used to obtain an image matrix, and then the integer program

provides the optimum solution for that image matrix. In Brusco and Steinley (2007), one

of the methods implemented was a two-mode k-means with 500 restarts. This approach

can determine the block placements, but still requires the pre-specification of the number

of row and column clusters.

Let X(φ−1(k), ψ−1(l)) denote the matrix block induced by the co-clustering (φ,ψ)

and indexed by k, l, where φ−1(k) denotes the set of matrix row indices that map to row

cluster k (similarly, ψ(·) for the columns). A common criterion function in the literature

(Doreian et al., 2005; Batagelj et al., 2004, 1992a,b; Borgatti and Everett, 1992) is one that

measures the deviation of each block X(φ−1(k), ψ−1(l)), induced by the co-clustering (φ,ψ),

from the ideal block B ∈ B, where B is the set of ideal blocks defined by the equivalence

relation. The total deviation of the co-clustering (φ,ψ) is expressed as the sum of block

deviations across all blocks induced by the co-clustering:

F (φ,ψ) =
∑

kl

d(X(φ−1(k), ψ−1(l))), (2.1)

3The image matrix is the matrix of block descriptions, Z in Equation 1.2
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where d(X(φ−1(k), ψ−1(l))) is the block deviation determined by

d(X(φ−1(k), ψ−1(l))) = min
B∈B

δ(X(φ−1(k), ψ−1(l)), B), (2.2)

and δ(·, ·) measures the deviation between a block and an ideal block prototype.

As an example, for structural equivalence (Batagelj et al., 1992b; Doreian et al.,

2005), the deviation of a block can be measured as

δ(X(φ−1(k), ψ−1(l)), B) =
∑

i|φ(i)=k,j|ψ(j)=l
|xij − bij |. (2.3)

This counts the number of 1s in the block X(φ−1(k), ψ−1(l)) if the ideal block B is null,

and counts the number of 0s in X(φ−1(k), ψ−1(l)) if the ideal block B is complete. The

criterion function in Equation 2.1 adds the deviation of all blocks to their respective closest

ideal blocks.

The most common optimization technique in the social networks literature is the

relocation algorithm (Batagelj et al., 1992b,a; Borgatti and Everett, 1992; Doreian et al.,

2005; Batagelj et al., 2004). It starts from an initial co-clustering and searches the space

locally. The local neighborhood is determined by two transformations: (1) moving a unit

(row or column) from one cluster to another, and (2) swapping two units from two different

clusters. The procedure moves through the search space by selecting the neighbor for which

the criterion function produces the smallest result. When no more neighbors produce a

better result, the algorithm has reached a local minimum. The procedure is repeated from

various starting points and the best solution is selected.

This formulation of blockmodeling requires that the number of clusters be specified

a priori. If the algorithm is allowed to change K and L (the number of row and column
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clusters), it could achieve zero error by setting K = M and L = N and placing each cell

into its own block that could be perfectly described by a complete or null block. Therefore,

the analyst must have a priori knowledge of how many clusters there should be. For many

real-world problems the number of clusters is as unknown as the assignment of units to

clusters.

To the best of our knowledge, none of the methods in the sociology literature can

automatically determine the number of row and column clusters for two-mode blockmodel-

ing. Moreover, additional fine tuning may be required such as defining different penalties on

some inconsistencies relative to others. These requirements make the blockmodeling tools

brittle.

Various methods outside the sociology literature have been proposed for deter-

mining the number of clusters. Methods such as those proposed by Tibshirani et al. (2000)

measure intra-cluster scatter: For each cluster, an average pairwise distance is computed

and the sum over all clusters is monitored as the number of clusters is incremented. This

sum decreases rapidly as clusters are added and then remains somewhat stable after some

K. Other methods combine the minimization of intra-cluster scatter with the maximiza-

tion inter-cluster scatter to avoid a potential undesirable split of a distinct cluster (Ray and

Turi, 1999). Other criteria are based on probability theory: Criteria such as BIC (Bayesian

Information Criterion), MML (Minimum Message Length) and MDL (Minimum Descrip-

tion Length) add a penalty proportional to the number of clusters. It is this last approach,

MDL, that we adopt in our solution, presented next.
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2.3 Automatic Co-clustering for Regular Equivalence

The notion of regular equivalence is an important theoretical concept, yet sociol-

ogists have struggled to find a principled method for analyzing regular equivalence in data.

Some have questioned its generality. For example, Boyd and Jonas (2001) and Boyd (2002)

argue that data should not be assumed to contain regular blocks. They showed, by way

of a permutation test, that regular blocks found on three well studied data sets had more

errors than regular blocks found by random permutations of the data. Nevertheless, the

authors concede that some data in nature exhibit regular equivalence. Situations where an

“exclusion principle” holds, such as in the “mother of” example in Figure 2.5, have regular

equivalence relations.

Goodness of fit under regular equivalence is defined as the number of covered

rows/columns for null blocks and the number of uncovered rows/columns for 1-covered

blocks (Batagelj et al., 1992a). The problem with this definition is that it admits multiple

equally well-fitting 1-covered blocks of varying sizes and densities (Doreian et al., 2004a).

To cope with this difficulty, works in the literature employ criterion functions that assign

arbitrary penalties (Doreian et al., 2005; Brusco and Steinley, 2007, 2011). We provide

a method that can discover both regular equivalence and structural equivalence in binary

relational data and automatically determine the number of clusters. To achieve this, we

implement a compression-based criterion function that captures the differences between

structural and regular equivalence and can be used to compare co-clusterings of different

sizes.
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2.3.1 Compression as an Optimization Criterion

Clustering can also be viewed as a form of data compression where each cluster

summarizes a group of similar units. We present a criterion function that evaluates a co-

clustering in terms of how well it compresses the data. That is, if we were to transmit the

entire data matrix, how short would the transmission be if the receiver also assumed that

the matrix had either a regular or a structural blocking? The receiver does not know the

block types (or even the number of clusters), but is expecting a block-structured matrix.

This allows us to agree on an efficient language for describing such data.

This criterion function has the property that the closer the co-clustering of the

data is to an ideal blockmodel, the lower the result of the criterion function is. From

a communications theory point of view, we devise a measure of fit that computes the

number of bits required to transmit the compressed data such that the original data can

be reconstructed without loss at the receiving end. For example, if the data conforms

to structural equivalence, that is, the underlying structure of the data forms co-clusters

(blocks) that are homogeneous, that is, either null or complete, we can compress the data

inside each block by just sending the type of the block instead of every cell. In general,

most real-world problems do not have a perfect structure, so additional information must be

sent that encodes the location of the matrix cells that are inconsistent with the ideal block

type. Co-clusterings that produce lower costs of encoding are therefore better methods of

compression and (in some sense) better describe the data by extracting structure.

The sender and receiver of the data have a predetermined communication protocol

where the receiver expects the incoming data in a certain order and format. In particular,
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we assume three parts to the protocol. First, the sender transmits the number of blocks and

which rows and columns are assigned to which blocks. We call this the overhead encoding.

Second, the sender transmits per block information specifying the ideal structure of each

block. We call this the block type encoding. Lastly, the sender transmits any deviations

from these ideal types. We call this the error encoding. Below we describe the encodings

and how to calculate their lengths for a particular blocking.

2.3.2 Overhead Encoding

The overhead contains the number of clusters per way and the assignments of

each way element to its cluster. We assume that the number of rows and columns are

already known.4 The number of clusters for a way with M elements can be encoded in

lg(M) = log2(M) bits: We need a number between 1 and M . Each of the M items in this

way can be assigned to its cluster by encoding the cluster’s index in lg(K) bits (if there are

K clusters). Given two ways of size M (with K clusters) and N (with L clusters), the total

overhead is

ξ = lg(M) + lg(N) +M lg(K) +N lg(L) . (2.4)

2.3.3 Block Type Encoding

The block type encoding describes ideal pattern for each block. Each block’s

encoding begins with an integer that encodes the type of the block. As we are considering

3 blocks (complete, null, 1-covered), this takes lg(3) bits. If the block is null or complete,

this is sufficient to describe the ideal block (all cells should be either 0 or 1, respectively).

4If not, they can also be encoded using constant extra space, so it does not enter into the optimization.
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However, if the block is 1-covered, this is not sufficient. We must further specify

how the 1s are distributed. For a block of size m-by-n, we do this by computing the total

number of possible 1-covered blocks and taking the logarithm (base 2) as the number of

bits required to encode this ideal block. Thus, the number of additional bits required to

specify a regular block of size m-by-n is

ζreg(B) = lg





m∑

i=0

n∑

j=0

(−1)(i+j)
(
m

i

)(
n

j

)

2(m−i)(n−j)



 . (2.5)

The term inside the brackets is the total number of 1-covered blocks and is computed by

subtracting from the total number of possible blocks, 2mn, the total number of blocks that

are not covered by at least one row or column. If we let SCi be the set of blocks in which

column i is uncovered and let SRi be the same for row i, then we wish to compute the

size of the union of all of these sets:
⋃

i S
C
i ∪

⋃

i S
R
i . This can be done by applying the

inclusion-exclusion principle which results in Equation 2.5.

Thus the cost of encoding an ideal block B is

ζ(B) =

{

lg(3) if B is null or complete

lg(3) + ζreg(B) if B is 1-covered.
(2.6)

The total cost of encoding the ideal blocks is the sum of ζ over all blocks.

2.3.4 Error Encoding

Finally, we encode the location of any cells that do not conform to the ideal blocks

transmitted above. For null blocks, these will be any 1s. For complete blocks, these will be

any 0s. And for regular blocks, these will be any 0s that are in locations that a minimal

cover would have dictated as 1s. If we let δ(X(φ−1(k), ψ−1(l))) be the number of deviations
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for a particular block X(φ−1(k), ψ−1(l)), then this error cost for a given block is

η = lg(MN) +
∑

kl

δ(X(φ−1(k), ψ−1(l))) lg(MN), (2.7)

where the first term is the size of the encoding of the number of errors and the second part

is the size of the encoding of the locations of each error (specified as a row-column pair).

2.3.5 Total Cost

The total cost of a blockmodel is the sum of the overhead ξ plus the cost ζ of each

block plus the cost of the final errors:

ψ = ξ +
∑

kl

ζ(X(φ−1(k), ψ−1(l))) + η . (2.8)

Importantly, this evaluation scheme allows for the comparison of blockmodels

that have different numbers of clusters. Note that increasing the number of clusters will

reduce the value of η (because they better model the data), but it will increase ξ and

∑

kl ζ(X(φ−1(k), ψ−1(l))). This criterion function defines a solution to the blockmodeling

problem that balances the number of clusters versus the number of deviations. This trade-

off between the complexity of the model and the complexity of the data given that model

is described by the minimum description length (MDL) principle (Grünwald, 2005). For

example, at one end of the spectrum, each element in the data matrix is assigned to its own

block with zero error, but at the expense of the most complex model. At the other end

of the spectrum, all elements are assigned to the same block, which is the simplest model

possible, but with the maximum number of errors. We seek a solution between these two

extremes that minimizes the criterion.
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Note that if the number of clusters is fixed, only the block costs depend on the

assignments of units to clusters (the overhead cost remains constant for all blockings) and

it is (up to a positive scaling)
∑

kl d(X(φ−1(k), ψ−1(l))) in Equation 2.1, where d(·) = η

in Equation 2.7 (number of bits required to encode the locations of the matrix elements

that do not agree with their respective blocks). In this sense, this is a generalization of the

former blocking optimization methods.

2.4 Optimization Algorithm

In Section 2.3.1 we presented the criterion function, which defines a solution to the

blockmodeling problem as a minimization. Here we describe an algorithm for finding this

solution by optimizing this criterion function efficiently. Different from standard blockmod-

eling algorithms, this algorithm searches over the space of all blockmodels (with different

number of clusters) that admit the three block types: null, 1-covered and complete.

The algorithm is inspired by schemes presented in the information-theoretic co-

clustering literature (Dhillon et al., 2003; Banerjee et al., 2004). It consists of a “base”

alternating optimization scheme (presented in Figure 1.1) and a search over all possibleK,L.

The base alternating optimization scheme is similar in structure to the leader algorithm

(Batagelj et al., 2004) or k-means (MacQueen, 1967).

The base co-clustering algorithm alternates between optimizing the block types,

Z, while holding the row and column cluster assignments, (φ,ψ), fixed and optimizing φ

(or ψ) while holding Z,ψ (or Z, φ) fixed. The block types are optimized by selecting the

type (null, complete or regular) that minimizes the number of errors. For example, a block
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of mostly ones will be best described by a complete block and a block of mostly zeros by

a null block. When comparing among block types for a particular matrix block, only the

number of deviations, δ(·, ·), is considered since the lg(MN) terms in Equation 2.7 and the

lg(3) terms in Equation 2.6 are constant over all block types. For null and complete blocks,

the number of deviations is simply the number of block elements that do not agree with

the block type. For a regular block, the number of deviations is the minimum number of

1s needed to make every row and column covered (to have at least one 1). Additionally,

regular blocks incur a cost of encoding which regular block they are (which arrangement of

1s and 0s), shown in Equation 2.5.

Note that for structural (null and complete) blocks the choice of where to place

each row (or column) is independent of where to place the other rows (or columns). The

optimization criterion is the sum of the errors for each row (or column). For regular blocks,

this is no longer the case. However, it is still approximately true in many circumstances

and the performance is much faster than other optimization methods.

The alternating optimization finds a solution quickly given a fixed number of

clusters. To find K,L, we added two additional transformations to change the number of

clusters: (1) a transformation that potentially adds a cluster, and (2) a transformation that

deletes a cluster. To add a new cluster, the algorithm finds the largest group of rows that

are similar and puts them together in a new cluster. If the resulting blockmodel has a lower

cost, it is accepted. The algorithm keeps adding clusters as long as the resulting blockmodel

has a lower cost. The process is repeated on the columns. To delete a cluster, the algorithm

tries deleting each row cluster in turn (and reassigning its rows) and selecting the one that
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Input: X
Output: (φ∗, ψ∗)

1 [K,L]← [
√
M,
√
N ]

2 (φ,ψ)← randomφ,ψ(K,L)
3 begin
4 repeat
5 Optimize cluster assignments // base co-clustering, Figure 1.1

6 try adding row clusters and update block types
7 try adding column clusters and update block types
8 try deleting clusters and update block types
9 try deleting column clusters and update block types

10 until no positive changes are possible

Figure 2.7: K,L search algorithm for social network data applications.

produces the lowest costing blockmodel. (If all increase the cost, no clusters are deleted.)

Again, this is done until no better solution is attained. The process is repeated on the

columns.

Together, the alternating optimization and the cluster addition and deletion pro-

vide the algorithm with the tools to search the space of all possible blockmodels that admit

any of the three block types described in Section 2.1.2, that is, null, 1-covered, and complete.

The algorithm is shown in Figure 2.7.

The algorithm starts from an initial random co-clustering and applies the transfor-

mations in a greedy fashion until no more improvement is possible. At this point the algo-

rithm has reached a local optimum and may be restarted from a new random co-clustering.

The final solution is the one with the lowest cost.

36



2.5 Experiments

We performed four types of experiments. First, we compared the solutions selected

by our compression-based criterion function on two data sets previously studied in the

literature to those provided by other authors. One is actor-event data on the social activities

of 18 southern women over a nine-month period in the 1930s. The other is actor-decision

data on the voting patterns of the Supreme Court on 26 important issues during the 2000-

2001 term. Second, we performed a simulation study to compare our compression-based

criterion to the more common error-based criterion that counts inconsistencies with an

ideal blockmodel. Third, we tested our criterion on a larger data on economic activities

compiled from a database maintained by the private vendor InfoUSA. Fourth, we evaluated

the possibility of finding the number of clusters using the number of errors, as an alternative

to our method.

2.5.1 Two previously studied data sets

Southern Women data set. The first data set comes from a socioeconomic study of the

rural community of Natchez, Mississippi in the 1930s by Davis et al. (1941). We used the

data as presented in Doreian et al. (2004a). The two-mode data, displayed in Figure 2.8,

show the participation of a group of women in social events. Actor-event data are a staple

of social network analysis. The goal of blockmodeling is to find classes of actors who are

similar, based on their co-presence at events, while at the same time, finding classes of

events that are similar because they elicited the affiliation of the same sets of actors. Actor-

event problems generally have the research hypothesis of some set-wise correspondence, but
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E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11 E12 E13 E14

Brenda
Charlotte
Dorothy
Eleanor
Evelyn
Flora
Frances
Helen
Katherine
Laura
Myra
Nora
Olivia
Pearl
Ruth
Sylvia
Theresa
Verne

1 1 1 1 1 1 1
1 1 1 1

1 1
1 1 1 1

1 1 1 1 1 1 1 1
1 1

1 1 1 1
1 1 1 1 1

1 1 1 1 1 1
1 1 1 1 1 1 1

1 1 1 1
1 1 1 1 1 1 1 1

1 1
1 1 1 1

1 1 1 1 1
1 1 1 1 1 1 1

1 1 1 1 1 1 1 1
1 1 1 1

Figure 2.8: Southern Women event participation data. A 1 in the matrix denotes the
participation of an actor in an event. Zeros in the data are not shown.

often theory does not provide much guidance about the expected number of classes in each

model, or the equivalence relations of the blocking. The Southern Women data have been

analyzed many times, and there is some consensus about the most meaningful blocking;

there is, however, no non-trivial zero-error solution with only the block types considered

here.

Figure 2.9 shows the co-clustering selected by our compression-based criterion

function. The clusters of women obtained here match those concluded by a meta-analysis

of 21 analyses of these data by Freeman (2003). The social events were assigned to the

same clusters presented in Table 2 in Doreian et al. (2004a) with the exception of event

E6. Note that these results were obtained without pre-specifying any information about

the block types or their locations nor the number of clusters to be found.

The participation of each set of women in one set of events is “regular” in that not
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E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11 E12 E13 E14

Evelyn
Laura
Theresa
Brenda
Charlotte
Frances
Eleanor
Pearl
Ruth

1 1 1 1 1 1
1 1 1 1 1

1 1 1 1 1
1 1 1 1 1

1 1 1
1 1 1

1 1
1 1

1 1

1 1
1 1
1 1 1
1 1
1

1
1 1

1 1
1 1 1

Verne
Myra
Katherine
Sylvia
Nora
Helen
Dorothy
Olivia
Flora

1

1 1 1
1 1
1 1

1 1 1
1 1
1 1

1 1
1
1

1
1 1
1 1 1 1
1 1 1 1
1 1 1 1 1
1 1 1

1
1

Figure 2.9: Southern women data set. Solution selected by our compression-based criterion
function.

every woman attended every event, but each attended at least one (that is, the upper left

and lower right blocks). The women are also shown as having near-perfect null blocks for

the other block of events (that is, upper right and lower left blocks). In addition, there is a

third class of events that are regularly equivalent and attended by both factions of women

(that is, E7, E8, and E9).

While the ultimate decision about whether a block should be regarded as struc-

tural or regular is a matter of the theory of the underlying process generating affinities or

clusterings, the information-cost approach provides the solution that is the simplest com-

plete description of the data. Such an efficient description that is agnostic with regard to

both the numbers of blocks in each mode, and the nature of the equivalences may suggest

patterns that, in turn, suggest richer theories of the underlying process. In the current case,

each faction of women must not attend one set of events, and must attend one, but not
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Thomas
Scalia
Kennedy
O’Connor
Breyer
Ginsburg
Souter
Stevens

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
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1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Figure 2.10: Supreme Court votes on 26 cases. A 1 in the matrix indicates that a Justice
voted with the majority on a case. Zeros in the data are not shown.

necessarily all of another set. There is also another class of bridging events, and it appears

normative that all members of either faction must attend at least one of these.

Supreme Court voting data set. The second data set comes from a study by Doreian

and Fujimito (2003) on the Supreme Court’s decision on twenty six cases. The data set is

presented here as in Doreian et al. (2004a), shown in Figure 2.10. The rows correspond to

the nine Justices. The columns represent twenty six cases decided by the Supreme Court

during the 2000-2001 term. A more detailed description of these cases can be found in

Greenhouse (2001) and in Doreian and Fujimito (2003).

The solution selected by our compression-based criterion function is shown in

Figure 2.11. The swing voters, Kennedy and O’Connor, were put in their own group. The

more liberal Justices, Breyer, Ginsburg, Souter and Stevens, were grouped together. This
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1 1 1 1 1 1 1

Figure 2.11: Supreme Court voting data set. Solution selected by our compression-based
criterion function.

left the more conservative Justices, Rehnquist, Thomas and Scalia, in the last group. This

is slightly different from the clustering offered by Doreian et al. (2004a) and Doreian and

Fujimito (2003), where they split up the swing voters each into its own singleton group.

The cases were grouped into three clusters, in contrast to the seven clusters of

Doreian et al. (2004a). From this blocking we identify almost four perfect complete blocks

and two perfect null blocks. The remaining three are 1-covered blocks. From this, we can

clearly see where the more conservative Justices differ from the more liberal ones. The swing

voters voted with the majority in all three groups of cases; they were the two Justices to

dissent the least number of times during the term (Greenhouse, 2001). Again, our algorithm

was not given the number of blocks and types a priori.
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2.5.2 Simulation study

In this study we compare the quality of our compression-based criterion function

to that of the standard error-based criterion for direct blockmodeling. The error-based

criterion counts the total number of inconsistencies across all blocks.

We compared the two criterion functions on six synthetic data sets of varying sizes,

with different image matrices and noise. We assessed the quality of a criterion based on

the Rand index (Rand, 1971) of the solution that it selects (the solution with the lowest

cost) with respect to the designed solution for each data set. The experiment consisted of

running the alternating optimization algorithm five hundred times, each from a different

starting point, on each data set for each criterion function. The Rand index of the 500

generated blockmodels, for each criterion function, was computed.

The error-based criterion was provided with the number of clusters in one test and

with the image matrix in another test. Our compression-based criterion was not given any

such information.

The study revealed that the compression-based criterion is particularly useful when

the data contain a combination of structural and regular blocks. After noise was added,

the compression-based criterion selected better blockmodels than the error-based even after

providing the error-based with the image matrix.

Inconsistencies in regular equivalence are defined as the number of covered rows/columns

for null blocks and the number of uncovered rows/columns for 1-covered blocks (Batagelj

et al., 1992a). The problem with this definition is that it admits multiple equally well-fitting

1-covered blocks of varying sizes and densities (Doreian et al., 2004a). We tried using this
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definition and the Rand indices of the generated blockmodels were not much better than

0.5. One work-around to this problem, which was used by Doreian et al. (2004a), is to

use the error-based criterion for structural equivalence, but penalize inconsistencies in null

blocks by 100 times more than inconsistencies in complete blocks. This has the effect of

finding null blocks with few or no errors, but allowing complete blocks with many 0s (a

pseudo regular block).

Thus, we define the error-based criterion as follows.

fs(B) =

{

#1s if B is null

#0s if B is complete

fr(B) =

{

#1s× 100 if B is null

#0s if B is 1-covered
(2.9)

fm(B) =







#1s× 100 if B is null

#uncovered rows and columns if B is 1-covered

#0s if B is complete

,

where fs(B) is used if structural equivalence is expected, fr is used if regular equivalence

is expected, and fm is used if a mix of both structural and regular blocks are expected in

the data. Equation 2.9 is compatible (sensitive) to both structural and regular equivalence,

that is, it is zero for ideal blocks (Batagelj et al., 1992b; Batagelj, 1997).

The study is divided into three parts. First, we simulated two two-mode binary

matrices of different sizes and image matrices, with and without noise, containing a com-

bination of structural and regular (1-covered) blocks. That is, these data contain the three

types of blocks discussed in this work: (1) null, (2) 1-covered, and (3) complete blocks. The

results are shown in Figure 2.12.

Each plot shows the Rand index for each resulting co-clustering from the 500 runs
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Figure 2.12: Matrices with both structural and regular blocks. The plots show the distri-
bution of the solutions by each criterion for each run, as a function of the Rand index. The
×s in the plots denote each run of the algorithm. The Rand index for the solution selected
(the lowest cost) by the criterion function is indicated on the y-axis. The matrices show
the designed solution used to compute the Rand index.
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guided by each criterion. The Rand index is computed with respect to the designed solution,

shown in the figure in matrix form. The solution selected by the criterion function, that is,

the solution with the smallest value, is indicated by its Rand index along the y-axis. The

first row shows the results for the matrices without noise. The data sets with five percent

noise added are shown on the second row.

A criterion function well suited for blockmodeling will have two properties: (1) it

guides the algorithm toward solutions having a Rand index close to 1 and (2) the lowest

costing solution is also the one with the highest Rand index. From Figure 2.12 we see that

the compression-based criterion was able to: (1) drive the algorithm toward the designed

solution and (2) select the best solution (in some cases it missed by a small margin). On

the other hand, the error-based criterion failed to guide the algorithm toward the designed

solution, nor did it select the best solution from the candidates by a much larger margin

than the compression-based criterion, and this is while the image matrix had been supplied

to the error-based criterion. When no image matrix is supplied to the error-based criterion

(only the number of clusters), the algorithm gets stuck at Rand index of 0.5, which is no

better than randomly guessing a solution. When noise is added, the error-based criterion

completely fails, even when the image matrix is provided. Whereas the compression-based

criterion still performs very well.

Second, we simulated two matrices with only regular blocks (Figure 2.13). As can

be seen, both criterion functions fared poorly. The compression-based criterion decided that

the designed solution is not the best. It is very possible that the designed solution is not

the best; it is very difficult to visually design solutions for regular equivalence for matrices
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of these sizes. The error-based criterion did not fare that much better, even after it was

given the image matrix.

The last comparison was done on two structural matrices, shown in Figure 2.14.

The error-based criterion proved an excellent choice for structural equivalence blockmodel-

ing. The error-based criterion perfectly selected the designed solution in all four instances.

One interesting thing to note is that for the noiseless data, it better guided the algorithm

when it was not further constrained by an image matrix.

The compression-based criterion also correctly selected the designed solution when

no noise was present. However, it failed to drive the algorithm to the designed solution in

many of the restarts. This is due to the criterion having to determine the number of clusters

and the block types among structural and regular candidates. When noise is added, the

compression-based criterion does worse as it may be forming 1-covered blocks to account

for the noise. Also, smaller complete blocks may be formed with fewer errors.

In general, the compression-based criterion should do well at trading off express-

ibility against over-fitting to the noise. However, when 1-covered blocks are allowed (but

do not actually exist), it may find them even when not applicable.

2.5.3 Economic activity in communities

The next test was done on a larger data set. Here we tested our criterion’s perfor-

mance in finding a useful co-clustering of complex real-world data. Does the most efficient

complete description of more complex data result in large numbers of clusters and patterns

that are difficult to interpret? The data set examined here is indexed by 297 communities
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Figure 2.13: Matrices with regular blocks. The plots show the distribution of the solutions
by each criterion for each run, as a function of the Rand index. The ×s in the plots denote
each run of the algorithm. The Rand index for the solution selected (the lowest cost) by
the criterion function is indicated on the y-axis. The matrices show the designed solution
used to compute the Rand index.
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Figure 2.14: Matrices with structural blocks. The plots show the distribution of the solu-
tions by each criterion for each run, as a function of the Rand index. The ×s in the plots
denote each run of the algorithm. The Rand index for the solution selected (the lowest
cost) by the criterion function is indicated on the y-axis. The matrices show the designed
solution used to compute the Rand index.
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Figure 2.15: New Mexico economic data set after binarization. The rows are indexed by
297 communities and the columns by 296 types of economic activity. Black dots on the
figure indicate that a community has at least one business of the corresponding type. The
rows and columns in this figure have been rearranged in order of decreasing density.

and 296 economic activities.

The data are the counts of the numbers of organizations performing each of 296

activities as their primary function (as measured by 4-digit NAICS codes) in each of 297

places with organizations in New Mexico in 2004. The data were supplied by InfoUSA,

publisher of a widely used business directory. We binarized the data by assigning a 1 to

each cell if there were any organizations in the community that performed a particular

function. The pre-processed data5 are shown in Figure 2.15.

Theories of place hierarchies and of organizational communities (Eaton and Lipsey,

1982; Losch, 1954) provide little guidance as to how many “types” of communities we

might expect to find or how many “types” of organizations. Furthermore, the nature of the

equivalences that might be expected to define the blocks are points of theoretical contention.

In the clustering of organizations, there are some reasons to expect that some activities are

very likely to occur in the same communities. Some activities are complementary to others

5The input to the algorithm is a random permutation of the data.
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in chains of production, and there may be efficiencies that result from co-location. However,

some other organizational types may be competitive with, or substitutable for others—which

would suggest likely regular equivalences. In the clustering of communities, one principle is

that of a “central place hierarchy” (Christaller, 1966). This hypothesis suggests that there

are sets of more central communities that contain super-sets of activities of less central

communities. An alternative idea, however, is that some communities may be functionally

specialized and have unique sets of activities that are not common in central places. It may

also be that there exists a core set of “keystone” functions (Mills et al., 1993) that must

be performed in every community, regardless of size. In short, as with many problems of

“affinities” and “correspondences” between two or more modes, theory leads us to expect

non-randomness, but provides little a priori guidance about numbers of classes in each

mode, or the patterns of equivalence defining the blocking.

2.5.4 Compression-based Results and Analysis

We ran the alternating optimization algorithm with our compression-based cri-

terion for 500 randomly generated initial co-clusterings. We then ran the alternating

optimization algorithm with the error-based criterion for 500 randomly generated initial

co-clusterings, using the number of row and column clusters determined by the best run

(that is, the one with lowest cost) of the compression-based criterion. We tried the three

error-based criterion functions for each of the three equivalence relation combinations in

Equation 2.9, in turn.

Figure 2.16 shows the solution selected by our compression-based criterion. Seven
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Figure 2.16: New Mexico economic data. Solution selected by our compression-based cri-
terion. Left: The blocked data matrix. Right: The corresponding blockmodel. The letter
inside a matrix block indicates the type of block: C for complete, R for regular, and no
letter for null blocks.

“types” of communities are suggested, and it is possible to order the types into a hierarchy.

Each of the places in community clusters A and B is very likely to contain all of the activities

in activities clusters A, B and C. Community clusters A and B differ in the last two economic

activity clusters, F and G. The contents of these clusterings are shown in Figures 2.17 and

2.18. The places in clusters A and B comprise eight of the top ten most populated cities

in New Mexico (Brinkhoff, 2011). It is reasonable to expect that the more populous cities

are more diverse in the types of businesses required to sustain them and thus, must contain

many similar business types. Therefore, it is likely that from this economic activity data,

clusters separating these large cities from smaller ones will emerge.

Some theories of urban hierarchies suggest that we are likely to observe a single

“metropolis.” The size distribution of the populations of places in New Mexico is fairly

consistent with this idea—Albuquerque is far more populous than the second-ranked city
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A

Albuquerque
Las Cruces
Farmington
Hobbs

B

Santa Fe
Roswell
Clovis
Carlsbad

Figure 2.17: Communities found by the compression-based criterion to have many business
activities in common: row clusters A and B.

A

Primary activities: (5%)
1129 Other Animal Production

Secondary activities: (24%)
2361 Residential Building Construction
2382 Building Equipment Contractors
2383 Building Finishing Contractors
2389 Other Specialty Trade Contractors

Tertiary activities: (71%)
4842 Specialized Freight Trucking
4911 Postal Service
5617 Services to Buildings and Dwell.
6111 Elementary and Secondary Schools
6244 Child Day Care Services
7139 Other Amusement and Recreation
7212 RV Parks and Recreational Camps
8111 Automotive Repair and Maint.
8121 Personal Care Services
8131 Religious Organizations
9211 Executive, Legislative, and Other
9221 Justice, Public Order, and Safety

B

Primary activities: (5%)
1152 Support Activities for Animal Prod.

Secondary activities: (11%)
2362 Nonresidential Building Construct.
2371 Utility System Construction

Tertiary activities: (84%)
3231 Printing and Related Support
3399 Other Miscellaneous Manufact.
4238 Machinery, Equipment, and Supp.
4249 Miscellaneous Nondurable Goods
4451 Grocery Stores
4452 Specialty Food Stores
4481 Clothing Stores
4483 Jewelry, Luggage, and Leather
4532 Office Supplies, Stationery
4539 Other Miscellaneous Store Retailers
5221 Depository Credit Intermediation
5313 Activities Related to Real Estate
5419 Other Professional, Scientific
6241 Individual and Family Services
7211 Traveler Accommodation
7222 Limited-Service Eating Places

Figure 2.18: Economic activities clustered by our compression-based criterion. The figure
shows the business activity types that were in column clusters A and B.
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(Las Cruces): 545,852 versus 97,618 (U.S. Census Bureau, 2010). However, the co-clustering

suggests that, functionally, Albuquerque can be grouped with a number of other places. All

of these places contain all of the cornerstone set of activities. They are also classified

together, however, because each contains one (or more) activities from each of three other

sets of activities. The appendix contains a complete listing of the community clusters.

The clusterings of economic activities suggest that many activities are part of

sets that are mutually absent in many communities (zero blocks). This is consistent with

notions of interdependency and complementarity of activities. There are also two relatively

large classes of regularly equivalent functions, which would be consistent with theories of

competition or substitutability. A look at these details (see the appendix for a complete

listing of the economic activity clusters) suggests caution in making a strong interpretation

of the regular equivalence clusters. The patterns are messy, and the solution suggests

puzzles, as well as patterns.

The simultaneous classification of places in terms of what types of economic func-

tions are performed there, along with the classification of sets of economic functions that

commonly occur in the same community does not have a known “correct” solution. The

picture that emerges here is broadly consistent with the notions of a central-place hierarchy

and “keystone types” of functions. The classes of functions co-occurring in the same or

regularly equivalent places (that is, what kinds of economic organizations are present in

organizational communities?) involve many regular equivalences—a community may have

either this function or that function and still fall in the same class. This is quite reasonable

given the detailed level of industrial classification.
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Figure 2.19: New Mexico economic data. Solution selected by the structural error-based
criterion, fs, from Equation 2.9. Left: The blocked data matrix. Right: The corresponding
blockmodel. The letter inside a matrix block indicates the type of block: C for complete,
and no letter for null blocks.

2.5.5 Error-based Results and Analysis

For the error-based criterion, the purely structural, fs, gave the best results, so we

only show those. Figures 2.19, 2.20, and 2.21 show the results of the error-based criterion.

The co-clustering selected by the error-based have similarities and differences to the solution

selected by the compression-based criterion. Both coincided in separating the most populous

cities from the rest. Given the number of clusters, the error-based criterion placed nine of

the top ten (Figure 2.20) in their own two separate clusters. The rest of the community

clusters differ. As the data get sparser, the two methods prefer different clusterings. This

makes sense as dense blocks are classified as complete by both criterion functions. Whereas,

sparse blocks are classified as 1-covered by our compression-based criterion, but null by the

error-based criterion. Decidedly null blocks are classified as null by both criterion functions.
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A

Albuquerque
Santa Fe
Las Cruces

B

Roswell
Farmington
Hobbs
Clovis
Rio Rancho
Carlsbad

Figure 2.20: Communities clustered by the error-based criterion, fs. This figure shows row
clusters A and B.

A

Primary activities: (0%)

Secondary activities: (0%)

Tertiary activities: (100%)
4911 Postal Service

B

Primary activities: (0%)

Secondary activities: (42%)
2361 Residential Building Construction
2371 Utility System Construction
2382 Building Equipment Contractors
2383 Building Finishing Contractors
2389 Other Specialty Trade Contractors

Tertiary activities: (58%)
8131 Religious Organizations
4451 Grocery Stores
7222 Limited-Service Eating Places
5419 Other Professional, Scientific, and Tech.
8121 Personal Care Services
4539 Other Miscellaneous Store Retailers
8111 Automotive Repair and Maintenance

Figure 2.21: Economic activities clustered by the error-based criterion, fs. The figure shows
the business activity types that were in column clusters A and B.
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2.5.6 Automatically choosing the number of clusters

Our compression-based criterion function shows good promise. The criterion se-

lected a solution for the southern women data set that is consistent with previous extensive

analyses, e.g., Freeman (2003) and Doreian et al. (2004a). The solution selected for the

Supreme Court voting data set correctly identifies the division of ideology among the Jus-

tices, democrats, conservatives and swing voters. The solution provided for the New Mexico

data set can be explained by socio-economic theories as posited in the previous section. A

reasonable question, therefore, is whether other methods might be used to automatically

determine the number of clusters. For example, a common object criterion in blockmodeling

is minimizing inconsistency with ideal block structure (Brusco and Steinley, 2011; Doreian

et al., 2005).

We conducted an experiment to see whether using the number of inconsistencies

for a solution is a viable alternative to determine the number of row and column clusters.

For example, if we plot the number of errors as a function of the number of row and column

clusters we might be able to determine the optimal number of clusters if there is an “elbow”

in the graph indicating a change in the percent reduction of errors.

We compared co-clusterings on the economic activities in communities data set

for all combinations of row and column cluster counts from 1 to 20 on both ways of the

data matrix, by fixing the number of clusters a priori. For each row and column cluster

combination, we plotted the average of 10 random restarts. The plot is shown in Figure 2.22.

Figure 2.22 needs explaining. First, when the number of both row and column

clusters is 1, the number of errors is very small because the single block is best explained
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Figure 2.22: Plot of the number of errors (inconsistencies) with the ideal block structure
as a function of the number of row and column clusters for the economic activities in
communities data set.

by a regular ideal block where each row and column is 1-covered. Second, when the number

of row clusters is 1, but the number of column clusters is increased, the number of errors

is very high. This is because, in part, there is no clear-cut location where to partition

the columns for any number of column clusters when there is only one row cluster (see

Figure 2.15). By visual inspection of Figure 2.15, we can see that it is no clear advantage

of placing a column partition at one location over another. In addition, the encoding cost

of regular 1-covered blocks in Equation 2.5 gets very high as the size of the block increases.

The blocks formed when all the rows belong to the same cluster are very large; they span

the entire unpartitioned row way of the matrix. So, after the blocks formed by the first

couple of column clusters are assigned as regular with very few errors, the rest of the blocks

formed by additional column clusters become too costly to be assigned as regular, so they
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are assigned as null blocks with many errors.

As soon as the rows are partitioned, smaller blocks can form, toward the top of

the matrix, that can be assigned as regular at a reasonable encoding cost, and the larger

sparser blocks at the bottom can be assigned as null with fewer errors than before.

From this plot (Figure 2.22) we see that for row clusters of two or more (assigning

all rows to one cluster would not give any insight about the data), there is no clear location

where there is a change in percent number of errors. The number of errors steadily increases

slightly, so there is no indication where to “draw the line”. (The reason why the number of

errors increases slightly instead of decreasing is that it is very costly to have many regular

1-covered blocks. So, instead of adding regular blocks, null blocks are added. As the number

of blocks increases, 1 elements that were previously in a regular block, are now in null blocks,

thus increasing the number of errors.)

From this example we see that the number of inconsistencies cannot give an indica-

tion as to how many clusters there should be. Moreover, the difficulty is only compounded

by the need to select two cut-offs, each of which is dependent on the other.
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Chapter 3

Symmetric Clustering of

Asymmetric Data

We address the problem of finding a single clustering for both dimensions of a

square asymmetric data matrix. Such matrices appear frequently in network analysis, where

both the rows and columns represent the same set of actors. We present a framework to

impose one clustering on both dimensions of the data matrix by posing the problem as the

dual of a constrained co-clustering optimization problem and solving using a subgradient

method. Our technique is general to a wide range of co-clustering measures. We employ

our method on two real-world data sets, showing that it can effectively discover underlying

relationships.

Areas such as in social network analysis have data matrices where both rows

and columns represent the same set of objects (for example, actor-actor or organization-

organization), that is, they have the samemode. In the case of such one-mode data, we would
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like to find a single clustering for both rows and columns. For instance in pre-processing for

recommender systems, product matching, or general supervised learning, we need a single

value for each item. One-mode data may be symmetric, for example, actor-actor relational

data where each entry encodes the “coworker” relation. Existing co-clustering methods

usually find a single clustering for both rows and columns due to data symmetry. However,

other one-mode data are asymmetric, for example, economic country-country data where

each entry in the matrix encodes the “exports to” relation or network data representing an

asymmetric relationship like “works for.”

In sociology and economics, such data have been studied in depth in search of

answers to socio-economic questions Smith and White (1992); Moore et al. (2006); Mahutga

and Smith (2011). In particular, sociologists and economists often classify countries as

members of the core, semi-periphery, or periphery Wallerstein (1972). Thus, given the

country-country trade data with the “exports-to” relation, we are interested in identifying

each country with one label.

One possible solution is to temporarily make the data matrix symmetric, and then

perform two-mode co-clustering on the symmetric matrix. However, this is not guaranteed

to yield a clustering that faithfully reflects the data. For example, consider the synthetic

two-dimensional one-mode asymmetric binary data in Figure 3.1.

Our one-mode co-clustering method produces a single clustering for both rows

and columns (Figure 3.1 (b)). The two-mode co-clustering method prefers a solution where

the row and column clusterings are different (Figure 3.1 (c)). The two-mode method on

the symmetrized data finds a co-clustering that, although symmetric, is not the best as it
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Figure 3.1: Comparison between one- and two-mode co-clustering on one-mode asymmetric
data: (a) original data: the 1s represent 30-by-30 sub-matrices of all 1s, (b) our one-mode
method result, (c) two-mode method result, (d) two-mode method on symmetrized data
result.

groups together the first two thirds of the objects (Figure 3.1 (d)) when in fact they are

different in the original data. In making the data symmetric, we have lost information.

Thus, we pursue a method that acts on the asymmetric data directly to produce a

symmetric co-clustering. Symmetry here refers to the clustering of the rows and columns,

and not to the data. Thus, while row cluster x and column cluster x must contain the same

objects, the relationship between elements of row cluster k and column cluster l need not

be the same as between row cluster l and column cluster k.

In this chapter, we present a method for finding a symmetric co-clustering of asym-

metric one-mode data. We pose the symmetric one-mode co-clustering problem as the dual

of a constrained co-clustering optimization problem and demonstrate how standard, exist-

ing two-mode co-clustering algorithms can be easily reworked to be one-mode co-clustering

algorithms.

We first apply our method to a co-authorship data set, which directly corroborates

the hypothetical example in Figure 3.1. Second, we demonstrate results on world trade data

and show we can identify countries’ economic positions.
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3.1 Related Work

Blockmodeling, the dominant technique in social network analysis Doreian et al.

(2004b), uses the “relocation” algorithm, which is a hill-climbing local search; each unit

is individually tried in every possible cluster. This method has been used for solving the

symmetric co-clustering of one-mode data. However, it is impractical as it needs hundreds

of restarts before a reasonable solution is obtained (Doreian et al., 2004b). Other methods

of blockmodeling that have been tried, such as those by Brusco and Steinley (2009), are

used, rather, in confirmatory analysis of a priori hypothesized co-clusterings.

Probabilistic blockmodels for one-mode data have also been studied. Fienberg and

Wasserman (1981) and Holland et al. (1983) developed pair-dependent stochastic blockmod-

els for directed graphs. Wasserman and Anderson (1987) and Anderson et al. (1992) built

on the p1 model Holland and Leinhardt (1981) by fitting a separate model to each entity

and then grouping the resulting parameters. These algorithms are heuristic. Nowicki and

Snijders (2001) proposed a mixture model generalization with Gibbs sampling for Bayesian

posterior estimation. It is a probabilistic generalization of the relocation algorithm (sam-

pling, instead of moving, one entity’s group at a time). It suffers from similar problems and

is not as efficient as the block-optimization methods from co-clustering.

The co-clustering literature has many efficient optimization methods based on

block-optimization. However, to this point they operate only on two-mode data. The

blockmodeling literature has one-mode and two-mode methods. However, to this point

they use the computationally impractical relocation method of moving only one object at

a time, and do not automatically find the number of clusters. This paper works with any
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underlying optimization method and produces a one-mode version of it. The results we

present automatically determine the number of clusters.

3.2 Problem Formulation

To force a one-mode solution (a symmetric co-clustering), we let K = L and recast

our problem as

minimize
φ,ψ

F (φ,ψ)

subject to 1k{ψ(i)} − 1k{φ(i)} = 0, ∀i, k (3.1)

where F (φ,ψ) is the original co-clustering criterion to optimize and the indicator function

1x{y} is equal to 1 if y = x, zero otherwise. Equation 3.1 is the primal problem.

The corresponding Lagrangian is

L(φ,ψ, µ) = F (φ,ψ) +
∑

i

µψ(i),i −
∑

i

µφ(i),i , (3.2)

where µ ∈ R
K×M . The resulting dual is

maximize
µ

q(µ)

where q(µ) = min
φ,ψ

L(φ,ψ, µ) . (3.3)

3.3 Algorithm

We solve the dual optimization problem of Equation 3.3 by subgradient ascent

using the update

µt+1 = µt + γtg(µ) . (3.4)
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where γt is the step size at time step t, and subgradient

g(µ) = ∇µ|φ=φµ,ψ=ψµ
L(φ,ψ, µ) . (3.5)

For a given µ, let gki be the ki-th element:

gki =
∂L(φ,ψ, µ)

∂µki

∣
∣
∣
∣
φ=φµ,ψ=ψµ

= 1k{ψµ(i)} − 1k{φµ(i)} . (3.6)

φµ and ψµ denote the optimal co-clustering with respect to the Lagrangian multipliers, µ:

(φµ, ψµ) = argmin
φ,ψ

L(φ,ψ, µ) . (3.7)

This optimization can be performed by a slightly modified version of the orig-

inal unconstrained “base” co-clustering algorithm. As mentioned in Section 1.1.2, these

algorithms all perform alternating optimizations, switching among z, φ, and ψ. The op-

timization over z is unchanged: The Lagrangian L (Equation 3.2) is the same as F with

respect to optimization over z (z only appears inside of F—Equation 1.2—which we have

not changed). Therefore, this step can be performed by the base co-clustering algorithm.

The update of φ or ψ can be performed again independently for each row or column

as the Lagrangian also breaks down into the sum of terms, each involving only one row or

column. Therefore the unconstrained updates of Equation 1.3 become

φµ(i) = argmin
k

∑

j

f(X, z, i, j, k, ψ(j)) − µk,i

ψµ(j) = argmin
l

∑

i

f(X, z, i, j, φ(i), l) + µl,j . (3.8)

So, the computation of φµ and ψµ can be performed by the base clustering algo-

rithm with the simple change of adding a penalty or reward to the row-cluster and column-

cluster assignments optimization. This addition does not change the overall algorithm.
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3.3.1 Step size

Assigning M units into K disjoint clusters is a combinatorial problem, and thus

we can do away with line search methods. We determine the step size γt in Equation 3.4 as

the smallest necessary step size such that µt+1 will cause the base co-clustering algorithm

to move one unit to another cluster during its next row or column optimization.

For simplicity, let

cψ,i,k =
∑

j

f(X, z, i, j, k, ψ(j)) − µk,i

and

cφ,j,l =
∑

i

f(X, z, i, j, φ(i), l) + µl,j,

be the targets of optimization in Equation 3.8. We determine γ as the smallest amount by

which we can scale g and have an assignment in Equation 3.8 change value:

min

(

min
i,k 6=φ(i)

cψ,i,k−cψ,i,φ(i)
gk,i−gφ(i),i

, min
j,l 6=ψ(j)

cφ,j,l−cφ,j,ψ(j)
gψ(j),j−gl,j

)

.

3.3.2 Optimization

The algorithm proceeds by alternating between two steps: (1) optimizing φµt , ψµt

(Equation 3.7) using the base co-clustering algorithm for the current µt, and (2) updating

µt to µt+1 (Equation 3.4). This algorithm is shown in Figure 3.2.

No algorithm is known to exist that guarantees the global minimum to the co-

clustering problem (Lagrangian in Equation 3.7) in polynomial time (Anagnostopoulos

et al., 2008). Thus, that the base co-clustering algorithm does not guarantee a global

minimum is problematic in the subgradient ascent method and is handled by the algorithm
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Input: X,K, φinit, φinit

Output: (φt, ψt)
1 begin
2 Set iteration index t = 0, and µ0 = 0
3 (φ0, ψ0)← Co-clustering(φinit, ψinit, µ0) // Figure 1.1

4 repeat
5 µt+1 ← µt + γtg(µt)
6 (φt+1, ψt+1)← Co-clustering(φt, ψt, µt+1) // Figure 1.1

7 if L(φt+1, ψt+1, µt+1) ≤ L(φt, ψt, µt) then
8 if L(φt+1, ψt+1, µt) < L(φt, ψt, µt) then
9 µt+1 ← µt

10 else
11 return (φt, ψt)

12 t← t+ 1

13 until no increase in L(φt, ψt, µt)

Figure 3.2: Symmetric algorithm.

in Figure 3.2 as follows. If the dual function does not increase (Line 7 of Algorithm 3.2),

the algorithm checks to see if the newly found co-clustering is better (smaller) than the

previous iteration’s (Line 8). If so, the algorithm replaces the previous solution with the

new one and continues by setting the Lagrange multipliers to the previous ones (Line 9).

The optimization over (φ,ψ) is performed by the base co-clustering algorithm,

using the updates in Equation 3.8.

3.4 Experimentation

To test our framework, we need a base co-clustering algorithm. Several possible

methods are described in Section 1.1.2. We chose the method of Chakrabarti et al. (2004)

as our base co-clustering algorithm for its ability to automatically determine the number of
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clusters. We modified their method slightly as described below.

3.4.1 A Criterion Function F (φ, ψ)

Chakrabarti et al. (2004) (see Section 1.1.2) define F to be the description length

of a co-clustered binary data matrix, applying the minimum description length (MDL)

principle (Rissanen, 1978). They first encode the clustering of M units into K clusters

by encoding the row permutations plus the number of row clusters and the size of each

row cluster; similarly, they encode the column clustering. As we have only one-mode, we

modified this toM lgK bits, that is, for each of theM units, we encode the cluster to which

it is assigned in lgK bits. Then they transmit the block descriptions as their frequencies

encoded as the number of ones in each block. Letting nkl be the number of elements in the

joint cluster (block) X(φ−1(k), ψ−1(l)), the model length becomes

M lgK +
∑

k,l

lg(nkl + 1) .

Inside the sum, a 1 is added to nkl to account for blocks with no 1s (null blocks). Other

information needed in an actual transmission of the data, such as the size of the matrix, is

constant across co-clusterings and hence does not factor into the optimization.

Finally, the data are sent using the optimal Hoffman code (Huffman, 1952), given

the block frequencies. That is, if zkl is the frequency of ones in joint clusterX(φ−1(k), ψ−1(l)),

each element in this block is encoded using − lg zkl bits if it is a one and − lg(1− zkl) bits

if it is a zero. This results in the total cost of
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F (φ,ψ) = min
z∈{0,1}K×M

M lg(K) +
∑

kl

lg(nkl + 1)

−
∑

ij

(
xij lg zφ(i)ψ(j) + (1− xij) lg(1− zφ(i)ψ(j))

)
,

alluded to in Section 1.1.2.

3.4.2 Implementation

We adapted the method in Chakrabarti et al. (2004) to work with our frame-

work by making two simple modifications. The first change adds the symmetry penalties

(Equation 3.8) to the row and column optimization functions, respectively.

The other change involves the search over the number of clusters K. In their

work, starting from K,L = 1 they try to increment K and L in alternating steps. They

first split the row cluster k with the highest per-row cost to construct the initial co-clustering

(φK+1
0 , ψL) on which to run their alternating optimization algorithm, and then increment

the columns in a similar fashion. Since our goal is to have a single clustering for both rows

and columns, we maintain L = K. We allow the row and column clusterings to be split

independently, but run the symmetric co-clustering algorithm on the jointly incremented

co-clustering (φK+1
0 , ψK+1

0 ).

Finally, it is possible that our algorithm will get stuck in a local optimum that

does not satisfy the symmetry constraint, in which case it is re-started from an initial

random co-clustering. These restarts occurred in roughly 10% of our experimental runs.

The algorithm to search over K is shown in Figure 3.3.
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Algorithm: KSearch

Input: X
Output: (φK , ψK)

1 begin
2 Set K = 1 and compute L(φ1, ψ1) by Equation 3.2
3 repeat
4 Increment K = K + 1 by splitting most costly cluster
5 (φK , ψK)← Symmetric(φK0 , ψ

K
0 )

6 if φK 6= ψK then
7 Repeat Symmetric with (φKrandom, ψ

K
random)

8 until no decrease in L(φK , ψK)

Figure 3.3: KSearch algorithm.

3.4.3 Datasets

For our experiments, we used two asymmetric one-mode data sets. The first

is a co-authorship data set that encodes author and co-author relation, obtained from

Arnetminer.org (Tang et al., 2009). A 1 in the matrix indicates the row author is the first

author of a paper co-authored by the column author. The data set consists of 224 authors,

each labeled with one of three topics indicating the author’s main area of publication: Data

Mining, Bayesian Networks, and Machine Learning. These labels are not supplied to the

algorithm.

The second data set is world import and export data compiled by the National

Bureau of Economic Research (Feenstra et al., 2005). It consists of traded amounts between

203 countries for various commodities, grouped by Standard International Trade Classifica-

tion (SITC) code (Dep, 2006), spanning the years 1962–2000. From this, we extracted three

data sets covering the years 1990–1999: (1) SITC 0011 (live bovine animals), (2) SITC code

78 (road vehicles), and (3) SITC code 6672 (diamonds). We aggregated the traded amounts
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across years and binarized the data by converting non-zero entries into ones to obtain three

203 × 203 binary data matrices, one for each commodity. A matrix element xij is 1 if and

only if country i exported to country j during 1990–1999.

3.4.4 Method

We compare our one-mode method to three other methods: (1) applying two-mode

clustering on the asymmetric data, (2) the two-step process of first symmetrizing the data

and then applying the two-mode method and (3) the two-step process of using the two-mode

method, then transforming the result to be symmetric by defining clusters in terms of the

row-column assignment pairs given by the algorithm. That is, all objects assigned to row

cluster a and column cluster b were placed in a new cluster labeled a-b. We call (2) and

(3) “pre-process one-mode” and “post-process one-mode”, respectively. The post-process

method clusters an object with all other objects that share the same row- and column-

clusterings from the two-mode method. Method (1), two-mode clustering, is the only one

that produces two identities for each object.

Within the co-authorship data set the quality of a co-clustering can be measured

by the homogeneity of the clusters with respect to the topics. The quality of the clustering

results on world economic trade data can be based on effective discovery of known trade

relationships and country categorizations.

3.4.5 Results

We ran each of the four methods on the two real-world data sets.
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Our One-mode Two-mode Pre-process Post-process

Cluster 0 (12) 1st Clstr 0 (19) Cluster 0 (20) Cluster 0 (1)
0% Dat.Mng. 0% Dat.Mng. 0% Dat.Mng. 0% Dat.Mng.
100% Bayes Net 100% Bayes Net 100% Bayes Net 100% Bayes Net
0% Mach.Lrn. 0% Mach.Lrn. 0% Mach.Lrn. 0% Mach.Lrn.

Cluster 1 (8) 1st Clstr 1 (107)Cluster 1 (75) Cluster 1 (15)
0% Dat.Mng. 40% Dat.Mng. 23% Dat.Mng. 0% Dat.Mng.
100% Bayes Net 5% Bayes Net 0% Bayes Net 100% Bayes Net
0% Mach.Lrn. 55% Mach.Lrn. 77% Mach.Lrn. 0% Mach.Lrn.

Cluster 2 (52) 1st Clstr 2 (98) Cluster 2 (129)Cluster 2 (1)
0% Dat.Mng. 33% Dat.Mng. 45% Dat.Mng. 0% Dat.Mng.
0% Bayes Net 10% Bayes Net 11% Bayes Net 100% Bayes Net
100% Mach.Lrn. 57% Mach.Lrn. 44% Mach.Lrn. 0% Mach.Lrn.

Cluster 3 (58) 2nd Clstr 0 (17) Cluster 6 (30) Cluster 3 (4)
0% Dat.Mng. 0% Dat.Mng. 27% Dat.Mng. 0% Dat.Mng.
2% Bayes Net 100% Bayes Net 3% Bayes Net 100% Bayes Net
98% Mach.Lrn. 0% Mach.Lrn. 70% Mach.Lrn. 0% Mach.Lrn.

Cluster 4 (94) 2nd Clstr 1 (33) Cluster 7 (41) Cluster 4 (21)
80% Dat.Mng. 42% Dat.Mng. 27% Dat.Mng. 48% Dat.Mng.
14% Bayes Net 0% Bayes Net 5% Bayes Net 0% Bayes Net
6% Mach.Lrn. 58% Mach.Lrn. 68% Mach.Lrn. 52% Mach.Lrn.

2nd Clstr 3 (103) 2nd Clstr 2 (71) Cluster 8 (55) Cluster 5 (12)
41% Dat.Mng. 27% Data Mng. 46% Dat.Mng. 33% Dat.Mng.
13% Bayes Net 4% Bayes Net 5% Bayes Net 0% Bayes Net
46% Mach.Lrn. 69% Mach.Lrn. 49% Mach.Lrn. 67% Mach.Lrn.

Figure 3.4: Co-authorship data set clustering summary. Values in parentheses indicate
cluster size. Post-process cluster 9 is omitted; it is similar to cluster 8.
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Our One-mode Two-mode Pre-process Post-process
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Figure 3.5: Co-authorship results among 224 authors publishing in three different topics.
Black indicates an author from the row is a first author in a paper with the author in the
column. White lines denote cluster splits.

Co-authorship Dataset. Figure 3.4 measures the homogeneity of each cluster. A

graphical representation of the results is displayed in Figure 3.5. For each clustering, we

have placed the rows and columns into a “canonical” form: Clusters are ordered by their

densities. Individual rows and columns are similarly sorted within clusters.

As expected, the methods produced symmetric and asymmetric clusterings accord-

ing to their objective functions. The one-mode method produced a symmetric co-clustering

with equal clusterings for both rows and columns. The two-mode method on the asymmet-

ric data produced unequal clusterings. Both the pre- and post-process methods produced

equal clusterings for the rows and columns. Out of the four methods, the proposed one-

mode co-clustering better separated the authors by their topics. Almost four out of five

clusters were perfectly homogeneous with only the fifth cluster having a mixture. This

simply reflects information in the data encoding collaboration among authors from closely

related topics. However, note that all authors labeled with Data Mining were placed in this

last cluster. Thus, we can say that clusters 0 and 1 represent Bayes Nets, clusters 2 and 3,

Machine Learning, and cluster 4, Data Mining.
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The other methods did not fare as well. The two-mode co-clustering on the asym-

metric data has all but the smallest cluster mixed. The pre-process method produced three

clusters of which only the smallest one was homogeneous. The post-process method suffers

cluster count explosion resulting in split and mixed clusters.

Our One-modeTwo-mode Pre-process Post-process

Cluster 0 Exp.Cluster 0 Exp.Cluster 0 Cluster 0
Denmark Australia Austria Germany
Germany Canada Denmark Netherlands
Netherlands Denmark FmGermanFR

Fm German FRGermany Cluster 1
Cluster 1 Germany Hungary Poland
Australia Netherlands Italy
Canada USA Netherlands Cluster 2
New Zealand Poland Italy
USA Exp.Cluster 1 Spain Spain

Austria Turkey
Cluster 2 Belgium-Lux Cluster 3
Austria Bulgaria Imp.Cluster 1Australia
Belgium-Lux Czechoslovak Belgium-Lux Denmark
Bulgaria Czech Rep BosniaHerzg USA
Czechoslovak FmGermanFR Bulgaria
Czech Rep Hungary Czechoslovak Cluster 4
FmGermanFR Ireland Czech Rep FmGermanFR
Hungary Italy Egypt
Ireland Poland Greece Cluster 5
+7 more +5 more +12 more Turkey

Figure 3.6: High-activity clusters for live bovine animals.

World Trade Datasets. The countries in the high-activity clusters are shown in Fig-

ures 3.6, 3.7, and 3.8, sorted alphabetically. The results of these clustering methods are

shown in Figure 3.9. The graphs are sorted in the same manner as the co-authorship graphs.

Our one-mode method resulted in only slightly higher cluster counts when com-

pared to the two-mode result, indicating that the underlying country import and export
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Our One-modeTwo-mode Pre-process Post-process

Cluster 0 Exp.Cluster 0 Exp.Cluster 0 Cluster 0
Belgium-Lux Belgium-Lux Belgium-Lux Italy
China China China
Germany Germany Germany Cluster 1
Italy India India Germany
Japan Italy Italy Netherlands
Korea Rep. Japan Japan UK
Netherlands Korea Rep. Korea Rep.
Spain Netherlands Netherlands Cluster 2
Sweden Spain Spain Belgium-Lux
UK Sweden Sweden China
USA UK UK Japan

USA USA Korea Rep.
Cluster 1 Spain
Brazil Imp.Cluster 0 Imp.Cluster 1 Sweden
Canada Italy Austria USA
FmGermanFR Brazil
India Imp.Cluster 1Canada Cluster 3
Thailand Germany Czech Rep India

Netherlands Denmark
UK +9 more

Figure 3.7: High-activity clusters for road vehicles.

identities are significantly correlated. Across the world trade data sets our method produced

well grouped clusters that easily correlate to real world reasoning.

Geographical affinity is a trade trait that transcends trade commodity as seen in

our various data sets. Our method produced clusters representing regionalized partners.

In the live bovine data set our algorithm produced clusters corresponding to European

countries (0 and 2) and major Pacific Rim countries (1) as seen in Figure 3.6. The other

methods did not fair so well. The two-mode result shows some regional ties, such as export

and import cluster 1 having differing European countries. Beyond these, the other clusters

are less easily mapped to a region. The same is seen in the pre-process method. In the
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Our One-modeTwo-mode Pre-process Post-process

Cluster 0 Exp.Cluster 0 Exp.Cluster 0Cluster 0
Belgium-Lux Belgium-Lux Belgium-Lux Belgium-Lux

India
Cluster 1 Imp.Cluster 0 Switz.Liecht Cluster 1
Germany Belgium-Lux UK USA
India USA USA
Israel Thailand Cluster 2
Switz.Liecht Imp.Cluster 1 Switz.Liecht
Thailand Switz.Liecht Thailand
UK Thailand UK
USA UK

Figure 3.8: High-activity clusters for diamonds.

post-process method an explosion of clusters divides up many of the discernible geographic

regions across many clusters making them difficult to interpret.

Commodity distribution and consumption as well as trade dominance can be iden-

tified by clustering, as seen in the road vehicle and diamond data sets. Within the auto

industry several countries dominate trade. Maxton and Wormald (2004) identify Germany,

Japan and USA as the “core” of the industry. Additionally, South Korea (Korea Republic),

Spain, and UK have been established as transplant countries (Biggart and Guillen, 1999;

Maxton and Wormald, 2004). In Figure 3.7 our method establishes cluster 0 containing

the core as well as other countries with large auto production facilities. Additionally, our

method clustered countries of similar consumption. The two-mode and pre-process methods

clustered the core but the countries outside the core are less easily mapped to an identity.

The post-process method has a significantly higher cluster count, splitting the core across

several clusters. Similar trade dominance is seen in the diamonds data set. Spar (2006)

and Gupta et al. (2010) describe the economic impact of De Beers as a cartel within the
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Our One-mode Two-mode Pre-process Post-process
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Figure 3.9: World trade results among 203 countries. Three data sets are shown, each
covering the 1990s decade. Black indicates an export from the row to the column. White
lines denote cluster splits.

diamond industry; De Beers is a registered company in Luxembourg. In Figure 3.8, our

method, as well as the two-mode and post-process methods, create a one-country cluster

displaying this dominance. The pre-process method fails at this. Our method also creates

cluster 1 for countries of similar trade habit. The other methods split the countries into

many clusters that are not easily identified as a unit.

A major pitfall of the pre-process method is the loss of information. For example,

consider the clustering of the road vehicle and diamond data sets. In each, peripheral coun-

tries are added to the core cluster skewing its identity. India is added to the core production
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countries found in cluster 0 of our method for road vehicles. Several significant importers

are added to the cartel cluster that contains Belgium-Luxembourg in the diamonds data

set. Our method does not fall victim to this because data asymmetry is considered while

clustering.

Results on the relocation algorithm were not obtained due to it taking too long

(too many restarts) on these problems.

Experimental Conclusions. Well-grouped single identities were only discovered when

we impose the symmetric clustering constraint; two-mode co-clustering does not naturally

produce a single identity on asymmetric data. The pre-process method produced results

after making the data symmetric, resulting in mixed clusters as the data asymmetry is

not considered while clustering. The post-process method continually fell victim to cluster

count explosion. All these hindrances created results that are difficult to interpret. Our

method created singular identities without succumbing to these pitfalls.
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Chapter 4

Clustering ICU Data using

Measurement Timings and Values

We apply co-clustering to automatically discover patient clusters with discernible

physiologic patterns and prognostic significance from physiologic data. How to transform

multi-dimensional temporal data, such as physiologic measurements from the intensive care

unit (ICU), to fixed-length feature vectors for clustering is not obvious. For this, we learn a

piecewise-constant conditional intensity model of the data, capturing measurement values

and timing dependencies, and extract Fisher-information features for each patient. We

demonstrate our method on a real pediatric intensive care unit (PICU) data set of over

10,000 patients, comparing it with other clustering methods. As an advantage, our method

can handle a mixture of data types (numeric, categorical and binary) so that in addition to

vital signs, we can use binary intervention and drug category data.
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4.1 Introduction

Human physiology is complex and until (or unless) all of its pathways are mapped,

the health care field remains a data driven one. Physicians place patients into one of a

set of predefined categories or diagnoses (clusters of patients with similar characteristics)

from which to extrapolate a prognosis. This paradigm is only as good as the defined

clusters. Humans cannot properly process all the information contained in these data, and

the categories that have been defined do not fit every patient. We seek an automated

method that will find, from physiologic data, patient clusters with discernible physiologic

patterns and prognostic significance.

Currently, intensive care units (ICUs) are the most instrumented areas in health

care. Regular and consistent monitoring and recording of vital signs, administered drugs

and interventions give a relatively data-rich picture of the patients’ physiologies. We expect

increased sensing and recording in other medical venues in the near future, but concentrate

on ICU data here to determine what will be possible more broadly in electronic health

records (EHRs).

In this work we address the following challenges posed by the task of clustering

ICU data. It is not obvious how to compare data points consisting on rich, temporal data.

Time window-discretization and averaging obscures temporal detail. The timings of the

measurements carry information of the state of the patient; critically ill patients require

more attention. By averaging the measurements in equal-sized time windows, the timing

variations are lost. Additionally, physiologic data are not “missing at random.” The absence

of a measurement is indicative of a patient’s state.
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To alleviate these problems, we build a generative model of the physiology and the

measurement process, thus bypassing the “missing at random” assumption: The timing of

measurements is part of the model. This model also allows the measurements to be highly

irregularly spaced.

Normally, the input to clustering algorithms is a matrix, where each row describes

a patient as a fixed-length feature vector. Conversion from multiple irregularly sampled

time series to such a vector is not obvious. We address this issue by extracting the implied

features of the Fisher kernel for each patient, with respect to the generative model.

We address the problem of automatically finding the number of clusters by defining

a compression-based cost function for real-valued data that applies the MDL principle.

We tested our method on a data set from the Pediatric Intensive Care Unit (PICU)

at Children’s Hospital Los Angeles, consisting of over 10,000 patient episodes collected over

ten years. The results show clusters with discernible physiologic patterns and prognostic

significance.

4.2 Related Work

Recent work has attempted to utilize the multi-dimensional, temporal data cap-

tured in EHRs to cluster patients. Marlin et al. (2012) use a mixture model with an

empirical prior distribution that encourages a degree of smoothness over time for each vari-

able’s measurements. This model depends on the discretization of time and the assumption

that data are “missing at random.” Lehman et al. (2008) use a Gaussian mixture model

on manually defined features meant to capture temporal information, such as gradients and
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trends. While showing success in classification tasks, this method relies on the manual

definition of features.

Doshi-Velez et al. (2014) apply hierarchical clustering to manually designed fea-

tures to investigate the patterns of co-occurrence of medical comorbidities in autism spec-

trum disorders. Paul and Hoque (2010) present a k-means method that can handle both

continuous and categorical data. Their method, however, relies on manually defined fea-

tures. Chignell et al. (2013) worked on clustering adult ICU patients using data from drugs,

labs, vitals, demographics, International Statistical Classification of Diseases and Related

Health Problems (ICD) codes and ICU stay tables. They also relied on manually designed

features.

Tamang and Parsons (2011) take a similar approach to ours on how to deal with

irregularly sampled, variable length temporal data by using a generative model as a way

of converting them to fixed-length feature vectors. They learn a separate 3-state (stable,

moderate, or unstable) hidden Markov model (HMM) for each patient and apply spectral

clustering on the resulting feature vectors formed from each HMM’s learned parameters:

the initial state probabilities, the transition probabilities and the emission probabilities.

The authors attempt this method on binary temporal data of glucose tests (whether a test

was ordered or not). Two drawbacks of using HMMs are: (1) the states must be known a

priori and (2) high-frequency data may be required to accurately learn the model.

James and Hastie (2001) present a reduced rank mixed effects model that was used

for classifying medical time-series data. Their method is an extension of linear discriminant

analysis (LDA) to non-linear data sets based on spline functions—functional linear discrim-
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inant analysis (FLDA). This method can be used on sparse data, however, it assumes the

data to be missing at random.

Other work has focused on the problem of unsupervised discovery of meaningful

patterns and features from data. Lin and Li (2009) convert continuous values to discrete

symbols and then build “bag-of-words” representations of each physiologic variable. While

this approach captures certain structure of physiological time series, it disregards tempo-

ral order information. Saria et al. (2010) propose a model, from which features can be

constructed to use in other tasks, that directly models the heterogeneous, temporal nature

of physiologic time series using a switching latent “topic” model similar to those used in

natural language precessing. However, this method relies on the availability of complete,

high-frequency time series data, which in most cases is not available: Normally, medical

data available in EHRs are uncertain and sparsely sampled (see Section 4.3).

There exists a large body of work on the related subject of analyzing high-frequency

time series data. See Esling and Agon (2012) for a survey. The methods developed in that

body of work require complete, high-frequency time series data and are inappropriate for

the irregularly sampled, sparse temporal data in EHRs.

Lastly, a large body of work exists on using snapshots of physiologic measurements,

such as heart rate and blood pressure, to characterize the severity of critical illness in the

pediatric critical care setting. They focused mostly on the creation of severity of illness

(SOI) scores, such as the Pediatric Risk of Mortality III (PRISM III) Pollack et al. (1996)

and others. These score were not designed for helping diagnose individual patients, but to

benchmark PICU performance.
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4.3 Electronic Health Records

EHR data are a collection of electronic health information about a population in

a per-patient format. In general, EHR data for each patient may include demographics,

medical history, physiologic data, and billing information. For the purpose of this work,

we are interested only in physiologic data pertinent to a patient’s stay (episode) in the

ICU. Specifically, we consider measurements of vital signs, laboratory test results, drugs

administered, and interventions performed on the patient while in the PICU.

These data pose several challenges for statistical analysis. First, they are incom-

plete. Not all patients have the same interventions performed or lab tests done. The data

produced depend on the needs of each individual patient. This constitutes a potential

source of non-random missing data. Measurements and other interventions are performed

at irregular intervals, depending on the patient’s need; again, providing another source of

missing data. These missing data between intervals are also not missing at random: The

timings of measurements and other interventions can be indicative of the patient’s state.

Disease progression are not aligned in the data. Very likely, patients arrive at the

PICU at different stages in their illnesses. This makes comparing patients based on their

illnesses non-trivial. For example, comparing “heart rate in hour 2” across patients might

not be meaningful. Finally, the data are subject to various forms of uncertainty, such as

errors produced during manual entry by care givers and intrinsic noise in measuring devices

and instrument malfunction.
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4.4 Method

Our method is a three step procedure. In the first step, we build a conjoint

piece-wise constant conditional intensity model (C-PCIM) of the time dependencies in the

temporal data (Parikh et al., 2012). By learning the measurement timings, we bypass the

“missing at random” assumption; the patient state information encoded in the measurement

timings is part of the model. Additionally, with this model there is no time discretization.

Converting irregularly-shaped time series data into fixed-length feature vectors for

clustering is handled in the second step. We apply a feature extraction mechanism based on

the Fisher information kernel (Jaakkola and Haussler, 1998). With a fixed-length feature

vector for each patient, a feature matrix is fed to a co-clustering algorithm, in step three,

that uses an MDL-based cost function to automatically determine the number of clusters.

4.4.1 C-PCIM

C-PCIMs (Parikh et al., 2012) are a class of marked point processes 1 where the

conditional intensity function is a piecewise constant function of time and history, taking one

of a finite number of values. For a given event sequence y = {(ti, li)}ni=1 with 0 < t1 < · · · <

tn, where ti ∈ [0,∞) is the time of the ith event of type li, drawn from a finite set of events

L, the history of y at time t is the subsequence h(t, y) = {(ti, li) | (ti, li) ∈ y, ti < t}. In

contrast to its predecessor, PCIM, a C-PCIM shares a single conditional intensity function,

λ(l, t, ht), among all event types l ∈ L. Examples of event types in our data set are “blood

pressure was measured” and “the patient was intubated.” As a single tree handles all event

1A marked point process (see Appendix B) is a point process that distinguishes between event types:
Each event is identified (or marked) as being of a specific type.
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types, the data in our experiments are first normalized (see Section 4.5).

For any event type l, time t and history ht, the model gives the instantaneous rate

at which it could occur, λ(l, t, h). The model is built as a decision tree, representing the

conditional intensity function, where each leaf represents a state with a resulting rate.

Given a tree with leaves Σ, the likelihood of an event sequence y is

p(y|S,Θ) =
∏

s∈Σ
λcs(y)s e−λsds(y)

where ds(y) and cs(y) are sufficient statistics of the data: ds(y) is the total duration spent

in state s and cs(y) is the number of times an event occurs in y when the state function

maps to leaf s.

The decision tree is built by greedily choosing the questions, from a given set by

the user, that maximize the Bayesian score. More details can be found in Parikh et al.

(2012).

Extended C-PCIM

In addition to the timings of the measurements, their values contain important

information about the patient’s state, for example, elevated blood pressure. We extend the

C-PCIM to capture value information available in EHRs. For each state s in the model

(leaf in the tree), we add a Gaussian distribution over the values that variables can take

while in that state. Including a product of Gaussian distributions to the original product

of exponential distributions gives the extended model’s likelihood function:

p(y|S,Θ) =
∏

s∈Σ
Λs λ

cs(y)
s e−λsds(y) , (4.1)
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# X measrmnts in last 12 hours >= 5

# X measrmnts in last 6 hours >= 5

T

# BP measrmnts in last 12 hours >= 5

F

mean X in [12,0) >= 0

T

λ = 12.400564

w0 = 0.006799

w1 = 0.854569

σ = 0.484329

F

λ = 27.421809

w0 = 0.130043

w1 = 0.712675

σ = 0.545327

T

λ = 27.225555

w0 = -0.148338

w1 = 0.706990

σ = 0.539246

F

λ = 1.973337

w0 = -0.000173

w1 = 0.785196

σ = 0.625429

T

λ = 5.681973

w0 = 0.001730

w1 = 0.737327

σ = 0.680000

F

Figure 4.1: Example extended C-PCIM decision tree. The inner nodes represent the various
tests selected by the learning algorithm. The parameters of the model are at the leaves.
The X is a placeholder for an event type.

where

Λs =

(
1

σs
√
2π

)cs(y)

e
− 1

2σ2
s
(us(y)+w2

1,su
′

s(y)−2w1,srs(y)−2w0,sms(y)+2w0,sw1,sm
′

s(y)+w
2
0,scs(y)) .

(4.2)

Λs is derived from a product of Gaussian 1
σ
√
2π
e

1
2σ2 (x−µ)2 distributions for the event values

in leaf s, where instead of comparing a value x to the empirical mean µ, we compare

it to a linear regression estimate, w0 + w1x
′, based on its previous value x′. The linear

regression parameters (w0, w1) capture trend information in the temporal data. us(y) =

∑

x⊳s x
2, u′s(y) =

∑

x′⊳s x
′2, rs(y) =

∑

x,x′⊳s xx
′, ms(y) =

∑

x⊳s x and m′
s(y) =

∑

x′⊳s x
′

are sufficient statistics, where x, x′ ⊳ s indicates that the event that produced the value x

occurred while in state s and x′ is the value of the event preceding it. The extended model’s

parameters are {λs, w0,s, w1,s, σ
2
s}s∈Σ.

Figure 4.1 shows an example extended C-PCIM decision tree for a very small
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subset of the EHR data set we use for experimentation. The tree consists of three tests

(inner nodes) and five leaves containing the model parameters: the rate plus the extended

parameters.

The X in the tree is a placeholder for an event type. This placeholder allows the

conjoint PCIM to share a single tree among all event types (Parikh et al., 2012): The tests

with an X can be applied to any event type. The model firsts asks if there has been at

least five occurrences of the event type in questions in the last 12 hours. If not, it checks if

the blood pressure has been measured at least five times in the same time period. In other

words, if there has not been much activity for this patient, has he had, at least, his blood

pressure measured?

On the other hand, if there has been activity for the patient for this type of

measurement in the last 12 hours, the model then refines the check to more recent activity

(within the last six hours). If there has been recent activity, the model deems this as

significant and checks for the actual values of measurements in the mean test at the bottom

left inner node.

4.4.2 Feature extraction based on the Fisher kernel

To extract features, we use the Fisher kernel proposed by Jaakkola and Haussler

(1998):

K(yi, yj) = U⊤
yi
I−1Uyj ,

where I is the Fisher information matrix and Uy = ∇Θ ln p(y|Θ) is the Fisher score. Given a

parameterized probabilistic model p(yi|Θ), where Θ is set to Θ̂ = argmax
Θ

∑N
i=1 ln p(yi|Θ),
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this corresponds to the feature mapping

φ(yi) = ∇Θ ln p(yi|Θ) I−
1
2 .

We compute the Fisher information matrix as Ii,j = −EΘ

[
∂2

∂θi∂θj
ln p(y|Θ)

]

.

Each feature vector for each patient encodes how the model parameters should be

“stretched” to better fit that patient. Patients for which the parameters must be changed

in similar ways are similar in the context of the probabilistic model.

Given the log likelihood for the extended C-PCIM,

l(y; Θ) = ln p(y|S,Θ) =
∑

s∈Σ
ln Λs +

∑

s∈Σ
cs(y) lnλs −

∑

s∈Σ
λsds(y),

obtained from Equation 4.1, the features for patient i are

φ(yi) =

[
∂l(yi; Θ)

∂λ1
,
∂l(yi; Θ)

∂w0,1
,
∂l(yi; Θ)

∂w1,1
,
∂l(yi; Θ)

∂σ21
,

. . . ,
∂l(yi; Θ)

∂λ|Σ|
,
∂l(yi; Θ)

∂w0,|Σ|
,
∂l(yi; Θ)

∂w1,|Σ|
,
∂l(yi; Θ)

∂σ2|Σ|

]

I−
1
2 ,

where

∂l

∂λs
=
cs(y)

λs
− ds(y)a

∂l

∂w0,s
= −2ms(y) + 2w1,sm

′
s(y) + 2cs(y)w0,s

∂l

∂w1,s
= 2w1,su

′
s(y)− 2rs(y) + 2w0,sm

′
s(y)

∂l

∂λ2s
= −cs(y)

2σ2
+
A

σ4
,

and where A = (us(y) +w2
1,su

′
s(y)− 2w1,srs(y)− 2w0,sms(y) + 2w0,sw1,sm

′
s(y) +w2

0,scs(y)).
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4.4.3 Co-clustering

We apply the co-clustering algorithm presented in Figure 1.1 to the feature matrix

X formed from the Fisher information features. The algorithm is guided by a compression-

based cost function that applies the MDL principle to automatically determine the number

of clusters. The feature matrix X is real-valued, so we employ Shannon’s differential entropy

in our cost function.

MDL-based cost function

Our two-part MDL cost function is shown in Equation 4.3. The description length

of the model is computed as the number of bits required to encode the assignments of

M rows to K row clusters and N columns to L column clusters plus the number of bits

to encode the description of each block. The data description length is the number of

bits required to encode the data within each block, computed as the Shannon’s differential

entropy for real-valued data. The encoding cost for a particular co-clustering (φ,ψ) is

FN (φ,ψ) =

model description length
︷ ︸︸ ︷

M lnK +N lnL+KL
c

2
ln

1

ρ

+
KL∑

b

nb
1

2
ln(2πe(σ̂2b + ρ))

︸ ︷︷ ︸

data description length

. (4.3)

A natural way of maximizing the compression rate is by having homogeneous

blocks. We thus model each block as a Gaussian distribution. We approximate the number

of bits required to encode each block’s Gaussian parameters (µ, σ) by c
2 ln

1
ρ
, where ln 1

ρ
is

the number of bits, to a certain precision ρ, used to encode each parameter according to
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Input: X
Output: (φ∗, ψ∗)

1 begin
2 [K,L]← [lgM, lgN ]
3 (φ,ψ)← randomizeφ,ψ(K,L)
4 (φ,ψ)← optimizeφ,ψ(φ,ψ) // base co-clustering, Figure 1.1

5 repeat
6 repeat
7 increment
8 K ← K + 1 by splitting some row cluster
9 (φ,ψ)← optimizeφ,ψ(φ,ψ)

10 Repeat for L

11 until no more positive splits
12 repeat
13 decrement
14 K ← K − 1 by deleting some row cluster
15 (φ,ψ)← optimizeφ,ψ(φ,ψ)

16 Repeat for L

17 until no more positive deletions

18 until no more positive changes

Figure 4.2: KL Search algorithm.

some distribution encoded with c bits. The number of bits used to encode each matrix

block element is computed as the Gaussian differential entropy with respect to the block’s

approximated variance σ̂2b up to precision ρ.

Optimization

Each row or column is placed in the row cluster or column cluster for which its

probability is maximized with respect to the row cluster or column cluster descriptions.

The function f is thus

f(X,Z, i, j, k, l) = p(xij|zkl) =
1

√

2πσ̂2kl

e
− (xij−µ̂kl)

2

2σ̂2
kl
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where elements of Z are of the form

zkl = (µ̂kl, σ̂kl) .

where (µ̂, σ̂) are the maximum likelihood estimators.

To find the number of clusters, we employ a hill-climbing search algorithm. It

starts from a randomly computed initial co-clustering and alternates between adding and

removing clusters until a local optimum is reached. (See Figure 4.2.)

4.5 Experiments

We experimented on real EHR data and compared our method to several others

on two measures: (1) how well are the clusters enriched with respect to mortality and (2)

how well the clusters identify physiologic patterns.

4.5.1 Data set

The data set we use was collected from the PICU EHR archive at Children’s

Hospital Los Angeles. It contains over 10,000 patient episodes collected over 10 years

and includes essentially all PICU episodes that could be reliably extracted and verified.

The data set includes demographics, outcomes and other encounter information, vitals,

laboratory test results, drugs administered, and interventions performed for each patient.

We excluded encounter information such as outcomes and diagnoses. In total, we considered

391 variables for each patient: demographics (1), encounter information (2), vitals (27), labs

(121), drugs (194), interventions (46), shown in Appendix C.
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As the C-PCIM model shares a single conditional intensity function over all vari-

ables, we normalized the values. Age dependent variables such as heart rate were normalized

for age by dividing by the age’s median value among healthy children of the same sex (ac-

cording to published tables). All the data were z-normalized. Data likely to be erroneous

were removed. Specifically, data falling outside of ±4 standard deviations from the mean

of each variable were removed. As patients from the ICU are very ill, some extreme values

may still be correct.

4.5.2 Procedure

Assessing the performance of any unsupervised learning procedure is difficult. Un-

supervised learning methods are used mainly in exploratory analysis, where the ground truth

is unknown. The goal of our research is to discover clusters with (1) discernible physiologic

patterns and (2) with prognostic significance. We thus compared our method (CC-PCIM)

to several others based on these two criteria. The other methods were selected on the basis

of their applicability to sparse temporal data: the spectral clustering method of Ng et al.

(2001) on the features generated by our method. We also tested the co-clustering algorithm

of our method and the spectral clustering algorithm on a time-window discretization of the

data. Finally, we tested our method on all the data (391 variables).

1. our method (CC-PCIM)

2. spectral clustering on our features (S-PCIM)

3. our co-clustering on time-discretized data (CC-PAA)

4. spectral clustering on time-discretized data (S-PAA)
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X = particular variable (blood pressure, heart rate, etc.)
X’s most recent value ≥ τ
X’s mean value (in some interval) ≥ τ
X’s variance (in some interval) ≥ τ
X’s number of events (in some interval) ≥ τ
T ∈ specific interval within the hour
X ∈ specific group (vitals, interventions, etc.)
X ∈ specific category (cardiac, neurological, etc.)

Figure 4.3: C-PCIM basis binary test functions. X is the variable currently being tested.
T is the current time. τ is one of several threshold values.

5. our method on all the data

The spectral clustering methods, S-PCIM and S-PAA, use the number of clusters found by

our co-clustering algorithms, CC-PCIM and CC-PAA, respectively.

We want the C-PCIM to learn how events (vitals measurements, interventions

performed, etc.) depend on the type, timing, and value of prior events. We supplied the C-

PCIM learning algorithm with time, value, and label-specific basis functions (tests) to build

the decision tree. Figure 4.3 shows these basis functions. These tests encode information

such as whether or not the event sequence y contains at least τ events of a specific type

with timestamps in a specified interval and whether the mean value or variance is at least

τ , over an interval. The test that directly tests the current time is intended to encode

the non-random missingness of data due to the measurement process: For example, in this

particular ICU, measurements for particular variables are recorded at the top of the hour

every hour.
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Figure 4.4: Cluster size and mortality enrichment. The number of clusters was automati-
cally determined by our method (CC-PCIM).
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Figure 4.5: Physiologic patterns: diagnosis distribution per cluster.
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Figure 4.6: Cluster size and mortality enrichment for time-window discretized data.

4.5.3 Results

For the comparison to the other methods, we excluded categorical and binary

data, such as labs, drugs, and some interventions. A total of 35 temporal variables were

used: 17 from vitals and 18 from interventions (see Appendix C). We also present results

from running our method on all 391 temporal variables. The experiments were done using

only the first 24 hours of data for each patients. There is utility in being able to predict a

patient’s outcome within a short time of being admitted to the ICU.

Figure 4.4 shows the mortality enrichment per cluster for the first two experi-

ments. In terms of mortality enrichment per cluster, our method (CC-PCIM) performed

significantly better than applying spectral clustering on our features. Figure 4.5 shows the
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physiologic patterns within clusters. These patterns are more difficult to determine as pa-

tients who die share similar conditions/symptoms as those who survive. The original 300

diagnoses were reduced to 5 categories more amenable to analysis. Our CC-PCIM method

found clusters with high mortality that tend to have more diagnoses related to cardiac

and fewer related to congenital conditions compared to clusters of lower mortality. This

distinction is not so clear in the clusters produced by the spectral clustering method.

Figure 4.6 shows the mortality enrichment for experiments 3 and 4 on time-window

discretized data. The performance is significantly worse than using our features. Figure 4.7

shows the results of our method on the entire data. The performance is similar to our

method on the subset of the data. Note, however, that the method found an interest-

ing cluster, 26, that is a high-mortality cluster where the rate of congenital conditions is

not lower, but higher, than the rate of cardiac conditions as has been seen in all other

high-mortality clusters in previous experiments. Another interesting cluster, 27, has no

congenital conditions at all, and the rate for cardiac conditions is much higher than any

other cluster. Finally, Figure 4.8 compares the performance of the various methods on the

basis of mortality prediction. It confirms the better performance of our method.
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Figure 4.7: Results from running our method on all 391 variables, including numeric, cat-
egorical and binary data. Top: cluster sizes, middle: mortality rate per cluster, bottom:
diagnosis distribution per cluster.
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Chapter 5

Conclusion

Clustering is the unsupervised learning task of discovering patterns in data by

finding groups of objects that are similar according to some predefined measure of similarity.

Using different similarity measures may find different groupings. For this and other reasons,

the task of clustering is inherently tied to the application problem and no universal clustering

exists for all applications.

Co-clustering can be viewed as a generalization of clustering to a wider set of

data. It operates on relational data as well as affinity data. Co-clustering clusters both

the rows and the columns of a two-dimensional data matrix by discovering the block struc-

ture in the matrix. By clustering the columns (features) during the process, objects are

no longer compared on a feature-by-feature basis, but on a summary of similar features.

This has the effect of performing a regularization, which may produce clusters that better

extract information in the data. Another advantage of co-clustering is that by producing

feature clusters as well as the object clusters, additional patterns may be discovered, such
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as correlated features.

In this dissertation we demonstrated the applicability of co-clustering to social

network data and medical data. Specifically, we developed co-clustering methods to address

three problems: (1) clustering relational data for regular equivalence in social network

applications, (2) finding a symmetric clustering for asymmetric data and (3) clustering ICU

patients based on their physiologic data.

In spite of its theoretical significance, sociologists have long been in need of a

mathematical model for regular equivalence and only relied on poorly performing ad-hoc

methods to analyze such relations in data. We provided such a model in the context

of compression theory. Our co-clustering method can automatically differentiate between

structural and regular clusters and can determines the number of clusters, which has been

a vexing problem in sociology.

In applications such as world trade data, we might be interested in associating each

country with a single label denoting its trading ties, yet these data encode a bi-directional

relation between countries and thus, co-clustering methods would produce two different

labels per country. We provided a framework where a co-clustering method can be made to

produce a single clustering.

For medical data applications, we presented a method for clustering multi-dimensional,

temporal physiologic data. The method was able to find clusters with discernible physiologic

patterns and with diagnostic significance. Our experiments showed that our co-clustering

method performed better than state-of-the-art clustering methods such as spectral cluster-

ing.
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In summary, the results from our experiments on the various data sets show that

co-clustering is a competitive algorithm for finding meaningful clusters in data. Indeed, co-

clustering performed better than spectral clustering—a powerful clustering algorithm—on

the feature data from the medical application.

Finally, as most other research, there is more that can be done. We can identify

two possible extensions of our research, both on social network data and medical data

applications. The cost function we provided for regular equivalence in social network data

deals with the standard definition of a regular block as one whose rows and columns have at

least one 1 (a 1-covered block). There have been additional types of regular blocks defined

in the literature (Doreian et al., 1994, 2005) for which new cost function definitions may be

needed.

In our co-clustering solution of medical data, we did not reap the full benefits

of co-clustering: We did not provide an analysis of the clusters of the features extracted

form the probabilistic model. Interpreting the extracted Fisher-information features from

the C-PCIM is not straight forward. If we could find interpretations for these features, a

more complete analysis could be done, which could potentially provide the distinctions in

patients from different clusters.
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Appendix A

Trade Data Clusters

Place clusters A and B and activity clusters A and B produced by both the

compression-based criterion and the error-based criterion of the New Mexico economic ac-

tivity data are given in the main paper. The other clusters are shown here in this appendix.

The other five place clusters by the compression-based criterion

C

Alamogordo Cedar Crest Gallup Los Alamos Rio Rancho Tijeras
Artesia Clayton Grants Los Lunas Ruidoso Truth Or
Aztec Corrales Kirtland Lovington Santa Rosa Tucumca
Belen Deming Kirtland Afb Placitas Santa Teresa Tularosa
Bernalillo Edgewood Lamy Portales Silver City
Bloomfield Espanola Las Vegas Ranchos De Socorro
Bosque Farms Flora Vista Lordsburg Raton Taos
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D

Algodones Cerrillos Holloman Afb Lemitar Nogal Sandia Park
Anthony Chaparral Jemez Springs Logan Peralta Santa Cruz
Arenas Valley Dexter La Luz Mesilla Pa Ruidoso Dow Sunland Park
Bayard Estancia La Plata Mesquite San Ysidro Vado

E

Amistad Des Moines Hagerman Mora Ramah Veguita
Animas El Prado Hernandez Moriarty Ribera Waterflow
Cannon Afb Elida Jemez Pueblo Mosquero Roy Weed
Canoncito Fence Lake La Mesa Mountainair Sapello
Cimarron Floyd Lincoln Pecos Shiprock
Cloudcroft Fort Sumner Magdalena Pinon Texico
Datil Glorieta Mayhill Questa Timberon

F

Alto Corona Guadalupita Mesilla Red River Taos Ski Val
Angel Fire Costilla High Rls Mtn Montezuma Rehoboth Tererro
Arrey Crownpoint Hillsboro Monument Reserve Tesuque
Arroyo Hon Cuba Holman Nageezi Rociada Thoreau
Arroyo Seco Cubero Hondo Nara Visa Rodeo Tierra Amar
Blanco Dixon Hope Navajo Dam Rogers Tohatchi
Bosque Dora Hurley Newcomb Rowe Tome
Broadview Dulce Isleta Ojo Caliente Sacramento Ute Park
Caballo Eagle Nest Jal Organ San Fidel Vadito
Canones El Rito Jamestown Paguate San Jon Vanderwagen
Carrizozo Embudo Jarales Pena Blanca San Jose Vaughn
Causey Eunice Laguna Penasco San Juan P Velarde
Cerro Fairview Lake Arthur Picacho San Patrici Villanueva
Chacon Faywood Lakewood Pinehill San Rafael Wagon Moun
Chamisal Folsom Loco Hills Polvadera Sanostee White Sands
Chimayo Fruitland Loving Ponderosa Sheep Spri Williamsburg
Church RockGarfield Luna Prewitt Solano Winston
Cleveland Gila Mc Intosh Pueblo Of Ac Springer Zuni
Cliff Grady Melrose Quemado Stanley
Cochiti Lake Grenville Mescalero Radium Spri Tajique
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G

Alameda Caprock Dona Ana La Jara Mogollon Sedan
Alcalde Carson Elephant Butte La Loma Navajo Sunspot
Anton ChCasa Blanca Encino Lindrith Newkirk Tatum
Aragon Chama Fairacres Los Ojos Ocate Tinnie
Bard Clines Corners Flying H Maljamar Pep Tres Piedras
Bell Ran Cochiti Pueblo Fort Wingate Maxwell Pie Town Vallecitos
Bent Columbus Gallina Mc Alister Pojoaque Va Valmora
Bingham Conchas Dam Gladstone Mc Donald Regina Watrous
BluewaterContinental Div Glenwood Mentmore San Antonio Willard
Buckhorn Cordova Hanover Milan San Miguel Yeso
Buena VisCoyote Hatch Milnesand Santo Domi
Capitan Cuervo House Mimbres Seboyeta
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The other five activity clusters by the compression-based criterion

C

Primary economic activities: (0%) 5182 Data Processing, Hosting, and Related
5222 Nondepository Credit Intermediation

Secondary economic activities: (7%) 5239 Other Financial Investment Activities
2372 Land Subdivision 5311 Lessors of Real Estate
2373 Highway, Street, and Bridge Const 5312 Offices of Real Estate Agents and Brok
2381 Foundation, Structure, and Building 5321 Automotive Equipment Rental

5323 General Rental Centers
Tertiary economic activities: (93%) 5411 Legal Services
3118 Bakeries and Tortilla Manufacturing 5412 Accounting, Tax Prep., Bookkeeping
3323 Architectural and Structural Metals 5413 Architectural, Engineering
3327 Mach. Shops; Turned Prod.; Screw 5415 Computer Systems Design and Related
4236 Electrical and Electronic Goods 5416 Management, Scientific, and Technical
4239 Miscellaneous Durable Goods 5614 Business Support Services
4247 Petroleum and Petroleum Products 5616 Investigation and Security Services
4411 Automobile Dealers 6116 Other Schools and Instruction
4412 Other Motor Vehicle Dealers 6211 Offices of Physicians
4413 Automotive Parts, Accessories 6212 Offices of Dentists
4431 Electronics and Appliance Stores 6213 Offices of Other Health Practitioners
4441 Building Material and Supplies 6214 Outpatient Care Centers
4442 Lawn and Garden Equipment 8114 Personal and Household Goods Repair
4461 Health and Personal Care Stores 8123 Drycleaning and Laundry Services
4471 Gasoline Stations 8133 Social Advocacy Organizations
4511 Sporting Goods, Hobby, and Music 8134 Civic and Social Organizations
4521 Department Stores 8139 Business, Professional, Labor, Political
4533 Used Merchandise Stores 9241 Administration of Environmental
5111 Newspaper, Periodical, Book
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D

Primary economic activities: (3%) 4531 Florists
1114 Greenhouse, Nursery, Floriculture 4541 Electronic Shopping and Mail-Order
1119 Other Crop Farming 4542 Vending Machine Operators
1121 Cattle Ranching and Farming 4543 Direct Selling Establishments
1151 Support Activities for Crop Product 4832 Inland Water Transportation
1153 Support Activities for Forestry 4841 General Freight Trucking

4851 Urban Transit Systems
Secondary economic activities: (5%) 4852 Interurban and Rural Bus Transp
2111 Oil and Gas Extraction 4853 Taxi and Limousine Service
2123 Nonmetallic Mineral Mining, Quar 4855 Charter Bus Industry
2131 Support Activities for Mining 4859 Other Transit and Ground Passen
2211 Electric Power Gen, Transmission 4861 Pipeline Transportation of Crude
2212 Natural Gas Distribution 4879 Scenic and Sightseeing Transp
2213 Water, Sewage and Other Systems 4881 Support Activities for Air Transp
2379 Other Heavy and Civil Engineering 4882 Support Activities for Rail Transp

4884 Support Activities for Road Transp
Tertiary economic activities: (92%) 4931 Warehousing and Storage
3111 Animal Food Manufacturing 5121 Motion Picture, Video Industr
3112 Grain and Oilseed Milling 5122 Sound Recording Industries
3114 Fruit and Vegetable Preserv, Spec 5151 Radio and Television Broadcasting
3115 Dairy Product Manufacturing 5152 Cable and Other Subscription Prog
3116 Animal Slaughtering and Processing 5171 Wired Telecommunications Carriers
3119 Other Food Manufacturing 5172 Wireless Telecomm. Carriers
3121 Beverage Manufacturing 5179 Other Telecommunications
3141 Textile Furnishings Mills 5191 Other Information Services
3149 Other Textile Product Mills 5223 Activities Related to Credit
3169 Other Leather and Allied Product 5231 Securities, Commodity Contracts
3212 Veneer, Plywood, Engineered Wood 5241 Insurance Carriers
3219 Other Wood Product Mfg 5242 Agencies, Brokerages, Insurance
3222 Converted Paper Product Mfg 5322 Consumer Goods Rental
3241 Petroleum and Coal Products Mfg 5324 Commercial Industrial Mach. Rent
3251 Basic Chemical Manufacturing 5414 Specialized Design Services
3253 Pesticide, Fert, Other Agric Chem 5417 Scientific Research and Develop
3256 Soap, Cleaning Compound, Toilet 5418 Advertising and Related Services
3259 Other Chemical Product, Prep Mfg 5511 Mgmt of Companies, Enterprises
3261 Plastics Product Manufacturing 5613 Employment Services
3271 Clay Product and Refractory Mfg 5615 Travel Arrangement and Reserv
3273 Cement and Concrete Prod Mfg 5619 Other Support Services
3279 Other Nonmetallic Mineral Prod Mfg 5621 Waste Collection
3315 Foundries 5622 Waste Treatment and Disposal
3328 Coating, Engraving, Heat Treating 5629 Remediation, Other Waste Mgmt
3329 Other Fabricated Metal Product Mfg 6113 Colleges, Universities, Prof Schools
3331 Agriculture, Construction, Mining 6114 Business Schools Computer Mgmt
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D (continued)

3333 Commerc Service Industr Mach Mfg 6115 Technical and Trade Schools
3334 Vent Heat Air Commerc Equp Mfg 6117 Educational Support Services
3335 Metalworking Machinery Mfg 6215 Medical and Diagnostic Labs
3336 Engine Turbine Power Equp Mfg 6216 Home Health Care Services
3339 General Purpose Machinery Mfg 6219 Ambulatory Health Care Services
3342 Communications Equipment Mfg 6221 General Medical and Surgical Hosp
3345 Electromedical Control Instru Mfg 6222 Psychiatric Subst Abuse Hosp
3351 Electric Lighting Equipment Mfg 6231 Nursing Care Facilities
3359 Electrical Equipment Comp Mfg 6233 Community Care Facilities for Elderly
3363 Motor Vehicle Parts Manufacturing 6239 Other Residential Care Facilities
3371 House Furnit Kitchen Cabinet Mfg 6242 Community Food Housing Relief
3391 Medical Equipment Supplies Mfg 6243 Vocational Rehabilitation Services
4231 Motor Vehicle Parts Supplies Whsle 7111 Performing Arts Companies
4232 Furniture Home Furnishing Whsle 7112 Spectator Sports
4233 Lumber Other Construc Mat Whsle 7113 Promoters of Perf. Arts, Sports
4234 Prof Commerc Equip Supplies Whsle 7115 Independent Artists, Writers
4235 Metal Mineral (no Petroleum) Whsle 7121 Museums Historical Sites Similar
4237 Hardware Plumb Heat Equip Whsle 7131 Amusement Parks and Arcades
4242 Drugs Druggists’ Sundries Whsle 7132 Gambling Industries
4243 Apparel, Piec Goods, Notions Whsle 7221 Full-Service Restaurants
4244 Grocery Related Prod Whsle 7223 Special Food Services
4245 Farm Prod Raw Material Whsle 7224 Drinking Places (Alcoholic Beverages)
4246 Chemical Allied Products Whsle 8112 Electronic Precision Equip Repair
4248 Beer Wine Alcoholic Bev Whsle 8113 Commerc Ind Mach Equip Repair
4251 Whsle Electronic Markets, Agents 8122 Death Care Services
4421 Furniture Stores 8129 Other Personal Services
4422 Home Furnishings Stores 9231 Administration of Human Resource
4453 Beer, Wine, and Liquor Stores 9251 Administ Hous Prog Urban Plan
4482 Shoe Stores 9261 Administ of Economic Program
4512 Book, Periodical, and Music Stores 9281 National Security International
4529 Other General Merchandise Stores
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E

Primary economic activities: (3%) 3326 Spring, Wire Product Mfg
1133 Logging 3341 Computer, Peripheral Equp Mfg

3344 Semiconductor, Electr Compnt Mfg
Secondary economic activities: (0%) 3353 Electrical Equipment Manufacturing

3362 Motor Vehicle Body, Trailer Mfg
Tertiary economic activities: (97%) 3372 Office Furniture (and Fixtures) Mfg
3113 Sugar and Confectionery Prod Mfg 3379 Furniture Related Product Mfg
3132 Fabric Mills 4241 Paper, Paper Product Whlse
3133 Textile Fabric Finishing Coating Mills 4811 Scheduled Air Transportation
3159 Apparel Accessories Mfg 4821 Rail Transportation
3161 Leather Hide Tanning Finishing 4872 Scenic, Sightseeing Transport, Water
3211 Sawmills Wood Preservation 4885 Freight Transportation Arrangement
3254 Pharmaceutical Medicine Mfg 4889 Support Activities for Transport
3255 Paint, Coating, Adhesive Mfg 4921 Couriers
3262 Rubber Product Manufacturing 5173 Telecommunications Resellers
3272 Glass, Glass Product Mfg 5251 Insurance, Employee Benefit Funds
3311 Iron Steel Mills and Ferroalloy Mfg 5611 Office Administrative Services
3312 Steel Prod Mfg from Purchased Steel 7213 Rooming and Boarding Houses
3322 Cutlery Handtool Mfg 8132 Grantmaking and Giving Services
3325 Hardware Manufacturing

F

Primary economic activities: (10%) 3151 Apparel Knitting Mills
1142 Hunting and Trapping 3152 Cut and Sew Apparel Manufacturing

3162 Footwear Manufacturing
Secondary economic activities: (0%) 3252 Resin Synth Rubber Fibers Mfg

4812 Nonscheduled Air Transportation
Tertiary economic activities: (90%) 5259 Other Investment Pools and Funds
3117 Seafood Prod Prep and Packaging 5612 Facilities Support Services
3122 Tobacco Manufacturing
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G

Primary economic activities: (11%) 3332 Industrial Machinery Manufacturing
1113 Fruit and Tree Nut Farming 3343 Audio and Video Equipment Mfg
1123 Poultry and Egg Production 3346 Mfg, Repr Magnetic, Optical Media
1141 Fishing 3352 Household Appliance Manufacturing

3361 Motor Vehicle Manufacturing
Secondary economic activities: (4%) 3364 Aerospace Product and Parts Mfg
2122 Metal Ore Mining 3366 Ship and Boat Building

3369 Other Transportation Equipment Mfg
Tertiary economic activities: (85%) 4854 School, Employee Bus Transportation
3131 Fiber, Yarn, and Thread Mills 4871 Scenic, Sightseeing Transport, Land
3221 Pulp, Paper, and Paperboard Mills 4883 Support Activities Water Transport
3274 Lime and Gypsum Product Mfg 5112 Software Publishers
3313 Aluminum Production and Prcssng 5181 Internet Service Prov, Web Search
3314 Nonferr Metal (no Alum) Prdctn 5331 Lessors Nonfinancial Intang Assets
3321 Forging and Stamping 6112 Junior Colleges
3324 Boiler, Tank, Shipping Container Mfg 6223 Special (no Psych, Sub Abuse) Hosp
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The other five place clusters by the error-based criterion

C

Alamogordo Belen Espanola Grants Los Lunas Silver City
Artesia Deming Gallup Las Vegas Ruidoso Taos

D

Aztec Cedar Crest Kirtland Portales Tijeras
Bernalillo Clayton Lordsburg Raton Truth Or Cnsqncs
Bloomfield Corrales Los Alamos Santa Rosa Tucumcari
Bosque Farms Edgewood Lovington Socorro Tularosa

E

Arenas VallyDexter Jemez Springs Mesilla Park Placitas Santa Teresa
Bayard El Prado Kirtland Afb Mora Ranchos De Sunland Park
Chaparral Flora Vista La Luz Peralta Sandia Park Texico

F

Angel Fire Des Moines Grady Lincoln Polvadera Springer
Arrey Dixon Grenville Los Ojos Quemado Thoreau
Blanco Dora Guadalupita Maxwell Ramah Tinnie
Bosque Dulce Hillsboro Mayhill Rociada Tohatchi
Buckhorn Eagle Nest Holman Melrose Rogers Ute Park
Cerro El Rito Hondo Monument Sacramento Vadito
Chama Elida Hope Mountainair San Fidel Vaughn
Chamisal Embudo Hurley Nageezi San Jose Veguita
Chimayo Fence Lake Isleta Nara Visa San Juan Pueb Wagon Mou
Church RockFloyd Jarales Navajo Dam San Patricio Waterflow
Cleveland Folsom La Plata Paguate San Rafael White Sands
Costilla Fruitland Laguna Pena Blanca San Ysidro Zuni
Cubero Garfield Lake Arthur Penasco Santa Cruz
Datil Glorieta Lemitar Pinon Shiprock
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G

Alameda Casa Blan Faywood Loving Pep Sedan
Alcalde Causey Flying H Luna Picacho Sheep Spr
Algodones Cerrillos Fort Sumner Magdalena Pie Town Solano
Alto Chacon Fort Wingate Maljamar Pinehill Stanley
Amistad Cimarron Gallina Mc Alister Pojoaque Val Sunspot
Animas Cliff Gila Mc Donald Ponderosa Tajique
Anthony Clines Cor Gladstone Mc Intosh Prewitt Taos Ski Val
Anton Chi Cloudcroft Glenwood Mentmore Pueblo Of Ac Tatum
Aragon Cochiti La Hagerman Mescalero Questa Tererro
Arroyo Ho Cochiti Pu Hanover Mesilla Radium Spr Tesuque
Arroyo SecColumbus Hatch Mesquite Red River Tierra Amaril
Bard Conchas D Hernandez Milan Regina Timberon
Bell RanchContinental High Rls Mtn Milnesand Rehoboth Tome
Bent Cordova Holloman Afb Mimbres Reserve Tres Piedras
Bingham Corona House Mogollon Ribera Vado
Bluewater Coyote Jal Montezuma Rodeo Vallecitos
Broadview Crownpoint Jamestown Moriarty Rowe Valmora
Buena Vis Cuba Jemez Pueblo Mosquero Roy Vanderwagen
Caballo Cuervo La Jara Navajo Ruidoso Do Velarde
Cannon A Dona Ana La Loma Newcomb San Antonio Villanueva
Canoncito Elephant Bu La Mesa Newkirk San Jon Watrous
Canones Encino Lakewood Nogal San Miguel Weed
Capitan Estancia Lamy Ocate Sanostee Willard
Caprock Eunice Lindrith Ojo Caliente Santo Dom Williamsburg
Carrizozo Fairacres Loco Hills Organ Sapello Winston
Carson Fairview Logan Pecos Seboyeta Yeso
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The other five activity clusters by the error-based criterion

C

Primary economic activities: (2%) 5222 Nondepository Credit Intermediat
1152 Support Activities for Animal Prod 5242 Agencies Brokerages Insurance Activ

5311 Lessors of Real Estate
Secondary economic activities: (5%) 5312 Offices of Real Estate Agents
2362 Nonresidential Building Construct 5313 Activities Related to Real Estate
2373 Highway, Street, Bridge Construct 5322 Consumer Goods Rental
2381 Foundation, Structure, Bldg Constr 5411 Legal Services

5412 Acc Tax Prep Bookkeep Payroll Serv
Tertiary economic activities: (93%) 5413 Architectural, Eng, Related Services
3399 Other Miscellaneous Manufacturing 5616 Investigation and Security Services
4238 Machinery, Equip, Supplies Whsle 5617 Services to Buildings and Dwellings
4247 Petroleum, Petroleum Prod Whsle 6111 Elementary and Secondary Schools
4411 Automobile Dealers 6211 Offices of Physicians
4412 Other Motor Vehicle Dealers 6212 Offices of Dentists
4413 Automotive Parts, Acc, Tire Stores 6213 Offices of Other Health Practition
4422 Home Furnishings Stores 6214 Outpatient Care Centers
4431 Electronics and Appliance Stores 6222 Psychiatric, Subs Abuse Hosp
4441 Building Material, Supplies Dealers 6231 Nursing Care Facilities
4442 Lawn Garden Equip Supplies Stores 6241 Individual and Family Services
4452 Specialty Food Stores 6244 Child Day Care Services
4461 Health and Personal Care Stores 7139 Amusement, Recreation Indust
4471 Gasoline Stations 7211 Traveler Accommodation
4481 Clothing Stores 7212 RV Parks and Recreational Camps
4511 Sporting Goods, Hobby, Music Stores 8114 Personal, Household Goods Repair
4512 Book, Periodical, and Music Stores 8123 Drycleaning and Laundry Services
4521 Department Stores 8129 Other Personal Services
4531 Florists 8133 Social Advocacy Organizations
4532 Office Supplies Stationery Gift Stores 8139 Business Profess Labor Politic Org
4533 Used Merchandise Stores 9211 Executive Legisla General Gov Supp
4842 Specialized Freight Trucking 9221 Justice, Public Order, Safety Activ
4884 Support Activities Road Transport 9231 Admin of Human Resource Prog
5191 Other Information Services 9261 Administration of Economic Prog
5221 Depository Credit Intermediation
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D

Primary economic activities: (2%) 5151 Radio and Television Broadcast
1129 Other Animal Production 5152 Cable Other Subscription Prog

5171 Wired Telecomm Carriers
Secondary economic activities: (6%) 5172 Wireless Telecomm Carriers
2211 Electric Power Gen, Transm, Distrib 5182 Data Proc, Hosting, Related Serv
2212 Natural Gas Distribution 5223 Activities Related Credit Interm
2213 Water, Sewage and Other Systems 5231 Securities Commodity Contracts
2372 Land Subdivision 5239 Other Financial Investment Activ

5241 Insurance Carriers
Tertiary economic activities: (92%) 5321 Automotive Equip Rental Leasing
3118 Bakeries and Tortilla Mfg 5323 General Rental Centers
3231 Printing, Related Support Activ 5414 Specialized Design Services
3327 Mach Shop Trnd Screw Nut Bolt Mfg 5415 Computer Systems Design Services
3333 Commerc Serv Industry Machnry Mfg 5416 Management, Scientific, Technical
3339 Other General Purpose Machnry Mfg 5417 Scientific R and D Services
3371 House Inst Furnit Kitchen Cabinet Mfg 5418 Advertising and Related Services
3391 Medical Equipment, Supplies Mfg 5613 Employment Services
4231 Motor Vehicle, Parts, Supplies Whsle 5614 Business Support Services
4233 Lumber, Construct Materials Whsle 5615 Travel Arrange Reserv Services
4234 Prof Commercial Equip Supplies Whsle 5621 Waste Collection
4236 Electrical, Electronic Goods Whsle 6113 Colleges Universities Prof Schools
4237 Hardware Plumb Heating Equip Whsle 6114 Business Schools Computer Mngmt
4239 Misc Durable Goods Merchant Whsle 6116 Other Schools and Instruction
4244 Grocery Related Prod Merchant Whsle 6216 Home Health Care Services
4246 Chem Allied Products Merchant Whsle 6219 Ambulatory Health Care Services
4249 Misc Nondurable Goods Whsle 6221 General Medical, Surgical Hospitals
4251 Whsle Electronic Markets Agents 6233 Community Care Facilities Elderly
4421 Furniture Stores 6243 Vocational Rehabilitation Services
4453 Beer, Wine, and Liquor Stores 7121 Museums, Historical Sites, Similar
4482 Shoe Stores 7223 Special Food Services
4483 Jewelry, Luggage, Leather Goods Stores 7224 Drinking Places (Alcoholic Bev)
4841 General Freight Trucking 8122 Death Care Services
4852 Interurban, Rural Bus Transport 8134 Civic and Social Organizations
4881 Support Activities for Air Transport 9241 Admin Environment Quality Prog
5111 Newspaper, Periodical, Book, Pblshrs 9281 National Security Internat Affairs
5121 Motion Picture and Video Industries
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E

Primary economic activities: (2%) 3363 Motor Vehicle Parts Manufacturing
1151 Support Activities Crop Production 4232 Furniture, Home Furnishing Whsle

4235 Metal, Mineral (no Petroleum) Whsle
Secondary economic activities: (7%) 4248 Beer Wine Dist Alcohol Bev Whsle
2111 Oil and Gas Extraction 4529 Other General Merchandise Stores
2131 Support Activities for Mining 4541 Electronic Shopping Mail-Order
2379 Heavy, Civil Engineering Construct 4542 Vending Machine Operators

4853 Taxi and Limousine Service
Tertiary economic activities: (91%) 4859 Transit Ground Passenger Transport
3116 Animal Slaughtering and Processing 4861 Pipeline Transportation of Crude Oil
3121 Beverage Manufacturing 4882 Support Activities for Rail Transport
3149 Other Textile Product Mills 4931 Warehousing and Storage
3219 Other Wood Product Manufacturing 5611 Office Administrative Services
3241 Petroleum and Coal Products Mfg 5619 Other Support Services
3251 Basic Chemical Manufacturing 5629 Remediation, Waste Mgmt Serv
3323 Architectural, Structural Metals Mfg 6115 Technical and Trade Schools
3328 Coating, Engraving, Heat Treating 6117 Educational Support Services
3329 Other Fabricated Metal Product Mfg 6215 Medical, Diagnostic Laboratories
3331 Agricul, Construct, Mining Mach Mfg 7111 Performing Arts Companies
3334 Vent, Heating, Air, Refrig Equip Mfg 7112 Spectator Sports
3335 Metalworking Machinery Mfg 7113 Promoters Performing Arts, Sports
3344 Semiconductor, Electronic Comp Mfg 8112 Electronic, Precision Equip Repair
3345 Navig, Measrng, Electrmed Instr Mfg 8113 Commerc Indust Mach Equip Repair
3359 Other Electrical Equip, Comp Mfg
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F

Primary economic activities: (7%) 3325 Hardware Manufacturing
1113 Fruit and Tree Nut Farming 3326 Spring, Wire Product Manufacturing
1114 Greenhouse Nursery Floricult Prod 3336 Eng Turb Power Transm Equip Mfg
1119 Other Crop Farming 3341 Computer and Peripheral Equip Mfg
1121 Cattle Ranching and Farming 3342 Communications Equipment Mfg
1153 Support Activities for Forestry 3351 Electric Lighting Equipment Mfg

3352 Household Appliance Manufacturing
Secondary economic activities: (1%) 3364 Aerospace Product and Parts Mfg
2123 Nonmetallic Mineral Mining and Qua 3372 Office Furniture (and Fixtures) Mfg

4241 Paper, Paper Prod Merchant Whsle
Tertiary economic activities: (92%) 4242 Drugs and Druggists’ Sundries Whsle
3112 Grain and Oilseed Milling 4243 Apparel, Piece Goods, Notions Whsle
3113 Sugar Confectionery Product Mfg 4543 Direct Selling Establishments
3114 Fruit Veget Preserv Spec Food Mfg 4811 Scheduled Air Transportation
3115 Dairy Product Manufacturing 4821 Rail Transportation
3119 Other Food Manufacturing 4832 Inland Water Transportation
3132 Fabric Mills 4855 Charter Bus Industry
3133 Textile, Finish Fabric Coating Mills 4872 Scenic, Sightseeing Transport, Water
3141 Textile Furnishings Mills 4879 Scenic, Sightseeing Transport, Other
3159 Apparel Accessories, Other Mfg 4885 Freight Transportation Arrangement
3161 Leather Hide Tanning Finishing 4889 Support Activities for Transport
3169 Other Leather, Allied Product Mfg 4921 Couriers
3211 Sawmills and Wood Preservation 5122 Sound Recording Industries
3222 Converted Paper Product Mfg 5173 Telecommunications Resellers
3253 Pesticide Fertilizer Agric Chem Mfg 5179 Other Telecommunications
3254 Pharmaceutical and Medicine Mfg 5251 Insurance, Employee Benefit Funds
3255 Paint, Coating, Adhesive Mfg 5324 Commerc Industri Mach Equip Rent
3256 Soap Cleaning Comp Toilet Prep Mfg 5511 Management of Companies, Enterpr
3259 Other Chemical Product, Prep Mfg 5622 Waste Treatment and Disposal
3261 Plastics Product Manufacturing 6239 Other Residential Care Facilities
3262 Rubber Product Manufacturing 6242 Community Food Housing Relief
3271 Clay Product and Refractory Mfg 7115 Independent Artists, Writers, Perf
3272 Glass and Glass Prod Mfg 7131 Amusement Parks and Arcades
3273 Cement and Concrete Product Mfg 7132 Gambling Industries
3279 Other Nonmetallic Mineral Prod Mfg 7213 Rooming and Boarding Houses
3312 Steel Prod Mfg from Prchsd Steel 7221 Full-Service Restaurants
3315 Foundries 8132 Grantmaking and Giving Services
3321 Forging and Stamping 9251 Admin Housing Prog Urban Plan
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G

Primary economic activities: (10%) 3322 Cutlery, Handtool Mfg
1123 Poultry and Egg Production 3324 Boiler, Tank, Shipping Cont Mfg
1133 Logging 3332 Industrial Machinery Mfg
1141 Fishing 3343 Audio and Video Equipment Mfg
1142 Hunting and Trapping 3346 Mfg Reprod Magnetic Optical Media

3353 Electrical Equipment Mfg
Secondary economic activities: (2%) 3361 Motor Vehicle Mfg
2122 Metal Ore Mining 3362 Motor Vehicle Body and Trailer Mfg

3366 Ship and Boat Building
Tertiary economic activities: (88%) 3369 Other Transportation Equipment Mfg
3111 Animal Food Manufacturing 3379 Other Furniture Related Product Mfg
3117 Seafood Product Prep and Pack 4245 Farm Prod Raw Mat Merchant Whsle
3122 Tobacco Manufacturing 4812 Nonscheduled Air Transportation
3131 Fiber, Yarn, and Thread Mills 4851 Urban Transit Systems
3151 Apparel Knitting Mills 4854 School and Employee Bus Transport
3152 Cut and Sew Apparel Mfg 4871 Scenic, Sightseeing Transport, Land
3162 Footwear Manufacturing 4883 Support Activities Water Transport
3212 Veneer, Plywood, Eng Wood Prod 5112 Software Publishers
3221 Pulp, Paper, and Paperboard Mills 5181 Internet Serv Providers Web Search
3252 Resin, Synth Rubber, Fibers Mfg 5259 Other Investment Pools and Funds
3274 Lime and Gypsum Product Mfg 5331 Lessors Nonfinancial Assets
3311 Iron, Steel Mills, Ferroalloy Mfg 5612 Facilities Support Services
3313 Alumina, Aluminum Production 6112 Junior Colleges
3314 Nonferr Metal (no Alum) Production 6223 Special (no Psych Subs Abuse) Hosp
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Appendix B

Point Process

A point process is a type of stochastic process (or random process)—an uncertain

evolution over time—that models a set of isolated points (random events) in time. For

example, a sequence of blood pressure measurements taken for a patient during his/her

stay at the hospital may be modeled by a point process.

A point process can be described by its conditional intensity function, λ(t,Ht)

(Daley and Vere-Jones, 2003):

λ(t,Ht) = lim
∆t→0

Pr(N(t,t+∆t] = 1|Ht)

∆t
,

where Pr(N(t,t+∆t] = 1|Ht) is the probability of an event occurring in the time interval

(t, t + ∆t] and Ht is the history of events up to time t. The conditional intensity is the

conditional instantaneous probability of an event occurring.

Given such a conditional intensity function, we can sample a sequence of events

as follows. Starting with current time t = t0, we draw a sample event from the exponential

distribution with the rate given by the conditional intensity function for time t and history
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Ht, λ(t,Ht). This produces a new event at time t = t1 determined by the exponential

distribution. The conditional intensity function may change between t0 and t1 as time

progresses. If the conditional intensity function changes before t1, the sampled event is not

taken and instead a new sample is drawn according to the new rate. If the new sample

occurs before the rate changes again, it is retained and the sampling process continues from

this time. We repeat this process until a desired end time is reached.
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Appendix C

CHLA PICU Data Set Variables

Continuous Variables used to Test Alternative Methods

Vital Signs Interventions

Abdominal girth (cm) Amplitude (HFOV) (deltaP)
Best motor response (GCS) EPAP (cmH2O)
Best verbal response (GCS) FiO2
Bladder pressure (mmHg) Frequency (HFOV) (Hz)
Capillary refill rate (sec) IPAP (cmH2O)
Diastolic blood pressure non-invasive (mmHg) Inspiratory time (sec)
EtCO2 (mmHg) MAP (HFOV) (cmH2O)
Eye opening response (GCS) Mean airway pressure (cmH2O)
Glasgow coma scale total NIV set rate (bpm)
Heart rate (bpm) O2 Flow (LPM)
Intracranial pressure (mmHg) PEEP (cmH2O)
Left pupillary response Peak Inspiratory Pressure (cmH2O)
Pulse oximetry (%) Pressure support (cmH2O)
Respiratory rate (bpm) Tidal volume delivered (ml)
Right pupillary response Tidal volume expiratory (ml)
Systolic blood pressure non-invasive (mmHg) Tidal volume inspiratory (ml)
Temperature ( C) Tidal volume set (ml)

Ventilator rate (bpm)
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Demographics

Binary:
Sex

Categorical:

Continuous:

Encounter Information

Binary:
Pre ICU CPR

Categorical:

Continuous:
Age

Vital Signs

Binary: Glasgow coma scale total
Head circumference (cm)

Categorical: Heart rate (bpm)
Central Venous Pressure (mmHg) Height (cm)

Intracranial pressure (mmHg)
Continuous: Left pupillary response
Abdominal girth (cm) Post-ductal pulse oximetry (%)
Best motor response (GCS) Pulse oximetry (%)
Best verbal response (GCS) Pupillary response
Bladder pressure (mmHg) Respiratory rate (bpm)
Capillary refill rate (sec) Right pupillary response
Cerebral perfusion pressure (mmHg) EtCO2 (mmHg)
Diastolic blood pressure invasive (mmHg) Eye opening response (GCS)
Diastolic blood pressure non-invasive (mmHg) Temperature (C)
Systolic blood pressure invasive (mmHg) Weight (kg)
Systolic blood pressure non-invasive (mmHg) Weight for drug calculations (kg)
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Laboratory Tests

Binary: CBG pH
ABG Base excess (mEq/L) CSF Bands %
ABG FiO2 CSF Lymphs %
ABG HCO3 (mEq/L) CSF RBC
ABG O2 sat (%) CSF Segs %
ABG PCO2 (mmHg) CSF WBC
ABG PO2 (mmHg) CSF color
ABG TCO2 (mEq/L) CSF glucose (mg/dL)
ABG pH CSF protein (g/dL)
ALT (SGPT) (units/L) Calcium ionized (mg/dL)
AST (SGOT) (units/L) Calcium total (mg/dL)
Adenovirus (RVP) Chloride (mEq/L)
Albumin level (g/dL) Complement C3 serum (mg/dL)
Alkaline phosphatase (units/L) Creatinine (mg/dL)
Amylase (units/L) D-dimer (mg/L FEUA)
B-type Natriuretic Peptide (pg/mL) ESR
BUN (mg/dL) Eosinophils %
Bands % FDP Titer
Basophils% Ferritin level (ng/mL)
Bicarbonate serum (mEq/L) Fibrinogen (mg%)
Bilirubin conjugated (mg/dL) GGT (units/L)
Bilirubin total (mg/dL) Glucose (mg/dL)
Bilirubin unconjugated (mg/dL) Haptoglobin (mg/dL)
Blasts Hematocrit POC (%)
C-reactive protein (mg/dL) Hematocrit blood (%)
CBG Base excess Hemoglobin POC (g/dL)
CBG FiO2 Hemoglobin blood (g/dL)
CBG HCO3 (mEq/L) INR
CBG O2 sat (%) Influenza A (RVP)
CBG PCO2 (mmHg) Influenza A H1 (RVP)
CBG PO2 (mmHg) Influenza A H3 (RVP)
CBG TCO2 (mEq/L) Influenza B (RVP)
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Laboratory Tests (continued)

Lactate (mg/dL) Potassium POC (mEq/L)
Lactate Dehydrogenase blood (units/L) Potassium serum (mEq/L)
Lactic Acid blood (mg/dL) Protein total (g/dL)
Lipase (units/L) RBC blood (M/uL)
Lymphocyte % RDW (%)
MCH (pg) RSV A (RVP)
MCHC (%) RSV B (RVP)
MCV (fL) Reticulocyte count (%)
MVBG Base excess (mEq/L) Rhinovirus (RVP)
MVBG FiO2 Schistocytes
MVBG HCO3 (mEq/L) Sodium POC (mEq/L)
MVBG O2 sat (%) Sodium serum (mEq/L)
MVBG PCO2 (mmHg) Spherocytes
MVBG PO2 (mmHg) T4 free (ng/dL)
MVBG pH TSH (mlU/L)
Macrocytes Triglycerides (mg/dL)
Magnesium level (mg/dL) VBG Base excess (mEq/L)
Metamyelocytes % VBG FiO2
Metapneumovirus (RVP) VBG HCO3 (mEq/L)
Monocytes % VBG O2 sat (%)
MVBG TCO2 (mEq/L) VBG PCO2 (mmHg)
Myelocytes % VBG PO2 (mmHg)
Neutrophils % VBG TCO2 (mEq/L)
Oxygentaion index VBG pH
P/F ratio White blood cell count (K/uL)
PT
PTT Categorical:
Parainfluenza 1 (RVP)
Parainfluenza 2 (RVP) Continuous:
Parainfluenza 3 (RVP)
Phosphorus level (mg/dL)
Phosphorus level (mg/dL)
Platelet count (K/uL)
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Drugs

Binary: Cefotaxime
Acetaminophen Cefoxitin
Acetaminophen/Codeine Ceftazidime
Acetaminophen/Hydrocodone Ceftriaxone
Acetazolamide Cefuroxime
Acetylcysteine Cephalexin
Acyclovir Chloral Hydrate
Albumin Chlorothiazide
Albuterol Ciprofloxacin HCL
Allopurinol Cisatracurium
Alteplase Clarithromycin
Amikacin Clindamycin
Aminocaproic Acid Clonazepam
Aminophylline Clonidine HCl
Amiodarone Clotrimazole
Amlodipine Cromolyn Sodium
Amoxicillin Cyclophosphamide
Amoxicillin/clavulanic acid Cyclosporine
Amphotericin B Dantrolene Sodium
Amphotericin B Lipid Complex Desmopressin
Ampicillin Dexamethasone
Ampicillin/Sulbactam Dexmedetomidine
Aspirin Diazepam
Atenolol Digoxin
Atropine Diphenhydramine HCl
Azathioprine Dobutamine
Azithromycin Dopamine
Baclofen Dornase Alfa
Basiliximab Doxacurium Chloride
Budesonide Doxycycline Hyclate
Bumetanide Enalapril
Calcium Chloride Enoxaparin
Calcium Glubionate Epinephrine
Calcium Gluconate Epoetin
Captopril Erythromycin
Carbamazepine Esmolol Hydrochloride
Carvedilol Etomidate
Caspofungin Factor VII
Cefazolin Famotidine
Cefepime Fentanyl
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Drugs (continued)

Ferrous Sulfate Meropenem
Ferrous Sulfate Methadone
Filgrastim Methylprednisolone
Flecainide Acetate Metoclopramide
Fluconazole Metolazone
Fluticasone Metronidazole
Fosphenytoin Micafungin
Furosemide Midazolam HCl
Gabapentin Milrinone
Ganciclovir Sodium Montelukast Sodium
Gentamicin Morphine
Glycopyrrolate Mycophenolate Mofetl
Haloperidol Naloxone HCL
Heparin Naproxen
Hydrocortisone Nesiritide
Hydromorphone Nifedipine
Ibuprofen Nitrofurantoin
Imipenem Nitroglycerine
Immune Globulin Nitroprusside
Insulin Norepinephrine
Ipratropium Bromide Nystatin
Isoniazid Octreotide Acetate
Isoproterenol Olanzapine
Isradipine Ondansetron
Itraconazole Oseltamivir
Ketamine Oxacillin
Ketorolac Oxcarbazepine
Labetalol Oxycodone
Lactobacillus Pancuronium
Lansoprazole Pantoprazole
Levalbuterol Penicillin G Sodium
Levetiracetam Pentobarbital
Levocarnitine Phenobarbital
Levofloxacin Phenylephrine HCl
Levothyroxine Sodium Phenytoin
Lidocaine Piperacillin
Linezolid Piperacillin/Tazobactam
Lisinopril Potassium Chloride
Lorazepam Potassium Phosphate
Magnesium Sulfate Prednisolone
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Drugs (continued)

Prednisone Ticarcillin/clavulanic acid
Procainamide Tobramycin
Propofol Topiramate
Propranolol HCl Treprostinil
Prostacyclin Trimethoprim/Sulfamethoxazole
Racemic Epi Tromethamine (THAM)
Ranitidine Ursodiol
Rifampin Valganciclovir
Risperidone Valproic Acid
Rocuronium Vancomycin
Sildenafil Vasopressin
Sodium Bicarbonate Vecuronium
Sodium Chloride Vitamin E
Sodium Phosphate Vitamin K
Spironolactone Voriconazole
Sucralfate
Tacrolimus Categorical:
Terbutaline
Theophylline Continuous:
Ticarcillin
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Interventions

Binary: MAP (HFOV) (cmH2O)
Abdominal X ray MRI brain
Amplitude (HFOV) (deltaP) Mean airway pressure (cmH2O)
Arterial line site Mechnical ventilation mode
Arterial line waveform (duration) NIV Mode
CT abdomen NIV set rate (bpm)
CT abdomen/pelvis Nitric Oxide
CT brain O2 Flow (LPM)
CT chest Oxygen mode
CT pelvis PEEP (cmH2O)
Central venous line site Peak Inspiratory Pressure (cmH2O)
Central venous line waveform (duration) Peritoneal dyalisis
Chest X ray Pressure support (cmH2O)
Chest tube Tidal volume delivered (ml)
Chest/abd X ray Tidal volume expiratory (ml)
Continuous EEG Tidal volume inspiratory (ml)
ECMO hours Tidal volume set (ml)
ECMO type Tracheostomy
EPAP (cmH2O) Ventilator rate (bpm)
FiO2 Ventriculostomy site
Foley catheter Ventriculostomy waveform (duration)
Frequency (HFOV) (Hz)
Gastrostomy tube Categorical:
Hemofiltration/CRRT
IPAP (cmH2O) Continuous:
Inspiratory time (sec)
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