
UNIVERSITY OF CALIFORNIA
RIVERSIDE

A Continuous Time Bayesian Network Approach for Intrusion Detection

A Dissertation submitted in partial satisfaction
of the requirements for the degree of

Doctor of Philosophy

in

Computer Science

by

Jing Xu

August 2010

Dissertation Committee:
Dr. Christian R. Shelton, Chairperson
Dr. Michalis Faloutsos
Dr. Eamonn Keogh

Copyright by
Jing Xu

2010

The Dissertation of Jing Xu is approved:

Committee Chairperson

University of California, Riverside

Acknowledgements

It would have been next to impossible to write this thesis without the help and guidance

from my esteemed advisor, Dr. Christian R. Shelton. I would not be able to even start my

PhD study in the field of artificial intelligence without his encouragement. Ever since I joined

his research group, I have received tremendous advice and help from him. Whenever I get

stuck and feel frustrated on challenging periods, he is always there to support me and guide

me to the right direction. His enthusiasm and sharp insights into the research give me a

great amount of inspiration. His helpful supervision from the preliminary to the concluding

level enables me to achieve many progresses. He is one of those persons that I may owe my

deepest gratitude to for my lifetime. I am heartily thankful to you, Christian!

My great thanks also go to my committee members, Dr. Michalis Faloutsos and Dr. Ea-

monn Keogh. They have given me many great suggestions during my research. Thank you

for your help on making this thesis better!

I would also thank my lab mates in RLAIR, Dr. Yu Fan, William Lam and Joon Lee. I

will always remember the time when we collaborated on the CTBN code base. The trust,

support, communication between us help me overcome a lot of difficulties and make this

teamwork successful and enjoyable. I would also thank other group members, Dr. Teddy Yap

and Antony Lam for all the interesting conversations and discussions that bring me so much

happiness.

My last, and deepest, acknowledgement goes to my dear husband, the big Daddy of my

beloved daughter April, my true love, Dr. Guobiao Mei. He has always been on my side,

iv

supporting me and loving me. As a former lab mate, he also gives me numerous valuable

suggestions and help. Guobiao, I feel so lucky to have met you and married you! I would

also thank my parents and my parents-in-law, who give me so much faith and love. I offer

my best regards and blessings to all of you.

v

ABSTRACT OF THE DISSERTATION

A Continuous Time Bayesian Network Approach for Intrusion Detection

by

Jing Xu

Doctor of Philosophy, Graduate Program in Computer Science
University of California, Riverside, August 2010

Dr. Christian R. Shelton, Chairperson

Network attacks on computers have become a fact of life for network administrators.

Detecting attacks accurately is important to limit their scope and destruction. Intrusion de-

tection systems (IDSs) fall into two high-level categories: network-based systems (NIDS)

that monitor network behaviors, and host-based systems (HIDS) that monitor system calls.

In this work, we present a general technique for both systems.

We consider the problem of detecting intrusions of the host level. We use anomaly de-

tection, which identifies patterns not conforming to a historic norm. Our approach does not

require expensive labeling or prior exposure to the attack type. In both types of systems, the

rates of change vary dramatically over time (due to burstiness) and over components (due

to service difference). To efficiently model such systems, we use continuous time Bayesian

networks (CTBNs) and avoid specifying a fixed time interval. We build generative models

vi

from historic non-attack data, and flag future event sequences whose likelihood under this

norm is below a threshold.

As a NIDS, our method differs from previous approaches in explicitly modeling tempo-

ral dependencies in the network traffic. Our models are therefore more sensitive to subtle

variations in the sequences of network events. We first construct a factored CTBN model

for the network packet traces. We present two simple extensions to CTBNs that allow for

instantaneous events that do not result in state changes, and simultaneous transitions of two

variables. We then extend this model to a connected one. We construct it in a hierarchical

way and use Rao-Blackwellized particle filtering for inference. We illustrate the power of our

method through experiments on detecting real worms and identifying hosts on two publicly

available network traces, the MAWI dataset and the LBNL dataset.

For HIDS, we develop a novel learning method to deal with the finite resolution of system

log file time stamps, without losing the benefits of our continuous time model. We demon-

strate the method by detecting intrusions in the DARPA 1998 BSM dataset.

vii

Contents

List of Figures xii

1 Introduction 1

1.1 Intrusion Detection Systems . 2

1.2 Continuous Time Bayesian Networks Approach 3

1.2.1 Network-based Intrusion Detection Systems 4

1.2.2 Host-based Intrusion Detection Systems 7

1.3 Disertation Contributions . 8

1.4 Outline . 8

2 Intrusion Detection Problem 9

2.1 Intrusion Detection System . 9

2.2 Literature Study . 12

2.2.1 NIDS . 12

2.2.2 HIDS . 16

2.3 Dynamic Process Approach . 17

viii

3 Continuous Time Bayesian Networks 20

3.1 Homogeneous Markov Process . 20

3.1.1 Representation . 21

3.1.2 Query over an HMP . 22

3.1.3 Complete Data . 22

3.1.4 Sufficient Statistics and Likelihood 22

3.1.5 Learning from Complete Data . 24

3.1.6 Incomplete Data . 24

3.1.7 Expected Sufficient Statistics and Expected Likelihood 24

3.1.8 Learning from Incomplete Data . 25

3.1.9 Limitation . 28

3.2 Continuous Time Bayesian Networks . 28

3.2.1 Definition . 28

3.2.2 Learning . 30

3.2.3 Inference . 32

3.3 Phase distributions . 34

3.3.1 Definition . 34

3.3.2 CTBN Durations as Phase Distributions 35

3.3.3 Parameter learning . 36

3.3.4 Fitting Phase Distributions to Network Features 39

ix

4 NIDS - Basic Model and Inference 45

4.1 A Factored CTBN Model . 45

4.1.1 CTBN Model for Network Traffic 46

4.1.2 Adding Toggle Variables to CTBNs 48

4.1.3 An Extended CTBN Model . 50

4.1.4 Parameter Estimation . 52

4.2 A Connected CTBN Model . 53

4.2.1 CTBN Model for Network Traffic 53

4.2.2 Parameter Learning using RBPF . 54

4.3 Online Testing using Likelihood . 58

5 NIDS - Experiment Results 60

5.1 Datasets . 60

5.2 Worm Detection . 61

5.2.1 Results of the Factored Model . 62

5.2.2 Results of the Connected Model . 67

5.3 Host Identification . 70

6 Extensions 74

6.1 Speed Up . 74

6.1.1 Approximate Likelihood Calculation 75

6.1.2 Experiment Results . 77

x

6.2 Another NIDS using CTBNs . 79

6.2.1 CTBN Model for Network Traffic 80

6.2.2 Adding Counting Variables to CTBNs 82

6.2.3 Parameter Estimation . 84

6.2.4 KL-divergence Approximation . 85

6.3 Experiment Results . 87

7 HIDS 90

7.1 A CTBN Model for System Calls . 90

7.2 Parameter Estimation with Finite Resolution Clocks 93

7.3 Testing using Likelihood . 97

7.4 Evaluation . 97

7.4.1 Dataset . 98

7.4.2 Anomaly Detection . 98

8 Conclusions 102

Bibliography 104

xi

List of Figures

1.1 The architecture of the IDS . 3

3.1 Histogram of connection durations . 39

3.2 Comparisons of number of phases . 40

3.3 Convergence for fitting phase distributions via EM. 41

3.4 Empirical distribution and model fit for host1. 42

3.5 Empirical distribution and model fit for host2. 43

3.6 A phase distribution fit on connection counts 43

4.1 Ranking of the most frequent ports on LBNL dataset 46

4.2 Ranking of the most frequent ports on WIDE dataset. 46

4.3 CTBN port level submodel . 47

4.4 The equivalent CTBN port level submodel 49

4.5 The extended CTBN port level submodel 51

4.6 CTBN plate model . 54

4.7 RBPF E-step . 57

xii

5.1 Features for nearest neighbor approach . 63

5.2 ROC for IP scanning . 64

5.3 ROC for Mydoom . 65

5.4 ROC for Slammer . 66

5.5 ROC for connected model . 68

5.6 ROC comparing β . 69

5.7 Confusion matrix using CTBN . 71

5.8 Confusion matrix using SVM . 72

5.9 ROC for host identification . 73

6.1 ROC and cross plot for speed up on MAWI 78

6.2 MAWI running time . 79

6.3 ROC and cross plot for speed up on LBNL 80

6.4 LBNL running time . 81

6.5 Ranking of the most frequent ports on our Intel dataset. 81

6.6 Individual port-level submodel . 82

6.7 ROC curves for 6 hosts . 87

7.1 CTBN model for system call data . 91

7.2 Histogram of the number of system calls within a tick 92

7.3 System call traces with a finite resolution clock (resolution = δt) 93

7.4 DARPA BSM process summary. 98

xiii

7.5 DARPA BSM system call summary . 99

7.6 ROC curves for BSM . 100

xiv

Chapter 1

Introduction

As a result of the outstanding growth of the Internet, the world now has become a “global

village.” Its fast speed, wide coverage and easy access provide a powerful platform for

governments, business and individuals to communicate or share the information. Internet

users could make great use out of the rich source of a world wide network. However, they

also expose their vulnerability to being attacked. In addition, misuse or abuse of one user’s

computer also challenges network administrators to deal with identity theft. These attempts

that try to invade a system and compromise the availability or quality of the system services

are often called network intrusions. Network intrusions can be harmful or even fatal to the

stability and security of information systems. They can cripple the network and compromise

the confidentiality of personal or economic information. Our goal is to detect such attacks.

Detecting attacks quickly is important in limiting their scope and destruction.

1

1.1 Intrusion Detection Systems

A system that can detect network intrusions automatically is called an Intrusion Detection

System (IDS). In our work, we approach the problem from the point of view of anomaly de-

tection, which identifies patterns not conforming to a historic norm. In the machine learning

field, it is often approached with unsupervised learning. The detector we build is at the host

level. Instead of constructing a detector for the network as a whole, our goal is to detect these

attacks that attempt to compromise the performance quality of a particular host machine. Our

method can be employed at each computer separately to determine whether a particular host

has been under attack. While we lose global information, we gain speed, individual tuning,

and robustness. A network under attack may not be able to aggregate information to a central

detector.

Figure 1.1 shows an overview of our host level network attack detection system. We only

focus on a single computer (a host) on the network. We use unsupervised learning to build

a model of the normal behavior of this host-level on its network traffic, without looking into

its system behavioral state like resource usage and file access. Those activities that differ

from this norm are flagged as possible intrusion attempts. Our host-based intrusion detection

system works in a similar fashion, except that the model is built on system calls.

2

Figure 1.1: The architecture of the intrusion detection system. The model is learned from
normal traces. Anomaly detection compares the model to current network traffic. The output
is the predicted labels for each time window.

1.2 Continuous Time Bayesian Networks Approach

Network traffic traces and system call logs are two common sources of audit data that facili-

tate intrusion detections at the host level. They both log activities associated with a computer.

In a network-based intrusion detection system (NIDS), the network packet traces are moni-

tored. Network traffic traces collect information from a network’s data stream and provide an

external view of the network behaviors. In a host-based intrusion detection system (HIDS),

the internal state of a computing system is analyzed. System call logs monitor executing pro-

grams’ operating system calls. These activities usually evolve over time. So a static model

that does not account for the element of time is usually outperformed by a dynamic one. In

both types of systems, the rates of change vary dramatically over time (due to burstiness)

and over components (due to service differences). A computer user might be alternatingly

3

busy and resting. During the busy period, bursts of action often happen causing a peak of

network traffic flow or operating system usage during a very short time. However, during the

resting period, the computer just maintains its regular running pattern, and network or sys-

tem activities are much less intense, e.g. automatically checking email every few minutes.

Thus, a dynamic model that requires discretizing the time, i.e. a Dynamic Bayesian Network

(DBN), is not efficient or even feasible. Such models propagate information at fixed time

steps. This means even if some of the components in the system have slow-paced events, the

entire system still have to run at the finest time granularity. We develop intrusion detection

techniques using continuous time Bayesian networks (CTBNs) (Nodelman et al., 2002) for

both data types (network and internal state). CTBNs are factored representations of contin-

uous time Markov processes. They describe the temporally evolving dynamics of stochastic

variables. CTBNs have been successful in other applications (Ng et al., 2005; Gopalratnam

et al., 2005), but have not previously been used for detecting network intrusions. Although

NIDS and HIDS are of different formats and points of interest, we demonstrate the flexibility

of a CTBN to describe either.

1.2.1 Network-based Intrusion Detection Systems

Our first effort is to detect anomalies from network traffic traces (NIDS). Our approach differs

from previous approaches in a number of key ways. It is adaptive and constructed at the host

level. It does not treat the packets or connections as i.i.d. sequences, but respects the ordering

of the network traffic. Finally, it does not model the traffic features as normal or exponential

4

distributions. Many features of network traffic are distinctly non-Gaussian and often multi-

modal.

While anomalies may be very subtle and difficult to detect, the more subtle the attack, the

longer the attack will take and the more it will stress the patience of the attacker. Looking

at summarized information like flow statistics is not helpful especially for stealthy worms

which can mingle well with normal traffic by sacrificing their spreading speed and scale. We,

therefore, feel that looking for abnormalities in the detailed network traffic flow level is a

utile method for finding attacks. A network flow for a given host machine is a sequence of

continuous-time asynchronous events. Furthermore, these events form a complex structured

system, where statistical dependencies relate network activities like packet emissions and

connection starts. We employ a generative probabilistic model to describe such dynamic

processes evolving over continuous time. In particular, we use CTBNs to reason about these

structured stochastic network processes.

One successful detector we build employs a completely factored CTBN model. We make

the assumption that network services associated with different destination ports are indepen-

dent of each other. We model each port’s traffic with its own CTBN submodel. Since the

whole model is fully factored, we can estimate the model parameters for each submodel indi-

vidually. We use the exact inference algorithm described by Nodelman et al. (2002) to learn

the parameters. Once the CTBN model has been fit to historic data, we detect attacks by

computing the likelihood of a window of the data under the model. If the likelihood falls

below a threshold, we flag the window as anomalous. Otherwise, we mark it as normal.

5

A second successful CTBN detector we build uses a connected model. To allow our

model to be more descriptive, we remove the restriction that port-level submodels are in-

dependent by introducing another latent variable that ties the submodels together. The ex-

act inference algorithm is no longer tractable for learning the parameters for this connected

model. We use a Rao-Blackwellized particle filtering (RBPF) method to approximately learn

the parameters. For testing, we use the same technique as above: calculating the likelihood

of a window of the data under the model, and comparing it to a predefined threshold.

We compared the performance of the detectors that use the factored model and the fully

connected model on real network traffic. The datasets we used are the MAWI working group

backbone traffic (MAWI) and the LBNL/ICSI internal enterprise traffic (LBNL).

We also approach the problem of speeding up the necessary calculations in CTBN rea-

soning. Although the above methods achieve good performance on real data, the overhead

in the detection phase is not ignorable. We train the models offline and beforehand. Thus

long training times are acceptable. But instant feedback is expected upon deployment. The

sooner the alert triggers, the less the scope of the destruction is. In the detection phase, the

likelihood of a time window under the learned model is calculated. This involves the exact

inference in a CTBN and usually takes a large amount of time. We present an approximation

method to accelerate the reasoning.

6

1.2.2 Host-based Intrusion Detection Systems

Our second effort is to detect intrusions using system call logs (HIDS). A system log file

contains an ordered list of calls made to a computer’s operating system by a program. Re-

search focuses on analyzing the ordering and the context of the sequence, rather than simply

counting the overall statistics. A CTBN is a natural way of modeling such sequential data.

The CTBN model is similar to our port-level network model. Individual system calls,

which are the event description fields in the header token, are transiently observed: they

happen instantaneously with no duration. We also introduce a hidden variable to allow cor-

relations among system calls. This hidden variable models the internal state of the machine

to some extent.

Because of the finite resolution of the computer’s clock, all the system calls issued within

a clock tick are assigned the same time stamp. Therefore the data stream consists of long pe-

riods of time with no activity, followed by sequences of calls in which the order is correctly

recorded, but the exact timing information is lost. This poses a new challenge for CTBN rea-

soning. We present a learning method for such data without resorting to time discretization.

When testing, the likelihood of a whole process is reported as the score and compared to a

threshold, to determine if the process is an attack.

7

1.3 Disertation Contributions

Our work is one of the few that provide a general solution for both NIDS and HIDS. We are

the first method to model network traffic traces and system call logs using a continuous time

model. And, our work is among the first approaches that apply CTBNs to real world appli-

cations. We also contribute to theoretic research in CTBNs by introducing toggle variables,

a Rao-Blackwellized particle filtering inference method, and a parameter learning algorithm

for observations within finite resolution clocks. Our work achieve good performance on real

datasets.

1.4 Outline

In this dissertation, we present a CTBN approach for intrusion detection for both network-

based data and host-based data. The dissertation is organized in the following structure.

In Chapter 2, we review the problem and background of intrusion detection.

In Chapter 3, we give a brief background of CTBNs.

In Chapter 4, we describe our CTBN approach for NIDS.

In Chapter 5, we show our experiment results for NIDS.

In Chapter 6, we present our speed up technique and some other work.

In Chapter 7, we describe our CTBN approach for HIDS.

In Chapter 8, we discuss the contributions of this dissertation from the realm of both

CTBN reasoning and intrusion detection.

8

Chapter 2

Intrusion Detection Problem

In this chapter, we review the problem of intrusion detection and discuss the related work in

this field.

2.1 Intrusion Detection System

In the field of information security, researchers have devoted themselves to the problem of

intrusion detection for many decades. Generally speaking, intrusions can be detected man-

ually or automatically. While human intervention can improve security, it comes at the cost

of increased time and effort. Humans cannot analyze each and every event to determine if it

might be part of an attack, so there is a need for a method that can adapt to the role and usage

patterns of the system, while still detecting attacks automatically to perform such checks. A

system that can detect intrusion automatically is called an intrusion detection systems (IDS).

Administrators can use hardware devices, i.e. security cameras or motion sensors, to

9

observe the physical status of the system. These devices are usually called physical IDS.

They are often used as intrusion prevention systems as well. People can also install software

to monitor the event logs of the system. Those that monitor the flow of network packets are

called network-based intrusion detection systems (NIDS), e.g. SNORT. Those that examine

the system calls are called host-based intrusion detection systems (HIDS), e.g. OSSEC. NIDS

and HIDS are used for identifying attacks. In this dissertation, we focus on the software

intrusion detection systems, including both NIDS and HIDS.

An IDS can also be categorized into two types: misuse detection systems and anomaly

detection systems. Misuse detection systems build a database of all the malicious signatures

seen previously, and compare the system behavior against each of them. If the behavior

matches any of the recorded bad signature, it is flagged as an known type of attack, not only

an intrusion. It is usually approached by the method of a supervised learning algorithm in

the machine learning field. Supervised learning has a training data set, which is composed

of pairs of a data example and its output value. Its task is to predict an output for a given

data example. When the output is a continuous value, it is called a regression task; when

the output is a class label, it is called a classification task. In the case of misuse detection,

a label (an attack type) is predicted. Therefore, it is a typical classification problem and

can be approached by many existing algorithms. However, it has the disadvantage that it

requires updating the database whenever a new attack signature is encountered. Attacks vary

greatly and new types of attacks are invented frequently. The rapid development of new

viruses makes maintaining such a database time-consuming and error-prone. Therefore, a

10

supervised learning method that attempts to distinguish good from bad network traffic based

on historic labeled data is necessarily limited in its scope.

Anomaly detection systems work just in the opposite manner. They assume a bottom

line for the normal pattern, and compare the behavior against this norm. Unlike in misuse

detection systems where labeled data of “bad” behavior are collected, gathering normal or

good network traffic or system calls is relatively simple. It is often possible to designate times

when we can be reasonably certain that no attacks occurred and use all of the data during that

span. For an attack to be successful, it must differ in some way from normal network traffic.

Anomaly detection can identify new attacks even if the attack type was unknown beforehand.

Unsupervised learning, which is given only unlabeled data, allows the anomaly detector to

adapt to changing environments, thereby extending its domain of usefulness. By modeling

normal behavior from historic clean data, we can identify abnormal activity without a direct

prior model of the attack by simply comparing its deviation from the learned norm. Our

method falls into this category. However, anomaly detection has the disadvantage that it can

not classify attack types. Also, it is not as accurate as misuse detection where a large database

of seen attacks are maintained. It may have higher false alarm where some normal behavior

is misidentified as abnormal just because it is different from the “usual” normal pattern.

11

2.2 Literature Study

Much of the previous work in intrusion detection focuses on one area only — either detecting

the network traffic or mining the system call logs. The role taken by Eskin et al. (2002) is

similar to our approach in that they apply their method to both of these kinds of data. They

map data elements to a feature space and detect anomalies by determining which points lie

in sparse regions using cluster-based estimation, K-nearest neighbors and one-class SVM.

They use a data-dependent normalization feature map for network traffic data and a spectrum

kernel for system call traces. We are different in that we model the evolving dynamics of

both of the data types, instead of extracting static features. We compare with their algorithm

that applies one-class SVM on spectrum string kernel in our experiments on both of the data

type. Lee and Stolfo (1998) provided another example of developing a general solution to

both network tcpdump and system call data. But unlike our work, they built classifiers to

detect known intrusions.

2.2.1 NIDS

In the area of NIDS, most of the previous work approaches the detection problem from the

viewpoint of either misuse detection or anomaly detection. We review the related work using

both of the techniques.

12

Misuse Detection

Many learning, or adaptive, methods have been proposed for network data. As described

in Section 2.1, misuse intrusion detection techniques often build a classifier on the network

data. If an attack has appeared before in their training data, it can be easily recognized in the

future.

As a signature-based detection algorithm, Karagiannis et al. (2005) proposed a traffic

classification technique named “BLINC.” They classify traffic flows at multiple levels ac-

cording to the applications that generate them. We share many of the assumptions of their

work. In particular, we also assume that we do not have access to the internals of the ma-

chines on the networks. We differ in that our approach does not rely on human intervention

and interpretation, nor do we assume that we have access to network-wide traffic informa-

tion. Network-wide data and human intervention have advantages, but they can also lead to

difficulties (data collation in the face of an attack and increased human effort), so we chose

to leave them out of our solution. Zuev and Moore (2005) like our approach, model traffic

with graphical models, in particular Naive Bayes networks. But their goal is to categorize

network traffic based on applications instead of detecting attacks. Soule et al. (2004) also

approach the problem as a classification task using histograms. They are very similar in sta-

tistical flavor to our work. They also fit a distribution (in their case, a histogram modeled as

a Dirichlet distribution) to network data. However, they model flow-level statistics, whereas

we work at the level of individual connections. Additionally, they attempt network-wide

clustering of flows instead of anomaly detection. Dewaele et al. (2007) profile the statisti-

13

cal characteristics of anomalies by using random projection techniques (sketches) to reduce

the data dimensionality and a multi-resolution non-Gaussian marginal distribution to extract

anomalies at different aggregation levels. Kruegel et al. (2003) present a Bayesian approach

to the detecting problem as an event classification task while we only care about whether the

host is under attack during an interval. In addition, they also use system monitoring states to

build their model, which we do not employ.

The goal of such papers is usually not to detect attacks but rather to classify non-attacks

by traffic type; if applied to attack detection, they would risk missing new types of attacks.

Furthermore, they frequently treat each network activity separately, instead of considering

their temporal context.

Anomaly Detection

Anomaly detection is another popular method for intrusion detection. It usually employs

data partition (or clustering). It does not require labeled data and can detect attacks not seen

before.

Lakhina et al. (2005) have a nice summary of adaptive (or statistical) methods that look

at anomaly detection (instead of classification). They use an entropy-based method for the

entire network traffic. Many of the other methods, such as that of Ye et al. (2002), use either

statistical tests or subspace methods that assume the features of the connections or packets

are normally distributed. This is not always true. For instance, the distribution of the number

of connections at any time on a machine is asymmetric. The probability of this number being

14

small is fairly large. It could be simply because the computer user is not active. However,

the probability of this number being high or even exceeding a threshold is small (which

could be an indication of an attack). Rieck and Laskov (2007) model the language features

like n-grams and words from connection payloads. Xu et al. (2005) also uses unsupervised

methods, but they concentrate on clustering traffic across a whole network. Similarly, Soule

et al. (2005) build an anomaly detector based on Markov models, but it is for the network

traffic patterns as a whole and does not function at the host level.

Lazarevic et al. (2003) is similar to our work. It is one of the few papers to attempt to find

attacks at the host level. They employ nearest neighbor, a Mahalanobis distance approach,

and a density-based local outliers method, each using 23 features of the connections. Their

methods make the standard i.i.d. assumption about the data (and therefore miss the temporal

context of the connection) and use 23 features (compared to our few features). Agosta et al.

(2007b) present an adaptive detector whose threshold is time-varying. It is similar to our

work in that they also rely on model-based algorithms. But besides the usage of network

signature data, they look at host internal states like CPU loads which are not available to us.

While there has been a great variety of previous work, our work is novel in that it detects

anomalies at the host level using only the timing features of network activities. We do not

consider each connection (or packet) in isolation, but rather in a complex context. We capture

the statistical dynamic dependencies between packets and connections to find sequences of

network traffic that are anomalous as a group.

15

2.2.2 HIDS

Previous work on detecting intrusions in system call logs can be roughly grouped into two

categories: sequence-based and feature-based. Sequence-based methods focus on the se-

quential order of the events while feature-based methods treat system calls as independent

data elements. Our method belongs to the former category since we use a generative model

to describe the dynamics of the sequences.

Time-delay embedding (tide) and sequence time-delay embedding (stide) are two ex-

amples of sequence based methods (Forrest et al., 1996; A.Hofmeya et al., 1998). They

generalize the data by building a database storing previously seen system call sub-sequences,

and test by looking up subsequences in the database. These methods are straightforward and

often achieve good results. We compare with them in our experiments. Tandon and Chan

(2005) look at a richer set of attributes like the return values and the arguments associated

with a system call, while we only make use of the system call names. Cha (2005) uses the

Soundex algorithm to change variable length sequential system call data into a fixed length

behavior pattern.

Feature-based methods like those of Hu et al. (2003) use the same dataset we use, the

DARPA 1998 BSM dataset, but their training data is noisy and they try to find a classification

hyperplane using robust support vector machines (RSVMs) to separate normal system call

profiles from intrusive ones. Eskin (2000) also works on noisy data. They make the assump-

tion that their training data contains a large portion of normal elements and few anomalies.

They present a mixture of distribution over normal and abnormal data and calculate the like-

16

lihood change if a data point is moved from normal part to abnormal part to get the optimum

data partition.

Yeung and Ding (2002) try to use both techniques. They provide both dynamic and

static behavioral models for system call data. For the dynamic method, a hidden Markov

model (HMM) is used to model the normal system events and a likelihood is calculated for

each testing sequence and compared against a certain threshold. Our work for the system

call traces problem is very close to their framework since we also build a dynamic model

for the sequential data and compute the likelihood of a testing example as a score. But

we are different in that our CTBN models the continuous-time dynamics rather than time-

sliced behaviors. For the static method, they represent the normal behavior by a command

occurrence frequency distribution and measure the distance from the testing example to this

norm by cross entropy. The dataset they use is KDD archive dataset.

2.3 Dynamic Process Approach

Activities on a computer as a whole can be viewed as a single process whose state changes

from one to another. A dynamic model describes the state transitions of a process along time.

If we allow uncertainty in its evolution, the process becomes a stochastic one. Probabilistic

models are often used to model such processes. Researchers have provided quite a few dy-

namic process approaches in the field of intrusion detection. As mentioned in Section 2.2.2,

Yeung and Ding (2002) use a Hidden Markov Model (HMM) to model the system calls.

17

On the other hand, computer activities contain sequences of events. For instance, a net-

work flow is composed of traces of packet transmission and receipts, and connection es-

tablishments and terminations. The process is an integrated whole system formed by these

events as components. The sequence and timing of events are very important in network

traffic flow. It matters not just how many connections were initiated in the past minute, but

also their timing: If they were evenly spaced the trace is probably normal, but if they all

came in a quick burst it is more suspecious. Similarly, the sequence is important. If the con-

nections were made to sequentially increasing ports it is more likely to be a scanning virus,

whereas the same set of ports in random order is more likely to be normal traffic. These are

merely simple examples. We would like to detect more complex patterns. In most cases, the

emission of such events are not in isolation, but in complex context. There can be interactive

relations between them. Therefore, a graphical model that captures the structural dependen-

cies among the elements of a network is well suited in this case. For instance, a Bayesian

network is employed in the work of Kruegel et al. (2003).

While time-sliced models like dynamic Bayesian networks (Dean and Kanazawa, 1989)

can capture some of these aspects, they require the specification of a time-slice width. This

sampling rate must be fast enough to catch these distinctions (essentially fast enough that

only one event happens between samples) and yet still long enough to make the algorithm

efficient. For network traffic, with long delays between bursts of activity, this is impractical.

We seek a model that has the features described above. It should be a compact model that

describes the temporal dynamics of a continuous time system. A continuous time Bayesian

18

network is an example of this. We will give a brief introduction of CTBNs in the next chapter.

After that, we will show our approaches to intrusion detection using CTBNs.

19

Chapter 3

Continuous Time Bayesian Networks

In this chapter, we give a brief introduction to continuous time Bayesian networks (CTBNs).

A CTBN is a factorized representation of a more general dynamic process — a homogeneous

Markov process (HMP). To better understand the concepts and algorithms in CTBNs, we

review HMPs in Section 3.1. After that, we introduce CTBNs in Section 3.2. We then

discuss phase distributions and their correlations to CTBNs in Section 3.3.

3.1 Homogeneous Markov Process

A finite-state, continuous-time Markov process is often used to model the dynamics of a

system over time. It models both the temporal behavior — the expected amount of time that

the system stays on the current state, and the state transitional behavior — the distribution of

the target state upon transition. If the dynamics do not depend on time, such process is called

a homogeneous Markov process (HMP).

20

3.1.1 Representation

Let X be the state variable for the system, and let n be the cardinality of its state space X . An

HMP can be compactly modeled by a start distribution PX(0) and an intensity matrix QX .

PX(0) is a multinomial distribution over X indicating the probability of X starting at each

of the states. QX models the temporal and transitional behavior of the system:

QX =



−q11 q12 . . . q1n

q21 −q22 . . . q2n

...
...

qn1 qn2 . . . −qnn


.

qii is the intensity of X leaving state Xi. The duration of staying in the current state is

exponentially distributed with parameter qii. For example, the probability density function

of X staying in Xi for duration t is P (t) = qii exp(−qiit). The expected time of leaving the

state Xi is 1/qii.

qij is the intensity of X making a transition from the state Xi to Xj , when j 6= i. The

transition follows the multinomial distribution. The probability of transition from state Xi to

state Xj is θij =
qijP

k 6=i qik
.

In an HMP, the system can only transit to the states listed in the intensity matrix, and so

the intensity of leaving state Xi should be the same as all the intensities of the target states to

which the system can transit from Xi. In another words, the summation of each row of the

intensity matrix is always 0, or equivalently qii =
∑

i6=j qij .

21

3.1.2 Query over an HMP

The distribution over the state of the process X at some future time t, PX(t), can be computed

directly from QX. If PX(0) is the start distribution, then

PX(t) = PX(0) exp(QX · t) ,

where exp is matrix exponential, and PX is represented as a row vector.

It is easy to derive from the Markov property that for any time t1 < t2

PX(t2) = PX(t1) exp(QX · (t2 − t1)) .

3.1.3 Complete Data

Complete data for an HMP are represented by a set of trajectories D = {τ1, ...τn}. Each

trajectory τi is a complete set of state transitions: d = {(xd, td, x
′
d)}, meaning that X stayed

in state xd for a duration of td, and then transitioned to state x′d. Therefore we know the exact

state of the variable X at any time 0 ≤ t ≤ T .

3.1.4 Sufficient Statistics and Likelihood

Given an HMP and its full data D, the likelihood of a single state transition d = {(xd, td, x
′
d)} ∈

D is:

LX(q, θ : d) = (qxd
exp(−qxd

td))(θxdx′d
) .

22

The likelihood function for D can be decomposed by transition:

LX(q, θ : D) = (
∏
d∈D

LX(q : d))(
∏
d∈D

LX(θ : d))

= (
∏
x

qM [x]
x exp(−qxT [x]))(

∏
x

∏
x′ 6=x

θ
M [x,x′]
xx′) .

If we take the log of the above function, we get the log likelihood:

lX(q, θ : D) = lX(q : D) + lX(θ : D)

=
∑

x

(M [x] ln(qx)− qxT [x] +
∑
x′ 6=x

M [x, x′] ln(θxx′)) .

Here M [x, x′] and T [x] are the sufficient statistics of the HMP model. The sufficient

statistics for a model are the summarized statistics derived from observed data that are suf-

ficient to calculate the likelihood without having to revisit the data again. For example, for

a Bernoulli distribution with parameter p, the sufficient statistics for a set of observations is

just the count of number of 1’s and the total number of observations. For an HMP, M [x, x′]

is the number of times X transits from the state x to x′. We denote M [x] =
∑

x′ M [x, x′].

T [x] is the total duration that X stays in the state x. These sufficient statistics are summaries

of the trajectories in D.

23

3.1.5 Learning from Complete Data

To estimate the parameters of the transition intensity matrix Q, we maximize the above log

likelihood function. We have:

q̂x =
M [x]

T [x]
, θ̂xx′ =

M [x, x′]

M [x]
.

3.1.6 Incomplete Data

Incomplete data in HMP are composed of a set of partially observed trajectories D =

{τ−1 , ...τ−n }. Each trajectory τ−i consists of a set of d = {(Sd, td, dt)} observations, where

Sd is a subsystem (a nonempty subset of the states of X) of the process. Each of the triplets

specifies an “interval evidence.” It means that the variable X is in the subsystem Sd from

time td to time td + dt. Some of the observations may be duration-free. i.e., we only observe

X ∈ Sd at time t, but do not know how long it stayed there. This is called a “point evidence”

and can be generalized using the same triplet notation described above by setting the duration

to be 0. For a partially observed trajectory, we only observe sequences of subsystems, and

do not observe the state transitions within the subsystems.

3.1.7 Expected Sufficient Statistics and Expected Likelihood

We can consider possible completions of a partially observed trajectory that specify the tran-

sitions that are consistent with the partial trajectory. By combining the partial trajectory and

its completion, we get a full trajectory. We define D+ = {τ+
1 , ..., τ+

n } to be completions of

24

all the partial trajectories in D. Given a model, we have a distriubtion over D+, given D.

For data D+, the expected sufficient statistics with respect to the probability density over

possible completions of the data are T̄ [x], M̄ [x, x′] and M̄ [x]. The expected log likelihood is

E[lX(q, θ : D+)] = E[lX(q : D+)] + E[lX(θ : D+)]

=
∑

x

(M̄ [x] ln(qx)− qxT̄ [x] +
∑
x′ 6=x

M̄ [x, x′] ln(θxx′)) .

3.1.8 Learning from Incomplete Data

Expectation maximization (EM) algorithm is used to find the maximum likelihood parame-

ters from partial trajectory. The EM algorithm iterates over the following E step and M step

until the convergence on the derived likelihood function.

E step: Given the current HMP parameters, compute the expected sufficient statistics:

T̄ [x], M̄ [x, x′] and M̄ [x] for the data set D. This is the most complex part of the algorithm.

We have a detailed description for this step alone below.

M step: From the computed expected sufficient statistics, update the new model parame-

ters for the next EM iteration:

qx =
M̄ [x]

T̄ [x]
, θxx′ =

M̄ [x, x′]

M̄ [x]
.

Now we show how to calculate the expected sufficient statistics using the forward-backward

message passing method.

25

The entire trajectory τ ∈ D can be devided into N intervals where each of the interval

is separated by adjacent event changes. Assume the trajectory spans over the time interval

[0, T), and let τ [v, w] be the observed evidence between time v and w, including events on

the time stamp v and w, and let τ(v, w) be the same set of evidence but excluding v and w.

Let S be the subsystem the states are restricted on this interval.

We define

αi = P (Xt = i, τ [0, t]), βi = P (τ [t, T] | Xt = i)

Similarly, define the corresponding distribution that excludes certain point evidence as

following.

α−i = P (Xt = i, τ [0, t)), β+
i = P (τ(t, T] | Xt = i)

Denote δj be a vector of all 0’s except for its j-th position being 1, and denote ∆ij be a

matrix of all 0’s except that the element on i-th row and j-th column is 1.

We are now able to show the derived expected sufficient statistics.

E[T [x]] =

∫ T

0

P (Xt | τ [0, T])δxdt

=
1

P (τ [0, T])

N−1∑
i=0

∫ ti+1

ti

P (Xt, τ [0, T])δxdt

The constant fraction at the beginning of the last line serves to make the total expected

time over all j sum to τ .

26

The integral on each interval can be further expressed as

∫ w

v

P (Xt, τ [0, T])δxdt =

∫ w

v

αv exp(QS(t− v))∆xx exp(QS(w − t))βwdt ,

where QS is the same as QX except all elements that correspond to transitions to or from

S are set to 0.

E[M [x, x′]] =
qx,x′

P (τ [0, T])
[
N−1∑
i=1

α−ti∆x,x′β
+
t+i +

N−1∑
i=0

∫ ti+1

ti

αti exp(QS(t− ti))∆x,x′ exp(QS(ti+1 − t))βti+1
dt]

The integrals appearing in E[T] and E[M] can be computed via the standard ODE solver,

like the Runge-Kutta method (Press et al., 1992).

Now the only remaining problem is to calculate α and β. Let QSS′ be the transitioning

intensity matrix of the HMP from one subsystem S to another S ′. This matrix is the same as

QX , but only elements corresponding to transitions from S to S ′ are non-zero.

αti+1
= αti exp(QSi

(ti+1 − ti))QSiSi+1
,

βti = QSi−1Si
exp(QSi

(ti+1 − ti))βti+1
.

During this forward-backward calculation, it is also trivial to answer queries such as

P (Xt = x | τ [0, T]) =
1

P (τ)
α−t ∆xxβt .

27

3.1.9 Limitation

While HMPs are good for modeling many dynamic systems, they have their limitations when

the systems have multiple components and the state space grows exponentially as the number

of variables increases. An HMP does not model the variable independencies and therefore it

has to use a unified state X to represent the joint behavior of all the involving components

in the system. In the next section, we show how a continuous time Bayesian network can be

used to address this issue.

3.2 Continuous Time Bayesian Networks

Nodelman et al. (2002) extend the theory of HMPs and present continuous time Bayesian

networks (CTBNs), which model the joint dynamics of several local variables by allowing

the transition model of each local variable X to be a Markov process whose parametrization

depends on some subset of other variables U .

3.2.1 Definition

We first give an definition of an inhomogeneous Markov process called a conditional Markov

process. It is a critical concept for us to formally introduce the CTBN framework.

Definition 1 Nodelman et al. (2003) A conditional Markov process X is an inhomogeneous

Markov process whose intensity matrix varies as a function of the current values of a set of

discrete conditioning variables U . It is parametrized using a conditional intensity matrix

28

(CIM) QX|U – a set of homogeneous intensity matrices QX|u, one for each instantiation of

values u to U .

We call U , the parents of X . When the set of U is empty, the CIM is simply a standard

intensity matrix.

CIMs provide a way to model the temporal behavior of one variable conditioned on some

other variables. By putting these local models together, we have a joint structured model —

a continuous time Bayesian network.

Definition 2 Nodelman et al. (2003) A continuous time Bayesian networkN over X consists

of two components: an initial distribution P 0
X , specified as a Bayesian network B over a set of

random variables X, and a continuous transition model, specified using a directed (possibly

cyclic) graph G whose nodes are X ∈ X; UX denotes the parents of X in G. Each variable

X ∈ X is associated with a conditional intensity matrix, QX|UX
.

The dynamics of a CTBN are quantitatively defined by a graph. The instantaneous evo-

lution of a variable depends only on the current value of its parents in the graph. The quan-

titative description of a variable’s dynamics is given by a set of intensity matrices, one for

each value of its parents. That means the transition behavior of the variable is controlled by

the current values of its parents. If we amalgamate all the variables in the CTBN together,

we get a single homogeneous Markov process over the joint state space.

29

3.2.2 Learning

In the context of CTBNs, the model parameters consist of the CTBN structure G, the initial

distribution P0 parameterized by a regular Bayesian network, and the conditional intensity

matrices (CIMs) of each variable in the network. In this section, we assume the CTBN

structure is known to us, so we only focus on the parameter learning. We also assume the

model is irreducible. So the initial distribution P0 becomes less important in the context of

CTBN inference and learning, especially when the time range becomes significantly large.

Therefore, parameter learning in our context is to estimate the conditional intensity matrices

QXi|Ui
for each variable Xi, where Ui is the set of parent variables of Xi.

Learning from Complete Data

Complete data in a CTBN are represented by a set of trajectories D = {τ1, ...τn}. Each tra-

jectory τi is a complete set of state transitions and the times at which they occurred. Therefore

we know full instantiations to all the variable at any time.

Nodelman et al. (2003) presented an efficient way to learn a CTBN model from fully

observed trajectories.

With complete data, we know full instantiations to all the variables for the whole trajec-

tory. So we know which CIM is governing the transition dynamics of each variable at any

time. The sufficient statistics are M [x, x′|u] — the number of times X transits from the state

x to x′ given its parent instantiation u — and T [x|u] — the total duration that X stays in the

state x given its parent instantiation u. We denote M [x|u] =
∑

x′ M [x, x′|u].

30

The likelihood function for D can be decomposed to

LN (q, θ : D) =
∏

Xi∈X

LXi
(qXi|Ui

: D)LXi
(θXi|Ui

: D)) ,

Where

LX(qX|U : D) =
∏
u

∏
x

q
M [x|u]
x|u exp(−qx|uT [x|u]) ,

and

LX(θ : D) =
∏
u

∏
x

∏
x′ 6=x

θM
xx′|u[x, x′|u] .

If we put the above functions together and take the log, we get the log likelihood:

lX(q, θ : D) = lX(q : D) + lX(θ : D)

= [
∑
u

∑
x

M [x|u] ln(qx|u)− q[x|u]T [x|u]]

+[
∑
u

∑
x

∑
x′ 6=x

M [x, x′|u] ln(θxx′|u))]. (3.1)

By maximizing the above log likelihood function, the model parameters can be estimated

as

q̂x|u =
M [x|u]

T [x|u]
, θ̂xx′|u =

M [x, x′|u]

M [x|u]
.

31

Learning from Incomplete Data

Nodelman et al. (2005b) present the expectation maximization (EM) algorithm to learn a

CTBN model from partially observed trajectories D.

The expected sufficient statistics are M̄ [x, x′|u], the expected number of times that X

transits from state x to x′ when its parent set U takes the values u, and T̄ [x|u], the expected

amount of time that X stays in the state x under the same parent instantiation. We denote

M̄ [x|u] to be
∑

x′ M̄ [x, x′|u]. The expected log likelihood can be decomposed in the same

way as in Equation (3.1), except that the sufficient statistics M [x, x′|u], T [x|u] and M [x|u]

are now replaced with expected sufficient statistics M̄ [x, x′|u], T̄ [x|u] and M̄ [x|u].

The EM algorithm for a CTBN works essentially in the same way as for an HMP. The

expectation step is to calculate the expected sufficient statistics using inference method (will

be described in Section 3.2.3). The maximization step is to update the model parameters like

this:

q̂x|u =
M̄ [x|u]

T̄ [x|u]
, θ̂xx′|u =

M̄ [x, x′|u]

M̄ [x|u]
.

3.2.3 Inference

Now given a CTBN model and some observed data, we would like to query the model. This

task is usually called an inference problem. For example, calculating the expected sufficient

statistics given a model is an inference task.

32

Exact inference

Nodelman et al. (2005b) provide an exact inference algorithm using expectation maximiza-

tion to reason and learn the parameters from partially observed data. This exact inference

algorithm requires flattening all the variables into a single Markov process, and perform in-

ference as in an HMP. It has the problem that it makes the state space grow exponentially

large. Therefore, the exact inference method is only feasible for problems with very small

state spaces.

Approximate inference

Because of the issue addressed below, much work has been done on CTBN approximate

inference. Nodelman et al. (2005a) present an expectation propagation algorithm. Saria

et al. (2007) give another message passing algorithm that adapts the time granularity. Cohn

et al. (2009) provide a mean field variational approach. El-Hay et al. (2008) show a Gibbs

sampling method approach using Monte Carlo expectation maximization. Fan and Shelton

(2008) give another sampling based approach that uses importance sampling.

To estimate the parameters of the models we build for the two applications (NIDS and

HIDS), we employ inference algorithms including exact inference and a Rao-Blackwellized

particle filtering (RBPF) algorithm, depending on the model size. RBPFs have been widely

employed mainly in the area of vision and robot mapping. For example, Khan et al. (2004)

track a target in a clutter and Schulz et al. (2003) track people’s locations using a network of

sensors. Sim et al. (2007) summarize different models of RBPF for vision-based SLAM.

33

Doucet et al. (2000) propose the RBPF algorithm for dynamic Bayesian networks that

work in discrete time fashion by exploiting the structure of the DBN. They apply their method

on the problem of online regression and robot localization. Ng et al. (2005) extend RBPF to

continuous time dynamic systems and apply the method to the K-9 experimental Mars rover

at NASA Ames Research Center. Their model is a hybrid system containing both discrete and

continuous variable. They use particle filters for the discrete variables and unscented filters

for the continuous variable. Our work are similar to this work in the method of applying

RBPF to CTBNs, but our model contains only discrete variables and our evidence is over

continuous intervals.

3.3 Phase distributions

For a normal CTBN, the duration of variable X staying at state x given its parent instantiation

u is a simple exponential distribution with parameter qx|u. But in some applications the

duration is not exponentially distributed. Therefore, we need to use distributions that have

better expressive power than an exponential distribution. Phase distributions provide us a

natural way to model more complex durations.

3.3.1 Definition

The class of phase distributions is a highly flexible family. It models a (continuous time)

Markov process which evolves through a set of phases, terminating in an absorption state.

34

Each of these phases has an associated exponential distribution, which describes the duration

of time that the process stays in that phase. The model as a whole can be described as a

(possibly cyclic) graph of phases. The process transits through this graph, going through

some or all of these phases and finally leaves (to an absorbing state). The distribution of

when the process leaves this system is called a phase distribution.

Definition 3 A phase distribution of p phases is defined as the distribution over the time when

a homogeneous Markov process with a single absorbing state and p transient phases reaches

absorption (Neuts, 1975, 1981).

With a finite number of phases, any distribution with support contained entirely in the

positive real number line or something similar can be approximated with arbitrary precision

by a phase distribution (Neuts, 1975).

3.3.2 CTBN Durations as Phase Distributions

Nodelman et al. (2005b) show how to model the duration of a CTBN variable X as a phase

distribution by allowing a single state to have multiple phases. The phase distribution pa-

rameters of X depend on the state of its parent instantiation but not the phase of the parent

variables. If the parent instantiation changes, one might allow X in its current state to stay

in the same phase or to reset. A normal phase distribution has an absorption state which

indicates that the process leaves the system. But in this context, no absorption state is used.

The leaving intensity simply means that X has transited to a new state.

35

Instead of using a phase distribution to model the complex duration of X = x|u, we can

also introduce a hidden variable Hx as X’s new parent. Hx does not depend on X’s original

parents. We can amalgamate all the intensities of Hx and X into a single cluster node S, and

then use phase distribution to model X, with |V al(Hx)| phases per state. However, phase

distributions have more expressive power than using hidden variables in this case. By using

a hidden variable Hx, the amalgamated intensity matrix for S has to have 0’s for transitions

where more than one variable in S are changing. However, a general phase distribution does

not have this constraint.

3.3.3 Parameter learning

Now we introduce how to learn paramters for a phase distribution in general.

A phase distribution has three parameters:

• Number of phases: p, 0 < p < ∞

• Initial distribution: π, a p-dimensional column vector

• Transition model: Q, a p-by-p intensity matrix

We will assume p to be fixed (or given). We will learn π and Q from data. The inter-

pretation of π is relatively straight-forward. It is a distribution over the starting state for the

Markov chain. Its elements are all non-negative and they sum to 1. Q is more complicated

and has a few restrictions:

36

• Qii ≤ 0: Its absolute value is the intensity of leaving phase i. 1/|Qii| is the mean time

spent in state i.

• Qij ≥ 0: Its value is the intensity from phase i to phase j, for i 6= j. The ratio of Qij

to |Qii| is equal to the probability that state j will immediately follow state i.

• |Qii| ≥
∑

j 6=i Qij: The difference between the two sides of the inequality is the inten-

sity of a transition out of the system to the absorbing state.

The cumulative distribution and probability density of a phase distribution can respec-

tively be written as

F (τ) = 1− π>eQτ1, τ ≥ 0

f(τ) = −π>eQτQ1, τ ≥ 0 .

The exponentiation is the matrix exponential and the multiplications are matrix-vector

multiplications. 1 is the vector of all 1s.

We can employ the expectation-maximization (EM) algorithm (Dempster et al., 1977) to

find the parameters that maximize the likelihood of the data. This method first appeared in

Asmussen et al. (1996). We duplicate the final results here for clarity and completeness.

Each data point, τk, is the total time from starting the process until entering the absorbing

state. The hidden information is the sequence of transient states and the amount of time spent

in each one. For a phase distribution, the sufficient statistics are

• Ti: the amount of time spent in state i,

37

• Mij: the number of times the system transitioned from state i to state j,

• Mi: the number of times the system transitioned out of state i, and

• Ni: the number of times the system started in state i.

For this use of EM , the steps are as follows:

E-step: Given the phase distribution parameters π and Q, and the dataset D = {τ1, τ2, . . . , τS},

calculate the expected sufficient statistics: Ē[Ti|D], Ē[Mij|D], Ē[Mi|D], Ē[Ni|D].

M-step: Using the calculated expected sufficient statistics, update the parameters π and Q to

increase the likelihood of the data.

For the E-step, the sufficient statistics calculations can be performed as follows. We let

r = −Q1 and δi be a vector of all zeros except a single 1 in location i.

Ē[Ti|D] =
S∑

k=1

∫ τk

0
π>eQtδiδ

>
i eQ(τk−t)rdt

π>eQτkr

Ē[Mij|D] =
S∑

k=1

∫ τk

0
π>eQtδiQijδ

>
j eQ(τk−t)rdt

π>eQτkr

Ē[Mi|D] =
∑
j 6=i

Mij +
S∑

k=1

π>eQτkδiri

π>eQτkr

Ē[Ni|D] =
S∑

k=1

πiδ
>
i eQτkr

π>eQτkr

The integrals in these formulas can be computed via the Runge-Kutta method like those

for a general HMP (Press et al., 1992).

38

0 0.5 1 1.5 2 2.5 3 3.5 4
Connection duration time (seconds)

F
re

qu
en

cy

Figure 3.1: Example histogram of TCP connection durations for normal network traffic.

For the M-step, the maximizations are as follows.

πi =
Ē[Ni|D]

S

Qi = −Ē[Mi|D]

Ē[Ti|D]

Qij =
Ē[Mij|D]

Ē[Ti|D]
, i 6= j

3.3.4 Fitting Phase Distributions to Network Features

We discover that much work studying network traffic behavior assumes the connection dura-

tion times distributed exponentially. This is not always true. Figure 3.1 shows a histogram of

the connection times for normal network traffic from “The Forbidden City” dataset. Courtesy

of Intel. This distribution is multi-modal. Its non-exponential character attests to the inherent

39

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Connection duration time (seconds)

F
re

qu
en

cy

histogram

phase−−4

phase−−6

phase−−10

phase−−15

phase−−20

Figure 3.2: A comparison of the fit of phase distributions, varying the number of phases, p.

state within a TCP connection. The protocol itself has state, and obviously the communi-

cating computers have state of their own. This inspires us to use a more complex duration

model if we want to model the network features like connection times, for example, a phase

distribution.

EM for phase distributions is sensitive to the parameter initialization. The number of

parameters grows quadratically with the number of phases. Selecting a suitable value for p

is important. In Figure 3.2 we can see that an increase in the number of phases results in a

better fit. However, we must trade this off against an increase in the learning time and amount

of data required.

We follow the lead of Asmussen et al. (1996) and initialize the transition matrix, Q,

to be a Coxian distribution, a subclass of phase distributions, in which the graph of state

transitions forms a chain (with transitions to the absorption state possible from each phase).

40

0 0.1 0.2 0.3 0.4 0.5
Connection duration time (seconds)

F
re

qu
en

cy

histogram
Initial phase distribution
Converged phase distribution

Figure 3.3: Convergence for fitting phase distributions via EM.

We initialize the expected holding time for each state to be E[τ]/p. In order to allow the

learning to explore the full space of phase distributions, we add noise to elements of Q, thus

resulting in a general phase distribution. Our experiments shows that initializing Q as an

approximate Coxian distribution leads us faster convergence. Figure 3.3 demonstrates the

effects of the EM procedure by illustrating the model fit after initialization and then after the

full EM algorithm.

Other models have also been employed on network traffic data. The Erlang distribution

is widely used in the field of stochastic processes. Erlang distributions are a subclass of

phase distributions in which the graph of state transitions forms a chain and no state, except

the last one, can lead to the absorbing state. The probability density function of an Erlang

distribution with parameters k and λ is f(x; k, λ) = λkxk−1e−λx

(k−1)!
, for x > 0. When k = 1,

the Erlang distribution simplifies to an exponential distribution. The Levy distribution, which

41

0 0.5 1 1.5 2 2.5 3 3.5 4
Connection duration time (seconds)

F
re

qu
en

cy

histogram
phase
Erlang
exponential
Levy

Figure 3.4: Empirical distribution and model fit for host1.

is one of the few stable distributions, is skewed and heavy tailed. It has also been used for

describing the underlying distribution of network traffic duration time. Its density function is

f(x; c) =
√

c
2π

e−c/2x

x3/2 with parameter c.

We fit the Erlang, exponential, and Levy distributions separately on our real data and

compare their fitting results with phase distribution. Figures 3.4 and 3.5 demonstrate the

flexibility of phase distribution. The two figures are for different hosts. Note that the phase

distribution fits either dataset well, while no other distribution works well for both. The Levy

distribution is a particularly poor fit because it is heavy-tailed and thus the parameter c is

chosen based mainly on the tails of the empirical distribution.

We also try to fit a phase distribution on other network features, for example, the number

of connections within a time window (Agosta et al., 2007a). Figure 3.6 shows that the fit is

also good. All these experiments not only demonstrate the expressive ability of phase distri-

42

0 0.5 1 1.5
Connection duration time (seconds)

F
re

qu
en

cy

histogram
phase
Erlang
exponential
Levy

Figure 3.5: Empirical distribution and model fit for host2.

Figure 3.6: Fitting a phase distribution to connection counts within a window

43

butions, but also motivate us to use complex duration models other than a simple exponential

distribution to describe computer activity features.

As mentioned earlier in Section 3.3.2, using a phase distribution to model the durations

of a variable is equivalent to introducing a hidden variable as a parent. Therefore, we can also

build a CTBN model containing the computer activity, i.e. connection times, as a variable,

and add a hidden variable as its parent. In this way, the duration of the variable is conditioned

on its parent instantiation and is no longer marginally exponentially distributed. We will

demonstrate how we build such a CTBN model in the following chapter.

44

Chapter 4

NIDS - Basic Model and Inference

In this chapter, we describe our approach for network intrusion detection using network data

(NIDS). We employ CTBNs to model the normal TCP packet header traces of a single host,

and flag possible intrusions based on the deviation of its future traces from this norm. We

build two detectors that employ different CTBN models: a factored one and a connected one.

In Section 4.1, we present the factored model and how we learn its parameters. In Section

4.2, we present the connected model and its parameter estimation. In Section 4.3 we describe

how to detect intrusions based on the model we build.

4.1 A Factored CTBN Model

Our first successful detector uses a factored CTBN model to describe the network traffic (Xu

and Shelton, 2008).

45

PORT DESCRIPTION
80 World Wide Wed HTTP
139 NETBIOS Session Service
443 HTTP protocol over TLS/SSL
445 Microsoft-DS
1863 MSNP
2678 Gadget Gate 2 Way
1170 AT+C License Manager
110 Post Office Protocol - Version 3

Figure 4.1: Ranking of the most frequent ports on LBNL dataset

PORT DESCRIPTION
80 World Wide Web HTTP
8080 HTTP Alternate
443 HTTP protocol over TLS/SSL
113 Authentication Service
5101 Talarian TCP
995 pop3 protocol over TLS/SSL
51730 unknown
59822 unknown

Figure 4.2: Ranking of the most frequent ports on WIDE dataset.

4.1.1 CTBN Model for Network Traffic

As described in Section 3.2, CTBNs are well suited for describing such structured stochastic

processes with finitely many states that evolve over continuous time. By using a CTBN to

model the network traffic activities, we can capture the complex context of network behaviors

in a meaningful and hierarchical way.

A typical machine in the network may have diverse activities with various service types

(e.g. HTTP, mail server). Destination port numbers describe the type of service a particular

network activity belongs to. Some worms usually propagate malicious traffic towards certain

well known ports to affect the quality of the services who own the contact ports. By looking

46

Figure 4.3: CTBN port level submodel; the whole model contains 9 of such submodels.

at traffic associated with different ports we are more sensitive to subtle variations that do

not appear if we aggregate trace information across ports. Figure 4.1 and Figure 4.2 show

the most popular ports ranked by their frequencies in the network traffic on the datasets we

use (described in more depth later). These services are, to some extent, independent of each

other. We therefore model each port’s traffic with its own CTBN submodel.

Inside our port-level submodel, we have the fully observed node C — the number of

concurrent connections active on the host — and nodes packet-in Pi and packet-out Po —

the transmission of a packet to or from the host. Pi and Po have no intrinsic state: the

transmission of a packet is an essentially instantaneous event. Therefore they have events (or

“transitions”) without having state. We discuss this further in the next subsection.

To allow complex duration distributions for the states of variables, we introduce another

47

two nodes H and U . U is a partially observed variable which we call the mode whose state

indicates whether the model can next send a packet, receive a packet, start a new connection,

or terminate a connection. It therefore has four states, and we limit the conditional rates

of the observed variables (C, Po, and Pi) to be zero if the current mode differs from the

variable’s activity type. Therefore, U is observed when an event in C, Po and or Pi occurs,

but is unobserved between events.

H is a hidden variable that models the internal state and intrinsic features of the host

machine. For the experiments we show later, we let H be a binary process. While the arrival

times for events across an entire CTBN are distributed exponentially (as the entire system is

Markovian), once certain variables are unobserved (like H), the marginal distribution over

the remaining variables is no longer Markovian. These nodes make up the structure shown

in Figure 4.3. We feel this model represents a good balance between descriptive power and

tractability. If the model contains more variables, exact inference will become intractable

because its state space grows exponentionally with the number of nodes.

4.1.2 Adding Toggle Variables to CTBNs

As mentioned above, the variables Po and Pi do not have state, but rather only events. To

describe such transitionless events, we set Po and Pi to be “toggle variables.” That is, they

have two indistinguishable states. As a binary variable, they have two parameters for each

parent instantiation (the rate of leaving state 0 and the rate of leaving state 1) and we require

these two parameters to be the same. A packet event, therefore, consists of flipping the state

48

Figure 4.4: The equivalent CTBN port level submodel

of the corresponding packet variable.

The concurrent connection count variable, C, also poses a slight modeling problem for

CTBNs. As originally presented, CTBNs can only deal with finite-domain variables. Al-

though most of the operating systems do have a limit on the number of concurrent connec-

tions, this number can potentially be extremely large. Our traffic examples do exhibit a wide

range of concurrent connection counts. We tried quantizing C into fixed bins, but the results

were fairly poor. We instead note that C can only increase or decrease by one at any given

event (the beginning or ending time of a connection). Furthermore, we make the assumption

that the arrival of a new connection and the termination of an existing connection are both

independent of the number of other connections. This implies that the intensity with which

49

some connection starts (stops) is same as any other connections. C is thus a random walk

constrained to the non-negative integers.

Let Qinc be the intensity for the arrival of a new connection, and Qdec be the intensity

for the termination of a new connection. Let Qchange = Qdec + Qinc. The resulting intensity

matrix has the form:

QC|m =



. . .

0 Qdec −Qchange Qinc 0 · · ·

· · · 0 Qdec −Qchange Qinc 0 · · ·

· · · 0 Qdec −Qchange Qinc 0

. . .


.

Note that the only free parameters in the above matrix are Qinc and Qdec. Therefore, this

model is the same as one in which we replace C with two toggle variables Cinc and Cdec. Cinc

and Cdec operate like Po and Pi above: their exact state does not matter, it is the transition

between states that indicates an event of interest. The model structure is shown in Figure 4.4.

4.1.3 An Extended CTBN Model

CTBN models assume that no two variables change at exactly the same instant. However,

we might like U and H to change at the same time. As they both represent abstract con-

cepts, there is no physical reason why they should not change simultaneously (they represent

different abstract attributes about the machine’s internal state).

50

Figure 4.5: The extended CTBN port level submodel

The model in Figure 4.4 has 36 independent parameters.1 Allowing U and H to change

simultaneously requires introducing 24 new parameters: for each of the 8 states for U and H

there are 3 new transition possibilities.

Equivalently, we can use the CTBN model shown in Figure 4.5 where H now has 8 states.

However, this diagram does not demonstrate all of the structure. The toggle variables (Po,

Pi, Cinc, and Cdec) are each allowed to change only for 2 of the states of H (the two that

corresponded to U from the previous model having the correct mode) and they are required

to have the same rate for both of these states.

We have also considered other extensions to the model. For instance, it might be natural

1Each toggle has only 1 because it can only change for one setting of U . An intensity matrix for U has 12
independent parameters for each of the two values of H and similarly H has 2 independent parameters for each
of the four values of U .

51

to allow the packet rate to have a linear dependence on the number of connections. However,

in practice, this extension produced worse results. It seems that the rate is more of a function

of the network bandwidth and the currently transmitting application that generates packets

than the number of concurrent connections on a port.

4.1.4 Parameter Estimation

Our partially observed trajectory (H is unobserved, U is partially observed) specifies a se-

quence of subsystems of this process, each with an associated duration. We use the ex-

pectation maximization (EM) algorithm to estimate the parameters (see Chapter 3 for more

details).

The ESS for any variable X in a CTBN are T̄X|U[x|u], the expected amount of time X

stays at state x given its parent instantiation u, and M̄X|U[x, x′|u], the expected number of

transitions from state x to x′ given X’s parent instantiation u.

For our new types of variables (toggle variables) Pi, Po, Cinc and Cdec, we need to derive

different sufficient statistics. They are quite similar so we just take Pi as an example. Let

UPi
be its parent U ’s instantiation when event Pi can happen. The ESS we need are M̄Pi|UPi

:

the expected number of times Pi changes conditioned on it parent instantiation UPi
. Since

event Pi can only occur when U = Upi
, the ESS M̄Pi|UPi

is just MPi
, the total number of

times Pi changes. We also need the total expected amount of time that packet-in occurred

while U = Upi
.

In EM, we use the ESS as if they were the true sufficient statistics to maximize the like-

52

lihood with respect to the parameters. For a “regular” CTBN variable X (such as our hidden

variable H and M), the following equation performs the maximization.

QX |u(x, x′) =
M̄ [x, x′|u]

T̄ [x|u]

For our new toggle variable, i.e. Pi, the maximization is

QPi|u =
MPi

T [U = u]

The above sufficient statistics can be calculated using the exact inference algorithm of

Nodelman et al. (2005b).

4.2 A Connected CTBN Model

A second successful detector we build uses a connected CTBN model.

4.2.1 CTBN Model for Network Traffic

We use the same port-level submodel as our extended factored model (see Section 4.1.3). We

have a latent variable H , which has 8 states that represent different abstract attributes about

the machine’s internal state, and four fully observed toggle variables: Pin, Pout, Cinc, Cdec,

which are each allowed to change only for 2 of the states of H and required to have the same

rate for both of these states.

53

G

H

Pin CdecPout Cinc

N

Figure 4.6: CTBN model for network traffic as a plate model. N is the number of port.

In the factored model described earlier, we assumed that the traffic associated with dif-

ferent ports are independent of each other, so the port-level submodels are isolated. Here we

remove this restriction by introducing another latent variable G that ties the port submodels

together. Figure 4.6 shows the full model as a duplication of N such plate models.

4.2.2 Parameter Learning using RBPF

To calculate the expected sufficient statistics in the E-step of EM for parameter learning, the

exact inference algorithm in Nodelman et al. (2002) flattens all the variables into a joint

intensity matrix and reasons about the resulting homogeneous Markov process. The time

complexity is exponential in the number of variables. For example, if there are 9 port models,

the network contains 46 variables in total.

54

We notice that our model has a nice tree structure which makes Rao-Blackwellized parti-

cle filtering (RBPF) a perfect fit. RBPF uses a particle filter to sample a portion of the vari-

ables and analytically integrates out the rest. It decomposes the model structure efficiently

and thus reduces the sampling space.

We denote τ as the whole observed traffic sequences on the particular host, and τj as

the traffic associated with port j. If we denote N port-level hidden variables as H1, ..., HN ,

the posterior distribution of the whole model can be factorized as P (G, H1, ..., HN | τ) =

P (G | τ)
∏N

i=1 P (Hi | G, τ). We use a particle filter to estimate G’s conditional distribution

P (G | τ) as a set of sampled trajectories of G. It is difficult to sample directly from the

posterior distribution. We use an importance sampler to sample a particle from a proposal

distribution and the particles are weighted by the ratio of its likelihood under the posterior

distribution to the likelihood under the proposal distribution (Fan and Shelton, 2008). Since

the variable G is latent and has no parents, we can use forward sampling to sample the

particles from P (G). Each port-level submodel is then independent from the rest of the

network, given full trajectory of G.

The expected sufficient statistics (ESS) for any variable X in a CTBN are T̄X|U[x|u], the

expected amount of time X stays at state x given its parent instantiation u, and M̄X|U[x, x′|u],

the expected number of transitions from state x to x′ given X’s parent instantiation u. Let

gi ∼ P (G), i = 1, . . . ,M be the particles. We define their likelihood weights to be wi =

P (gi|τ)
P (gi)

and let W =
∑

i wi be the sum of the weights. Then general importance sampling

allows that an expected sufficient statistic can be estimated in the following way, where SS

55

is any sufficient statistic.

E(g,h1,...,hN)∼P (G,H1,...,HN |τ)[SS(g, h1, . . . , hN)]

= Eg∼P (G|τ)Eh1,...,hN∼P (H1,...,HN |g,τ)[SS(g, h1, . . . , hN)]

≈ 1

W

∑
i

wiEh1,...,hN∼P (H1,...,HN |gi,τ)[SS(gi, h1, . . . , hN)]

The expected sufficient statistics of the whole model are in two categories: those that de-

pend only on g, ESS(g), and those that depend on a port model k, ESS(g, hk, τk). ESS(g)

is simply the summation of counts (the amount of time G stays at some state, or the number

of times G transits from one state to another) from the particles, weighted by the particle

weights:

Eg∼P (G|τ)[SS(g)] ≈
∑

i wiSS(gi)

W

ESS(g, hk, τk) can be calculated for each submodel independently:

Eg,h1,...,hN∼P (G,H1,...,HN |τ)[SS(g, hk, τk)]

≈ 1

W

∑
i

wi

∫
hk

P (hk|gi, τk)SS(gi, hk, τk)dhk

=
1

W

∑
i

∏
j P (τj|gi)

P (τ)

∫
hk

P (hk|gi, τk)SS(gi, hk, τk)dhk

∝ 1

W

∑
i

∏
j 6=k

P (τj|gi)

∫
hk

P (hk, τk|gi)SS(gi, hk, τk)dhk

∝ 1

W

∑
i

wi

∫
hk

P (hk, τk|gi)SS(gi, hk, τk)dhk

56

Function Wholemodel Estep
input: current model θt, evidence τ
output: Expected sufficient statistics ESS
ESS := {ESS(g), ESS(s1, g), . . . , ESS(sn, g)}
Initialize ESS as empty
For each particle gi ∈ {g1, . . . , gM}, gi ∼ P (G | τ)

For each Sj ∈ {S1, . . . , SN}
[P (τj|gi), ESS(sj, g

i)] = Submodel Estep(gi, θt[Sj], τj)
For each Sj ∈ {S1, . . . , SN}

ESS(sj, g) = ESS(sj, g) + wi × ESS(sj, g
i)

ESSgi = CountGSS(gi)
ESS(g) = ESS(g) + wi × ESSgi

Return ESS

Figure 4.7: Rao-Blackwellized particle filtering Estep for the whole model

where wi =
∏

j 6=k P (τj|gi).

P (τj|gi) and
∫

hk
P (hk, τk|gi)SS(gi, hk, τk)dhk can be calculated using the technique de-

scribed in Chapter 3 for exact ESS calculation.

The full E-step algorithm is shown in Figure 4.7 (sk represents all of the variables in

submodel k). Function Submodel Estep calculates the expected sufficient statistics and the

likelihood for a subnet model. Since we sampled the full trajectory of G, we know exactly

for each interval which conditional intensity matrix of the hidden variable H should be used,

so a modified forward-backward exact inference algorithm for CTBNs can be used. Function

CountGSS counts the empirical time and transition statistics from the sampled trajectory of

G.

In EM, we use the ESS as if they were the true sufficient statistics to maximize the like-

lihood with respect to the parameters. For a “regular” CTBN variable X (such as our hidden

57

variable G and H), the following equation performs the maximization.

QX|u(x, x′) =
M̄ [x, x′|u]

T̄ [x|u]

For our toggle variables, e.g. Pi, the maximization is

QPi|u =
MPi

T [U = u]

where MPi
is the number of events for variable Pi and QPi|u is the only parameter: the rate

of switching.

We synchronize the particles at the end of each “window” and resample, as normal for a

particle filter at those points.

4.3 Online Testing using Likelihood

Once the CTBN model has been fit to historic data, we detect attacks by computing the

likelihood of a window of the data (see Section 5.1) under the model. If the likelihood falls

below a threshold, we flag the window as anomalous. Otherwise, we mark it as normal.

In our experiments, we fix the window to be of a fixed time length, Tw. Therefore, if the

window of interest starts at time T , we wish to calculate p(τ [T, T+Tw] | τ [0, T]) where τ [s, t]

represents the joint trajectory of Cinc, Cdec, Pi, and Po from s to t. In the factored model, this

calculation involves integrating out the trajectories of U and H and can be done in an on-line

58

fashion using the standard forward passing inference algorithm (Nodelman et al., 2002). In

the connected model, we use a RBPF to estimate this probability.

59

Chapter 5

NIDS - Experiment Results

In this chapter, we present our experiment results of NIDS on real data using the approaches

described in Chapter 4.

5.1 Datasets

We verify our approach on two publicly available real network traffic trace repositories: the

MAWI working group backbone traffic (MAWI) and the LBNL/ICSI internal enterprise traf-

fic (LBNL).

The MAWI backbone traffic is part of the WIDE project which has collected raw daily

packet header traces since 2001. It records the network traffic through the inter-Pacific tun-

nel between Japan and the USA. The dataset uses tcpdump and IP anonymizing tools to

record 15-minute traces every day, and consists mostly of traffic from or to Japanese univer-

sities. In our experiment, we use the traces from January 1st to 4th of 2008, with 36,592,148

60

connections over a total time of one hour.

The LBNL traces are recorded from a medium-sized site, with emphasis on characterizing

internal enterprise traffic. Publicly released in an anonymized form, the LBNL data collects

more than 100 hours network traces from thousands of internal hosts. From what is publicly

released, we take one hour traces from January 7th, 2005 (the latest date available), with

3,665,018 total connections.

5.2 Worm Detection

We start with the problem of worm detection. For each of the datasets, we pick the ten most

active hosts. To create a relatively abundant dataset based on the original packet traces, we

constructed training-testing set pair for each IP address. We use the first half as a training set

to learn the CTBN model. The other half we save for testing. Since the network data available

are clean traffic with no known intrusions, we inject real attack traces into the testing data.

In particular, we inject IP Scanner, W32.Mydoom, and Slammer. We then slide a fixed-time

window over the testing traces, report a single log-likelihood value for each sliding window,

and compare it with a predefined threshold. If it is below the threshold, we predict it as an

abnormal time period. We define the ground truth for a window to be abnormal if any attack

traffic exists in the interval, and normal otherwise. The window size we use is 50 seconds.

We only consider windows that contain at least one network event.

When injecting the attack traffic, we randomly pick a starting point somewhere in the first

61

half of the test trace and insert worm traffic for a duration equal to α times the length of the

full testing trace. The shorter α is, the harder it is to detect the anomaly. We also scale back

the rates of the worms. When running at full speed, a worm is easy to detect for any method.

When it slows down (and thus blends into the background traffic better), it becomes more

difficult to detect. We let β be the scaling rate (e.g. 0.1 indicates a worm running at one-tenth

of its normal speed).

5.2.1 Results of the Factored Model

We compare our CTBN approach against the connection counting method, the nearest neigh-

bor algorithm used in Lazarevic et al. (2003), and the adaptive naive Bayes approach of

Agosta et al. (2007b).

The connection counting method is straightforward. We score a window by the number

of initiated connections in the window. As most worms aggregate many connections in a

short time, this method captures this particular anomaly well.

To make nearest neighbor competitive, we try to extract a reasonable set of features. We

follow the feature selection of Lazarevic et al. (2003), who use a total of 23 features. Not all

of their features are available in our data. Those available are shown in Figure 5.1. Notice

that these features are associated with each connection record. To apply the nearest neighbor

method to our window based testing framework, we first calculate the nearest distance of

each connection inside the window to the training set (which is composed of normal traffic

only), and assign the maximum among them as the score for the window, recall that high

62

packets flowing from source to destination
packets flowing from destination to source
connections by the same source in the last 5 seconds
connections to the same destination in the last 5 seconds
different services from the same source in the last 5 seconds
different services to the same destination in the last 5 seconds
connections by the same source in the last 100 connections
connections to the same destination in the last 100 connections
connections with the same port and source in the last 100 connections
connections with the same port and destination in the last 100 connections

Figure 5.1: Features for nearest neighbor approach

scores indicate abnormality.

Finally, we employ the adaptive naive Bayes approach of Agosta et al. (2007b), which

showed promising results on similar problems. We also follow the feature selection they

presented, although not all of them are available in our dataset. To train the Naive Bayes

network parameters, we use five available features: the number of new connections in the

previous three windows and the entropy of the number of distinct destination IPs and ports

in the current window. All the features are discretized into six evenly spaced bins. These

features are not exactly the same as those from the nearest neighbor. Each method was tuned

by the authors to work as well as possible, so we try to follow each of their methodologies as

best as possible to give a fair comparison; this includes the selection of features.

Figure 5.2 compares the ROC curve for our method to those of the other methods for

the IP scanning attack. The “CTBN” model is the one described in Section 6.2.2, where

the hidden variable H and the mode variable U are two distinct variables in the network,

while the “CTBN, extended” model is the one described in Section 4.1.3, where we allow

63

M
A

W
I

α = 0.2, β = 0.01 α = 0.2, β = 0.001

L
B

N
L

α = 0.2, β = 0.01 α = 0.2, β = 0.001

Figure 5.2: ROC curves of testing results on IP scanning attack. Top: MAWI. Bottom:
LBNL.

simultaneous transitions for H and U . The curves show the overall performance on the 10

hosts we chose for each dataset. α represents the fraction of time during which the attack is

present and β represents the speed of the attack. The curves demonstrate that as the attack

becomes more subtle (β is smaller), our method performs relatively better compared with

other methods. Figures 5.3 and 5.4 show the same curves but for the Mydoom and Slammer

attacks.

Each point on the curve corresponds to a different threshold of the algorithm. Because

64

M
A

W
I

α = 0.2, β = 0.01 α = 0.2, β = 0.001

L
B

N
L

α = 0.2, β = 0.01 α = 0.2, β = 0.001

Figure 5.3: ROC curves of testing results on Mydoom attack. Top: MAWI. Bottom: LBNL.

attacks are relatively rare, compared to normal traffic, we are most interested in the region of

the ROC curve with small false positive rates.

We note that our method out performs the other algorithms consistently for the MAWI

dataset. For the LBNL dataset, with the Mydoom and Slammer attacks, some of the other

methods have better performance, in particular a simple connection counting method per-

forms the best. We are uncertain of the exact reason, but suspect it may be due to differences

in the traffic type (in particular, the LBNL data comes from enterprise traffic). The addition of

65

M
A

W
I

α = 0.2, β = 0.01 α = 0.2, β = 0.001

L
B

N
L

α = 0.2, β = 0.01 α = 0.2, β = 0.001

Figure 5.4: ROC curves of testing results on Slammer attack. Top: MAWI. Bottom: LBNL.

a hidden variable to our model allows us to model non-exponential durations. However, the

complexity of such a phase-type distribution depends on the number of states in the hidden

variable. If there are not enough states to model the true duration distribution, the algo-

rithm may end up with an exponential model (at least for some events). Exponential models

do not disfavor (in terms of likelihood) many quick transitions, compared to heavier tailed

distributions. This might lead to worse performance in exactly the same situations where a

connection-count method would work well.

66

5.2.2 Results of the Connected Model

We notice that in the experimental results for the factored model, adaptive Naive Bayes al-

gorithm is outperformed by the other methods in most cases. So we drop this method. We

compare our method employing RBPF with our previous factored CTBN model, connection

counting, nearest neighbor, Parzen-window detector (Yeung and Chow, 2002), and one-class

SVM with a spectrum string kernel (Leslie et al., 2002).

We use the same method for connection counting and nearest neighbor as described in

5.2.1. For the Parzen window approach, we apply the same feature set as for nearest neighbor

method, and assign the minimum density among all the connections inside a window to be

the score of that window.

Besides the above feature-based algorithms, we would also like to see how sequence-

based approaches compare against our methods. They are widely used in network anomaly

detection. Like our approach, they treat the traffic traces as stream data so that sequential

contexts can be explored. One-class SVM with spectrum string kernel was chosen for com-

parison. We implemented a spectrum kernel in the LIBSVM library. We give the network

activities (such as a connection starting or ending, or a packet emmision or receipt) inside

each port-level submodel a distinct symbol. The sequence of these symbols are fed to the

algorithm as inputs. A decision surface is trained from normal training traffic. In testing,

for each sliding window, the distance from this window string to the decision hyperplane is

reported as the window score. We also tried experiments using the edit distance kernel, but

their results are dominated by the spectrum kernel, so we do not report them here.

67

IP
Sc

an
ni

ng

0 0.02 0.04 0.06 0.08 0.10

0.2

0.4

0.6

0.8

1

False Positive Rate

Tr
ue

 P
os

itiv
e

Ra
te

Nearest Neighbor
Connection Count
Parzen Window
SVM−Spectrum
CTBN, factored
CTBN, RBPF−10

0 0.02 0.04 0.06 0.08 0.10

0.2

0.4

0.6

0.8

1

False Positive Rate

Tr
ue

 P
os

itiv
e

Ra
te

Nearest Neighbor
Connection Count
Parzen Window
SVM−Spectrum
CTBN, factored
CTBN, RBPF−10

M
yd

oo
m

0 0.02 0.04 0.06 0.08 0.10

0.2

0.4

0.6

0.8

1

False Positive Rate

Tr
ue

 P
os

itiv
e

Ra
te

Nearest Neighbor
Connection Count
Parzen Window
SVM−Spectrum
CTBN, factored
CTBN, RBPF−10

0 0.02 0.04 0.06 0.08 0.10

0.2

0.4

0.6

0.8

1

False Positive Rate

Tr
ue

 P
os

itiv
e

Ra
te

Nearest Neighbor
Connection Count
Parzen Window
SVM−Spectrum
CTBN, factored
CTBN, RBPF−10

Sl
am

m
er

0 0.02 0.04 0.06 0.08 0.10

0.2

0.4

0.6

0.8

1

False Positive Rate

Tr
ue

 P
os

itiv
e

Ra
te

Nearest Neighbor
Connection Count
Parzen Window
SVM−Spectrum
CTBN, factored
CTBN, RBPF−10

0 0.02 0.04 0.06 0.08 0.10

0.2

0.4

0.6

0.8

1

False Positive Rate

Tr
ue

 P
os

itiv
e

Ra
te

Nearest Neighbor
Connection Count
Parzen Window
SVM−Spectrum
CTBN, factored
CTBN, RBPF−10

MAWI LBNL

Figure 5.5: ROC curves of testing results on IP scanning attack, Mydoom attack and Slammer

attack. β = 0.001. Top: MAWI. Bottom: LBNL.

68

For our method, we set the state space of variable G to be 4 and variable H to be 8.

We use 10 samples for particle filtering, and resample the particles after every 50 seconds.

For the SVM spectrum kernel method, we choose the sub-sequence length to be 5 and the

parameter ν to be 0.8. We set α to be 0.02 for all the experiments here to challenge the

detection tasks.

0 0.02 0.04 0.06 0.08 0.10

0.2

0.4

0.6

0.8

1

False Positive Rate

Tr
ue

 P
os

itiv
e

Ra
te

Connection Count
CTBN, RBPF−10

0 0.02 0.04 0.06 0.08 0.10

0.2

0.4

0.6

0.8

1

False Positive Rate

Tr
ue

 P
os

itiv
e

Ra
te

Connection Count
CTBN, RBPF−10

Figure 5.6: ROC curves of testing results for Slammer attack on MAWI dataset demonstrating

the effect of slowing the attack rate. Left: β = 0.01. Right: β = 0.001

We show the ROC curves of all the methods in Figure 5.5. The curves show the overall

performance on the 10 most active hosts for each dataset. Each point on the curves corre-

sponds to a different threshold of the algorithm. Our CTBN method, both the fully connected

model and the factored model, out-performs the other algorithms except in the single case

of the Mydoom attack against a background of the LBNL traffic. In many cases, the advan-

tages of the CTBN approach are pronounced. The connected model is outperformed by the

factored model when the false positive rate goes higher. But if we restrict the false positive

rate to be lower. i.e. less than 0.01, the connected model is more accurate. In real-world

69

detection, a small false positive rate is usually preferred.

We also show how the ROC curves shift if we scale back the worm running speed β

in Figure 5.6. As firewalls are built to be more sensitive to block malicious traffic, worms

have to act more stealthy to sneak through. We demonstrate the robustness of our method

compared to the best competitor (connection counts) to the speed of the worm’s attack.

5.3 Host Identification

Identifying individual hosts based on their network traffic patterns is another useful applica-

tion of our model. For instance, a household usually installs a network router. Each family

member’s computer is connected to this router. To the outside Internet, the network traffic

going out of the router behaves as if it is coming from one peer, but it is actually coming from

different people. Dad will possibly read sports news while kids surf on social networks. It is

interesting as well as useful to tell which family member is contributing the current network

traffic. Host identification can also be used to combat identity theft. When a network identity

is abused by the attacker, host identification techniques can help the network administrator

tell whether the current network traffic of this host is consistent with its usual pattern or not.

70

Host 1 2 3 4 5 6 7 8 9 10

1 0.09 0.41 0.47 0 0 0 0 0.03 0 0

2 0.06 0.50 0.31 0 0 0.13 0 0 0 0

3 0 0 1 0 0 0 0 0 0 0

4 0 0 0 1 0 0 0 0 0 0

5 0 0.08 0.13 0 0.68 0.06 0.03 0.01 0 0.01

6 0 0.20 0.03 0 0.01 0.74 0 0.02 0 0

7 0.25 0 0.06 0.02 0 0 0.66 0 0 0.01

8 0 0.08 0.28 0 0 0.05 0 0.59 0 0

9 0.04 0.05 0.13 0.01 0.01 0.01 0.02 0 0.73 0

10 0 0.03 0.18 0.01 0 0.15 0.03 0.03 0 0.57

Figure 5.7: Confusion matrix for LBNL for host identification using CTBN

The first set of experiments we construct is a host model fitting competition. The same 10

hosts picked for the worm detection tasks from LBNL dataset compose our testing pool. We

learn the coupled CTBN model for each host. We split the test traces (clean) of a particular

host into segments with lengths of 15 seconds. For each of the segments, we compute the

log-likelihood of the segment under the learned model from all the hosts (including its own),

and label the segment with the host that achieves the highest value. We compute a confusion

matrix C whose element Cij equals the fraction of test traces of host i for which model j has

highest log-likelihood. We expect to see the highest hit rates fall on the diagonals because

71

ideally a host should be best described by its own model. Table 5.7 shows our results on

the dataset of LBNL. The vast majority of traffic windows are assigned to the correct host.

With the exception of host 1, the diagonals are distinctly higher than other elements in the

same row. For comparison, we performed the same experiment using SVM spectrum kernel

method. Again, we selected the sub-sequence length to be 5 and the parameter ν to be 0.8.

We tried multiple methods for normalization (of the distance to the hyperplane) and variations

of parameters. All produced very poor results with almost all of the windows assigned to a

single host. The results are shown in Table 5.8.

Host 1 2 3 4 5 6 7 8 9 10

1 0.93 0 0 0 0 0 0 0 0 0.07

2 0.57 0 0 0 0 0 0 0 0 0.43

3 0.5 0 0 0 0 0 0 0 0 0.5

4 0.5 0 0 0 0 0 0 0 0 0.5

5 0.52 0 0 0 0 0 0 0 0 0.48

6 0.36 0 0 0 0 0 0 0 0 0.64

7 0.59 0 0.08 0 0 0 0 0 0 0.33

8 0.44 0 0 0 0 0 0 0 0 0.56

9 0.59 0 0 0 0 0 0 0 0 0.41

10 0.51 0 0 0 0 0 0 0 0 0.49

Figure 5.8: Confusion matrix for LBNL for host identification using SVM Spectrum kernel

72

0 0.02 0.04 0.06 0.08 0.10

0.2

0.4

0.6

0.8

1

False Positive Rate

Tr
ue

 P
os

itiv
e

Ra
te

Nearest Neighbor
Connection Count
Parzen Window
SVM−Spectrum
CTBN, factored
CTBN, RBPF−10

0 0.02 0.04 0.06 0.08 0.10

0.2

0.4

0.6

0.8

1

False Positive Rate

Tr
ue

 P
os

itiv
e

Ra
te

Nearest Neighbor
Connection Count
Parzen Window
SVM−Spectrum
CTBN, factored
CTBN, RBPF−10

Figure 5.9: ROC curves of testing results on host identification on the LBNL data. Left: host

1, Nearest neighbor curve and Parzen window curve overlap, both CTBN curves overlap.

Right: host 2.

Our second experiment is a host traffic differentiation task. We mingle the network traffic

from another host with the analyzed host. We expect the detection method to successfully

tell apart the two. To verify this idea, we pick one host among the 10 we choose above

from LBNL dataset and split its traffic evenly into training and testing. We again learn the

model from training data. For testing data, we randomly choose a period and inject another

host’s traffic as if it were a worm. Our goal is to identify the period as abnormal since the

host’s traffic is no longer its own behavior. Figure 5.9 displays the results from two such

combination tests. The parameters for injecting the traffic as a worm are α = 0.02, β =

0.001. In the left graph, the nearest neighbor and Parzen window curve overlap, and both

CTBN curves overlap. In the right graph, the coupled CTBN curve substantially outperforms

all the other curves.

73

Chapter 6

Extensions

In addition to the work describe in Chapter 4, we also extend our NIDS in several aspects. In

this chapter, we present an approximation method to speed up the detection in Section 6.1.

We also show another NIDS detector using CTBNs in Section 6.2.

6.1 Speed Up

In Section 4.1, we present a factored CTBN model for network traffic. We achieve good

performance in intrusion detection on real datasets using this model. However, it still faces a

problem: the computational efficiency. Exact inference is used while learning the model in

the training phase and calculating the likelihood in the testing phase. Although it could take

a while to estimate the model parameters in the training phase, the models are learned once

offline and stored for further usage. So time is not a critical issue. But in the testing phase,

we expect to receive prompt output from the algorithm so that the detection can be made in

74

time. The longer the prediction takes, the more destruction it could make to the computer

system. The current exact inference method used for calculating the likelihood requires a

significant number of computations of matrix operations. They usually take a great amount

of time. Therefore, to make our detector efficient and realistic, we develop an approximate

likelihood calculation algorithm to speed up the detection.

6.1.1 Approximate Likelihood Calculation

In the testing phase, the likelihood of a window of the data under the model is calculated.

Assume we have a trajectory τ beginning at time 0 and ending at time T . Events happen at

time stamps 0, ..., ti, ti+1, ..., T . We define the vector αt = p(Xt, τ0:t+) to be the distribution

over the state (of the hidden variables) given the trajectory until time t. The likelihood is

computed as the summation over all the enties in the vector αT .

To calculate αT , we use a forward pass filtering algorithm to propagate αs over the entire

trajectory at every time stamp ti. The propagation rule over the interval [ti, ti+1] is

αti+1
= αti expQSi

(ti+1−ti) QSiSi+1
,

where QSi
and QSiSi+1

are defined from the parameters of the model and the observed data

(see Section 3.2).

The computation of αti expQSi
(ti+1−ti) involves the matrix exponential. It is currently

performed by the Runge-Kutta ODE method of fifth order (Asmussen et al., 1996). This

75

method integrates over small steps whose sizes are adaptive to the interval [ti, ti+1]. The time

complexity of the method highly depends on the number of steps, which is a function of the

step size. The larger the intensities of the transition matrix QSi
is, the smaller the step size

is needed to catch up with the fast changing rate. Inside each step, a constant number of

matrix operations are computed. In our case, network activities take place frequently. The

intensities of the transition matrix are relatively high. This indicates a smaller step size.

Instead of using the Runge-Kutta method, we present a different way to calculate the

above function αti expQSi
(ti+1−ti).

Say t = ti+1 − ti. We first pick up a small ∆t.

When t > ∆t, let m = b t
∆t
c be the number of ∆ts within the interval. We have

expQSi
t ≈ expQSi

m∆t = expQSi
b020∆t× expQSi

b121∆t× expQSi
b222∆t . . . ,

where bi is the ith binary digit in the representation of m. We pre-compute expQSi
∆t,

expQSi
2∆t, expQSi

4∆t, Then expQSi
m∆t can be simply calculated by multiplications of

these pre-computed matrix exponentials.

When t < ∆t, expQSi
t can be approximated by its first order Taylor expansion:

expQSi
t ≈ I + QSi

t,

when ∆t is small.

76

6.1.2 Experiment Results

We use the same datasets and experiment set up as described in Section 5.2.1. We verify our

approximation likelihood calculation method on the task of worm detection. For the MAWI

dataset and the LBNL dataset, ten most active hosts are picked. For each of them, the trace

(clean traffic only) is split into training-testing pairs. Worms are injected into the testing data.

A model is learned from the training data. In testing, the likelihood of a window of the data

is assigned as the score of the window. It is compared to a predefined threshold to trigger the

alarm.

Figure 4.5 shows the port-level submodels we used in this experiment. The worm we used

is IP Scanning worm. We test our algorithm on both datasets. We recalculate the likelihood

of the testing data using the above approximation method. In specific, we choose ∆t to be

0.1× 1
Qdiagmax

, where Qdiagmax is the maximum absolute value among the diagonal intensities

of the transition matrix Q. 1
Qdiagmax

shows the finest time granularity of the system transitions.

We therefore need ∆t to be smaller than this.

For comparison, we plot the ROC curves to show the detection accuracy as we did before.

The right graphs of Figure 6.1 and Figure 6.3 show the resulting plots on the MAWI dataset

and LBNL dataset respectively. The plots show that the approximation methods achieves

similar performance to the exact method on both datasets.

To make a more straightforward comparison of the two methods, we also generate the

cross plots for the outputs (the likelihoods of the windows) from the two algorithms. They

are shown in the right graphs of Figure 6.1 and Figure 6.3. For any window, we expect to see

77

0 0.02 0.04 0.06 0.08 0.1
0

0.2

0.4

0.6

0.8

1

False Positive Rate

T
ru

e
P

os
iti

ve
 R

at
e

Nearest Neighbor
Connection Count
Adaptive Naive Bayes
CTBN
CTBN, extended
CTBN approx, extended

−6 −5 −4 −3 −2 −1 0

x 10
5

−6

−5

−4

−3

−2

−1

0
x 10

5

exact method log likelihood

ap
pr

ox
im

at
e

m
et

ho
d

lo
g

lik
el

ih
oo

d

Figure 6.1: Left: ROC curves of testing results for IP Scanning attack on MAWI dataset
demonstrating the effect of speed up. The “CTBN, extended” curve employs the factored
model containing a single hidden variable H , and the “CTBN approx, extended” curve uses
approximate likelihood calculation on the “CTBN, extended” model. Left: The cross plot of
log likelihood calculated via the exact method and the approximate method

the likelihood calculated by the approximation method is close to the true value computed

by the exact method. The two cross plots show that the approximation method has met this

expectation.

Since our motivation is to speed up the detection, we are highly interested in how much

the approximation method accelerates the detection task. Therefore, we compare the time

efficiency in addition to the accuracy. We record the running time of both methods. Table 6.2

and Table 6.4 list the detection times of both methods. The test data on the MAWI dataset

78

Host Exact method time (seconds) Approximate method time (seconds)
1 212.024 22.784
2 297.808 28.376
3 1183.560 57.540
4 95.228 14.520
5 335.652 25.640
6 258.136 25.448
7 237.968 20.200
8 163.612 40.576
9 513.682 61.964

10 182.896 32.184

Figure 6.2: MAWI dataset, IP Scanning worm, Running time of exact inference method and
approximation method

lasts about 480 seconds. The exact method takes a running time less than that in most cases,

which is good. But the approximation is about 10 times faster. For the LBNL dataset, the test

data lasts about 2400 seconds. The exact method runs at various speeds on different hosts,

but can take as long as 78 hours for one host. This is not acceptable. The approximation

method in this case accelerates the computation to a few seconds. Even for the toughest host,

it finishes in less than 2 minutes.

6.2 Another NIDS using CTBNs

In Chapter 4, we describe our work of NIDS, where the network packet header traces are

modeled using factored or connected CTBN model, and future traffic within a time win-

dow are flagged according to its likelihood under the model. In this section, we present

another NIDS developed. This NIDS is different from the previous ones in that the port-

level submodel contains a counting variable. Also, in the testing phase, a Kullback-Leibler

79

0 0.02 0.04 0.06 0.08 0.1
0

0.2

0.4

0.6

0.8

1

False Positive Rate

T
ru

e
P

os
iti

ve
 R

at
e

Nearest Neighbor
Connection Count
Adaptive Naive Bayes
CTBN
CTBN, extended
CTBN approx, extended

−10 −9 −8 −7 −6 −5 −4 −3 −2 −1 0

x 10
7

−10

−9

−8

−7

−6

−5

−4

−3

−2

−1

0
x 10

7

exact method log likelihood

ap
pr

ox
im

at
e

m
et

ho
d

lo
g

lik
el

ih
oo

d

Figure 6.3: Left: ROC curves of testing results for IP Scanning attack on LBNL dataset
demonstrating the effect of speed up. Left: The cross plot of log likelihood calculated via the
exact method and the approximate method

(KL-)divergence is used to calculate the deviation from the norm.

6.2.1 CTBN Model for Network Traffic

Figure 6.5 shows the most popular ports ranked by their frequencies in the network traffic on

our dataset (see Section 6.3).

We make the same assumption as in Chapter 4.1 that network traffic are independent

across the destination ports. Besides, we observe that packet activities in network traffic are

highly dependent on the host’s connection status. The more concurrent connections there are,

80

Host Exact method time (seconds) Approximate method time (seconds)
1 281789.322 115.004
2 127011.111 1.768
3 0.931 0.476
4 383.892 1.728
5 139555.273 45.260
6 762.138 0.968
7 86.112 0.188
8 45784.594 1.868
9 110237.578 3.076

10 0.321 0.144

Figure 6.4: LBNL dataset, IP Scanning worm, Running time of exact inference method and
approximation method

PORT DESCRIPTION
53 Domain Name Server
88 Kerberos
80 World Wide Web HTTP
389 Lightweight Directory Access Protocol
445 Microsoft-DS
911 xact-backup
135 DCE endpoint resolution
139 NETBIOS Session Service

Figure 6.5: Ranking of the most frequent ports on our Intel dataset.

the more frequently packets are sent or received. While the arrival times for events across

an entire CTBN is distributed exponentially (as the entire system is Markovian), once certain

variables are unobserved, the marginal distribution over the remaining variables is no longer

Markovian.

Our port-level submodel is composed of a concurrent connection count variable (C), a

packet-in (Pi) variable and a packet-out (Po) variable as C’s children, and a latent variable

(H) as a parent of the other three. This structure is shown in Figure 6.2.1. The experimental

results of this NIDS are for binary hidden variables.

81

Figure 6.6: Individual port-level submodel

6.2.2 Adding Counting Variables to CTBNs

The concurrent connection count variable, C, poses a slight modeling problem for CTBNs.

As originally presented, CTBNs can only deal with finite-domain variables. The number of

concurrent connections can potentially grow without bound. Our traffic examples do exhibit

a wide range of concurrent connection counts. We tried quantizing C into fixed bins, but

the results were fairly poor. We instead note that C can only increase or decrease by one at

any given event (the beginning or ending time of a connection). Furthermore, we make the

assumption that the arrival of a connection is independent of the number of other connections,

but that the termination of a connection is dependent on the current number of connections.

In particular, we assume each current connection has the same intensity of stopping. This

implies that the intensity with which some connection stops is proportional to the number of

concurrent connections. C is thus a random (biased) walk constrained to the non-negative

82

integers.

Let Qinc be the intensity for the arrival of a new connection. Given the current concurrent

connection count c, the intensity for decreasing Qdec|c is simply cQ̃dec, where Q̃dec is the rate

of the termination of a connection. Let Qchange|c = Qdec|c + Qinc. The resulting intensity

matrix has the form

QC|h =



. . .

0 Qdec|i−1 −Qchange|i−1 Qinc 0 · · ·

· · · 0 Qdec|i −Qchange|i Qinc 0 · · ·

· · · 0 Qdec|i+1 −Qchange|i+1 Qinc 0

. . .


.

Note that there is one of these matrices (with its own Q̃dec and Qinc) for each value of the

hidden variable.

The variables Pi and Po are children of C and therefore also require special consideration.

Their parents have an infinite number of states, and thus we cannot store one intensity matrix

for each parent value. However, the packet rate in network traffic is usually proportional to

the concurrent connection count. We therefore also fix the structure of the CIM for Pi and

Po:

QPi|c,h = cQ̃Pi|h

QPo|c,h = cQ̃Po|h,

83

where Q̃ is a fixed rate matrix and c is the current value of the counting variable.

6.2.3 Parameter Estimation

We use the expectation maximization (EM) algorithm to estimate the parameters (Nodelman

et al., 2005b).

For our new types of variables (counting variables and their children), we need to derive

different sufficient statistics. Let C be a counting variable in a CTBN, and U be the parents

of C. For C, the ESS we need are M̄C [inc|u] and M̄C [dec|u]: the expected number of times

C increases (or decreases) by 1 conditioned on its parent instantiation u. We also need the

total sum of all connection durations. Broken up by the value of its parent (u), this becomes

R̄dec|u =
∑

c cT̄c|u where c is the number of concurrent connections and T̄c|u is the total

expected amount of time this number of connections occurred while U = u. In our network,

U = H .

For any variable Z that has C as its parent, let V be Z’s parents other than C. The “time”

ESS for Z is now R̄Z|V[v] =
∑

c cT̄Z|V[Z|c,v], where c is the instantiation of the counting

variable C and v is the instantiation of V. Z’s expected number of transitions, M̄Z|V[z, z′|v],

can be calculated as for a regular CTBN variable.

In EM, we use the ESS as if they were the true sufficient statistics to maximize the like-

lihood with respect to the parameters. For a “regular” CTBN variable X (such as our hidden

84

variable H), the following equation performs the maximization.

QX(x, x′) =
M̄X [x, x′]

T̄X [x]

For our new counting variable, C, the maximizations are

Qinc|u =
M̄C [inc|u]

T
Q̃dec|u =

M̄C [dec|u]

R̄dec|u
.

Here T is the total time of the trajectory. And for Z, a child of C with other parents V, the

maximization is

QZ|V(z, z′) =
MZ|V[z, z′|v]

R̄Z|V[v]
.

Because only H is hidden in our model, the above sufficient statistics can be calculated

using the exact inference algorithm of Nodelman et al. (2002).

6.2.4 KL-divergence Approximation

We fit the CTBN model to historic data. To detect the attacks, we must define a measure

of the traffic’s deviation from the CTBN model. When faced with a new stream of data,

we do not query the model separately for each event to find out the new datum’s likelihood

under the model. CTBNs define distributions over trajectories (sequences of events) and not

individual connections or packets.

We calculate the KL-divergence between the model and the testing distribution. If we let

85

P be the learned CTBN distribution for normal traffic, and Q be the distribution of the testing

traffic, then the KL-divergence can be written as D(Q‖P) = −H(Q)−EQ log P (D), where

H is entropy. If we take Q to be the empirical distribution from a single trajectory, then the

second term is merely the log likelihood of the trajectory under the CTBN model. This can

be calculated using the standard inference algorithm.

However, it is relatively hard to compute the first term directly since a testing trajectory

is just a single sample from Q. Thus we instead approximate the entropy by making a few

assumptions. Note that these assumptions differ from those made to estimate the second term

and therefore the resulting divergence estimate may be negative.

First, we assume that the model factors according to the destination ports (just as our

CTBN model does). Therefore, the total entropy is the sum of the entropy of the traffic on

each port. Second, we assume the sample was drawn from a semi-Markov process. That

is, the time between transitions is non-exponential, but the embedded transition chain is

Markovian. We flatten the visible variables (C, Pi, and Po) in one port submodel into a

single large variable. We estimate the entropy of the embedded Markov chain by using the

empirical distribution of transitions.

For the distribution of time between transitions, we use a non-parametric estimator based

on m-spacings (and, in particular, choose m =
√

n, where n is the number of transitions) to

approximate the entropy. See Beirlant et al. (1997) for more details. The resulting estimator

is

86

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

False Positive Rate

Tr
ue

 P
os

itiv
e

Ra
te

NN
Connection Count
Adaptive Naive Bayes
CTBN

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

False Positive Rate

Tr
ue

 P
os

itiv
e

Ra
te

NN
Connection Count
Adaptive Naive Bayes
CTBN

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

False Positive Rate

Tr
ue

 P
os

itiv
e

Ra
te

NN
Connection Count
Adaptive Naive Bayes
CTBN

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

False Positive Rate

Tr
ue

 P
os

itiv
e

Ra
te

NN
Connection Count
Adaptive Naive Bayes
CTBN

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

False Positive Rate

Tr
ue

 P
os

itiv
e

Ra
te

NN
Connection Count
Adaptive Naive Bayes
CTBN

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

False Positive Rate

Tr
ue

 P
os

itiv
e

Ra
te

NN
Connection Count
Adaptive Naive Bayes
CTBN

Figure 6.7: ROC curves for 6 hosts

Ĥm-spacing(T
1, .., TN) =

m

N − 1

N−1
m

−1∑
i=0

log

(
N + 1

m
(T (m(i+1)+1) − T (mi+1))

)

where T (i) is the ith shortest transition duration. That is, we take the transition durations, sort

them, and then re-index them according to their sorted order. This is an unbiased estimate of

the entropy of the empirical distribution that makes no parametric assumptions on the form

of the data.

6.3 Experiment Results

We verify our approach on “The Forbidden City” dataset provided by Intel Labs. The dataset

contains 37 individual real machine traces. All the traces are normal. We randomly picked 6

87

hosts from the entire network. To create a relatively abundant dataset based on the original

packet traces, we constructed a training-testing set pair for each IP address. We use half of

the traces as a training set to learn the CTBN model for a given IP (host), and use a worm

simulator (NLANR) to inject IP-scan worm activity into the remaining half to make our

testing set.

For each algorithm (our CTBN algorithm and those below), we computed its score on

consecutive non-overlapping windows of 50 transitions in the testing set. If the score ex-

ceeds a threshold, we declare the window a positive example of a threat. We evaluate the

algorithm by comparing to the true answer: a window is a positive example if at least one

worm connection exists in the window.

We compare against the nearest neighbor algorithms used in Lazarevic et al. (2003). Not

all of the features in Lazarevic et al. (2003) are available. The features available in our dataset

are

(1) the number of connections made by the same source as the current connection in

the last 5 seconds, (2) the number of different services from the same source as the current

connection in the last 5 seconds, and (3) the number of connections with the same services

made by the same source as the current connection in the last 100 connections.

We also compare with a connection counting method. As IP-scan worms aggregate many

connections in a short time, this method captures this particular anomaly well. We score a

window by the average rate of connections in the window. While a connection count might

not detect other kinds of attacks, it is a good base-line for this particular attack. Finally, we

88

implemented the adaptive naive Bayes approach of Agosta et al. (2007b) which was designed

for this same traffic dataset.

In Figure 6.7 we plot ROC curves for the 6 hosts. In these plots, we scaled back the

worm injection rate to 10% of its normal rate. When running at full speed, the worm is easy

to detect for any method. When it slows down (and thus blends into the background traffic

better), it becomes more difficult to detect. Each point on the curve corresponds to a different

threshold of the algorithm. Because attacks are relatively rare, compared to normal traffic, we

are most interested in the region of the ROC curve with small false positive rates. We note that

while the curves are drastically different for each host (representing the differences in normal

background traffic), our method consistently performs better than the other techniques.

89

Chapter 7

HIDS

We can adopt the previous method to other data easily. Now we turn to the problem of

detecting anomalies using system call logs.

7.1 A CTBN Model for System Calls

System call logs monitor the kernel activities of machines. They record detailed information

of the sequence of system calls to operating system. Many malicious attacks on the host can

be revealed directly from the internal logs.

We analyze the audit log format of SUN’s Solaris Basic Security Module (BSM) praudit

audit logs. Each user-level and kernel event record has at least three tokens: header, subject,

and return. An event begins with a “header” in the format of: header, record length in bytes,

audit record version number, event description, event description modifier, time and date.

The “subject” line consists of: subject, user audit ID, effective user ID, effective group ID,

90

Figure 7.1: CTBN model for system call data

real user ID, real group ID, process ID, session ID, and terminal ID consisting of a device

and machine name. A “return” with a return value indicating the success of the event closes

the record.

We construct a CTBN model similar to our port-level network model. Individual system

calls S1, ..., SN , which are the event description fields in the header token, are transiently

observed: they happen instantaneously with no duration. We treat them as toggle variables

like packets in the network model. We also introduce a hidden variable H as a parent of the

system calls variables to allow correlations among them. This hidden variable is designed to

model the internal state of the machine, although such a semantic meaning is not imposed by

our method. Put together, our system call model looks like Figure 7.1.

If the size of state space of the hidden variable H is m, the transition rate matrix of H is

91

0 10 20 30 40 50 60 70
0

1000

2000

3000

4000

5000

6000

of calls within 1 tick

co
un

ts

Figure 7.2: Histogram of the number of system calls within a tick

QH =



−qh1 qh1h2 . . . qh1hm

qh2h1 −qh2 . . . qh2hm

...
...

qhmh1 qhmh2 . . . −qhm


.

And the transition intensity rate of the toggle variable s ∈ S given the current value of its

parent H is qs|hi
, i = 1, ...,m.

To estimate the CTBN model parameters, we again use the expectation maximization

(EM) algorithm. The expected sufficient statistics we need to calculate for our model are

• M̄hihj
, the expected number of times H transits from state i to j;

92

time

s1, s2, ..., sk

}

ti ti+1ti-1 ti+tti-1+t ti+1+t

Figure 7.3: System call traces with a finite resolution clock (resolution = δt)

• T̄hi
, the expected amount of time H stays in state i; and

• M̄s|hi
, the expected number of times system call s is evoked when H is in state i.

The maximum likelihood parameters are

qhihj
=

M̄hihj

T̄hi

qs|hi
=

M̄s|hi

T̄hi

.

7.2 Parameter Estimation with Finite Resolution Clocks

Because of the finite resolution of computer clocks, multiple instantaneous events (system

calls) occur within a single clock tick. Figure 7.2 shows the histogram of the number of

system calls within a tick. Therefore in the audit logs, a batch of system calls may be recorded

as being executed at a same time point, rather than their real time stamp, as a result of this

finite time accuracy. However, the correct order of the events is kept in the logs. That is, we

know exactly that system call S2 follows S1 if they are recorded in this order in the audit logs.

93

Thus all the system call timings are only partially observed. This type of partial observation

has not previously been considered in CTBN inference. A typical trajectory τ over [0, T]

of system call data is shown in Figure 7.3: a batch of system calls are evoked at some time

after ti but before the next clock tick, followed by a quiet period of arbitrary length, and yet

another bunch of events at some time after ti+1 and so on.

Let τt1:t2 denote the evidence over interval [t1, t2), τt1:t2+ denote the evidence over [t1, t2],

and τt1−:t2 denote the evidence over (t1, t2). We define the vectors

α−ti = p(Ht−i
, τ0:ti)

β+
ti

= p(τt+i :T |Ht+i
)

where Ht−i
is the value of H just prior to the transition at ti, and Ht+i

is value just afterward.

We also define the vectors

αti = p(Hti , τ0:t+i
)

βti = p(τti:T |Hti)

where the evidence at the transition time ti is included. We follow the forward-backward

algorithm to compute αti and βti for all ti at which there is an event. To do this, we split any

interval [ti, ti+1) into a “spike” period [ti, ti + δt) (δt is one resolution clock), during which

there is a batch of system calls, and a “quite” period [ti + δt, ti+1) over which no events exist,

94

and do the propagations separately.

For a “spike” period [ti, ti + δt), if the observed event sequence is s1, s2, ..., sk, we con-

struct an artificial Markov process X with the following intensity matrix.

QX =



Q̂H Q1 0 . . . 0

0 Q̂H Q2 . . . 0

...
...

...

0 0 . . . Q̂H Qk

0 0 . . . 0 Q̂H


.

where

Q̂H =



−qh1 −
∑

s∈S qs|h1 qh1h2 . . . qh1hm

qh2h1 −qh2 −
∑

s∈S qs|h2 . . . qh2hm

...
...

qhmh1 qhmh2 . . . −qhm −
∑

s∈S qs|hm


and

Qi =



qsi|h1 0 . . . 0

0 qsi|h2 . . . 0

...
...

0 0 0 qsi|hm


X tracks the evidence sequence s1 → s2 → ... → sk. QX is a square block matrix

95

of dimension m × (k + 1). Each block is an m × m matrix. The subsystem X has k + 1

blocks of states. The first block represents the state of H before any events. The second

block represents H after exactly one event, s1, happens. The third block represents H after

s1 followed by s2 happens, and so on. The last block represents H after all the events finish

executing in order. The subsystem has zero transition intensities everywhere except along

the sequence pass. The diagonal of Q̂H is the same matrix as that of QH except that the

transition intensities of all the system call variables are subtracted. This is because the full

system includes transitions that were not observed. While those transition rates were set to

zero (to force the system to agree with the evidence), such conditioning does not change

the diagonal elements of the rate matrix (Nodelman et al., 2002). Within each of the k + 1

states of a block, H can freely change its value. Therefore, the non-diagonal elements of Q̂H

have the same intensities as QH. Upon transitioning, X can only transit from some state to

another according to the event sequence. Therefore, most of the blocks are 0 matrices except

those to the immediate right of the diagonal blocks. The transition behavior is described by

the matrix Qi. Qi has 0 intensities on non-diagonal entries because H and S can not change

simultaneously. The diagonal element Qi(h, h) is the intensities of event si happening, given

the current value of the hidden state is h.

We take the forward pass as an example to describe the propagation; the backward pass

can be performed similarly. Right before ti, α−ti has m dimensions. We expand it to m(k +

1) dimensions to form αti which only has non-zero probabilities in the first m states. αti

now describes the distribution over the subsystem X . αtie
QXδt represents the probability

96

distribution at time ti + δt, given that some prefix of the observed sequence occurred. We

take only the last m state probabilities to condition on the entire sequence happening, thus

resulting in an m-dimensional vector, αti+δt .

For a “quiet” period [ti+δt, ti+1), no evidence is observed. Therefore αti+δt is propagated

to αti+1
using Q̂H, the rate matrix conditioned on only H events occuring:

αti+1
= αti+δt exp(Q̂H(ti+1 − ti − δt)) .

When we are done with the full forward-backward pass over the whole trajectory, we can

calculate the expected sufficient statistics M̄hihj
, T̄hi

and M̄s|hi
. Again, we refer to 3 for the

algorithm.

7.3 Testing using Likelihood

Once we have learned the model from the normal process in the system call logs, we calculate

the log-likelihood of a future process under the model. The log-likelihood is then compared

to a predefined threshold. If it is below the threshold, a possible anomaly is indicated. With

only a single hidden variable, these calculations can be done exactly.

7.4 Evaluation

In this section, we present our experiment results on HIDS.

97

7.4.1 Dataset

The dataset we used is the 1998 DARPA Intrusion Detection Evaluation Data Set from MIT

Lincoln Laboratory. Seven weeks of training data that contain labeled network-based attacks

in the midst of normal background data are publicly available at the DARPA website. The

Solaris Basic Security Module (BSM) praudit audit data on system call logs are provided for

research analysis. We follow Kang et al. (2005) to cross-index the BSM logs and produce a

labeled list file that labels individual processes. The resulting statistics are shown on the table

of Figure 7.4. The frequency of all the system calls appearing in the dataset is summarized

in descending order on the table of Figure 7.5.

Week # normal
pro-
cesses

attack
pro-
cesses

1 786 2
2 645 4
3 775 20
4 615 331
5 795 10
6 769 24
7 584 0

Figure 7.4: DARPA BSM process summary.

7.4.2 Anomaly Detection

Our experimental goal is to detect anomalous processes. We train our CTBN model on

normal processes only and test on a mixture of both normal and attack processes. The state

space of the hidden variable H is set to 2. The log-likelihood of a whole process under the

98

System Call # occurrence System Call # occurrence
close 123403 execve 1741
ioctl 68849 chdir 1526
mmap 60886 chroot 328
open 42479 unlink 26
fcntl 7416 chown 23
stat 6429 mkdir 4
access 2791 chmod 1

Figure 7.5: DARPA BSM system call summary

learned model represents the score of this process. We compare to the score with a predefined

threshold to classify the process as a normal one or a system abuse.

We implement sequence time-delaying embedding (stide) and stide with frequency thresh-

old (t-stide) for comparison (Warrender et al., 1999). These two algorithms build a database

of all previously seen normal sequences of system calls and compare the testing sequences

with it. They are straightforward and perform very well empirically on most of the system

call log datasets. We choose the parameter k, the sequence length to be 5, and h, the locality

frame length, to be 50. The results for t-stide are not shown in the following resulting graphs

since they overlapped with stide in almost all cases.

Other approaches we compare against are nearest neighbor and one-class SVM with spec-

trum string kernel and edit distance kernel. We follow Hu et al. (2003) and transform a

process into a feature vector, consisting of the occurrence numbers of each system call in the

process. The nearest distance between a testing process and the training set of processes is

assigned as the score. For one-class SVM, processes are composed of strings of system calls.

Normal processes are used for learning the bounding surface and the signed distance to it is

99

0 0.01 0.02 0.03 0.04 0.050

0.2

0.4

0.6

0.8

1

False Positive Rate

Tr
ue

 P
os

itiv
e

Ra
te

CTBN
SVM−Spectrum
Stide
Nearest Neighbor

0 0.01 0.02 0.03 0.04 0.050

0.2

0.4

0.6

0.8

1

False Positive Rate

Tr
ue

 P
os

itiv
e

Ra
te

CTBN
SVM−Spectrum
Stide
Nearest Neighbor

Figure 7.6: ROC curves for BSM data detection. Left: Training on week 1 and combined
testing results on week 2 to 7; Right: Training on week 3 and test on week 4, Stide curve and
CTBN curve overlap

assigned as the score. We set the sub-sequence length to be 5 and the parameter ν to be 0.5.

As in Chapter 5, since the edit distance kernel results are dominated by the spectrum kernel,

we do not show them.

Figure 7.6 displays the results from two experimental settings. In the left graph, we train

the model on the normal processes from week 1 and test it on all the processes from weeks

2 to 7. In the right graph, we train on normal processes from week 3 and test it on all the

processes from week 4, the richest in attack processes volume. Because attacks are relatively

rare compared to normal traffic, we are most interested in the region of the ROC curves with

small false positive rates. So we only show the curves in the area where the false positive

rate falls in the region [0, 0.05]. Our CTBN method beats nearest neighbor and SVM with

spectrum kernel in both experiments. stide performs slightly better than our method in the

combined test, but achieves the same accuracy in the experiment using only week 3 and

testing on week 4.

100

We conclude that by using a CTBN model, the dynamic behavior of the system calls on

a computer is well described. The special feature of the data — finite resolution clocks —

is successfully handled by the model. Our method is a powerful way to detect intrusions for

HIDS.

101

Chapter 8

Conclusions

In the realm of temporal reasoning, we have introduced three additions to the CTBN lit-

erature. First, we added to CTBNs toggle variables, which describe instantaneous events

without intrinsic states. We also derived parameter learning algorithms for them. Second,

we demonstrated a Rao-Blackwellized particle filter with continuous evidence. We used a

particle filter to sample a portion of the variables, and analytically integrated out the rest.

Therefore, we decomposed the structure efficiently and reduced the sampling space. Finally,

we demonstrated that we can learn and reason about data that contains imprecise timings,

while still refraining from discretizing time. We introduced artificial variables to describe the

dynamics of the sequential events under finite resolutions.

In the realm of intrusion detection, we have demonstrated a framework that performs

well on two related tasks with very different data types. By concentrating purely on event

timing, without the consideration of complex features, we were able to out-perform existing

102

methods on real data. The continuous-time nature of our model aided greatly in modeling

the bursty event sequences that occur in systems logs and network traffic. We did not have

to resort to time slicing, either producing rapid slices that are inefficient for quite periods,

or lengthy slices that miss the timing of bursty events. We do not require labeled data, thus

vastly improving the automation of the detection.

A combination of the two sources of information (system calls and network events) would

be straight-forward with the model we have produced. We believe it would result in more ac-

curate detection. The collection of such data is difficult, however; we leave it as an interesting

next step.

103

Bibliography

Agosta, J. M., Chandrashekar, J., Giroire, F., Livadas, C., and Xu, J. (2007a). Approaches
to anomaly detection using host network-traffic traces. In Neural Information Processing
Systems Workshop on Machine Learning for Systems Problems(MLSys).

Agosta, J. M., Duik-Wasser, C., Chandrashekar, J., and Livadas, C. (2007b). An adaptive
anomaly detector for worm detection. In Workshop on Tackling Computer Systems Prob-
lems with Machine Learning Techniques.

A.Hofmeya, S., Forrest, S., and Somayaji, A. (1998). Intrusion detection using sequences of
system calls. Journal of Computer Security, 6:151–180.

Asmussen, S., Nerman, O., and Olsson, M. (1996). Fitting phase-type distributions via the
EM algorithm. Scandavian Journal of Statistics, 23:419–441.

Beirlant, J., Dudewicz, E., Gyöfi, L., and van der Meulen, E. C. (1997). Nonparametric
entrop estimation: An overview. International Journal of Mathematical and Statistical
Sciences, 6(1):17–39.

Cha, B. (2005). Host anomaly detection performance analysis based on system call of neuro-
fuzzy using soundex algorithm and n-gram technique. In Systems Communications (ICW).

Cohn, I., El-Hay, T., Friedman, N., and Kupferman, R. (2009). Mean field variational approx-
imation for continous-time bayesian networks. In Uncertainty in Artificial Intelligence.

Dean, T. and Kanazawa, K. (1989). A model for reasoning about persistence and causation.
Computational Intelligence, 5(3):142–150.

Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977). Maximum likelihood from incom-
plete data via the EM algorithm. Journal of the Royal Statistical Society B, 39:1–38.

Dewaele, G., Fukuda, K., and Borgnat, P. (2007). Extracting hidden anomalies using sketch
and non Gaussian multiresulotion statistical detection procedures. In ACM SIGCOMM.

Doucet, A., de Freitas, N., Murphy, K., and Russel, S. (2000). Rao-blackwellised particle
filtering for dynamic bayesian networks. In Uncertainty in Artificial Intelligence.

El-Hay, T., Friedman, N., and Kupferman, R. (2008). Gibbs sampling in factorized
continous-time markov processes. In Uncertainty in Artificial Intelligence.

104

Eskin, E. (2000). Anomaly detection over noisy data using learned probability distributions.
In International Conference on Machine Learning.

Eskin, E., Arnold, A., Prerau, M., Portnoy, L., and Stolfo, S. (2002). A geometric framework
for unsupervised anomaly detection: Detecting intrusions in unlabeled data. In Barbara,
D. and Jajodia, S., editors, Applications of Data Mining in Computer Security. Kluwer.

Fan, Y. and Shelton, C. R. (2008). Sampling for approximate inference in continuous time
bayesian networks. In Symposium on Artificial Intelligence and Mathematics.

Forrest, S., A.Hofmeya, S., Somayaji, A., and A.Longstaff, T. (1996). A sense of self for
unix processes.

Gopalratnam, K., Kautz, H., and Weld, D. S. (2005). Extending continuous time Bayesian
networks. In National Conference on Artificial Intelligence, pages 981–986.

Hu, W., Liao, Y., and Vemuri, V. (2003). Robust support vector machines for anomaly
detection in computer security. In International Conference on Machine Learning and
Applications.

Kang, D.-K., Fuller, D., and Honavar, V. (2005). Learning classifiers for misuse detetction
using a bag of system calls representation. In IEEE International Conferences on Intelli-
gence and Security Informatics.

Karagiannis, T., Papagiannaki, K., and Faloutsos, M. (2005). BLINC: Multilevel traffic
classification in the dark. In ACM SIGCOMM.

Khan, Z., Balch, T., and Dellaert, F. (2004). A rao-blackwellized particle filter for eigen-
tracking. In IEEE Conference on Computer Vision and Pattern Recognition.

Kruegel, C., Mutz, D., Robertson, W., and Valeur, F. (2003). Bayesian event classification
for intrusion detection. In Annual Computer Security Applications Conference.

Lakhina, A., Crovella, M., and Diot, C. (2005). Mining anomalies using traffic feature dis-
tributions. In ACM SIGCOMM, pages 21–26.

Lazarevic, A., Ertoz, L., Kumar, V., Ozgur, A., and Srivastava, J. (2003). A compare study
of anomaly detection schemes in network intrusion detection. In SIAM International Con-
ference on Data Mining.

Lee, W. and Stolfo, S. J. (1998). Data mining approaches for intrusion detection. In USENIX
Security Symposium.

Leslie, C., Eskin, E., and Noble, W. S. (2002). The spectrum kernel: A string kernel for svm
protein classification. In Pacific Symposium on Biocomputing 7:566-575.

Neuts, M. F. (1975). Probability distributions of phase type. In Liber Amicorum Prof. Emer-
itus H. Florin, pages 173–206. Department of Mathematics, University of Louvain, Bel-
gium.

105

Neuts, M. F. (1981). Matrix-Geometric Solutions in Stochastic Models — An Algorithmic
Approach. John Hopkins University Press, Baltimore.

Ng, B., Pfeffer, A., and Dearden, R. (2005). Continuous time particle filtering. In National
Conference on Artificial Intelligence, pages 1360–1365.

Nodelman, U., Koller, D., and Shelton, C. R. (2005a). Expectation propagation for continu-
ous time Bayesian networks. In Uncertainty in Artificial Intelligence, pages 431–440.

Nodelman, U., Shelton, C. R., and Koller, D. (2002). Continuous time Bayesian networks.
In Uncertainty in Artificial Intelligence, pages 378–387.

Nodelman, U., Shelton, C. R., and Koller, D. (2003). Learning continuous time Bayesian
networks. In Uncertainty in Artificial Intelligence, pages 451–458.

Nodelman, U., Shelton, C. R., and Koller, D. (2005b). Expectation maximization and com-
plex duration distributions for continuous time Bayesian networks. In Uncertainty in Arti-
ficial Intelligence, pages 421–430.

Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P. (1992). Numerical
Recipes in C. Cambridge University Press, second edition.

Rieck, K. and Laskov, P. (2007). Language models for detection of unknown attacks in
network traffic. In Journal in Computer Virology.

Saria, S., Nodelman, U., and Koller, D. (2007). Reasoning at the right time granularity. In
Uncertainty in Artificial Intelligence.

Schulz, D., Fox, D., and Hightower, J. (2003). People tracking with anonymous and id-
sensors using rao-blackwellised particle filters. In International Joint Conference on Arti-
ficial Intelligence.

Sim, R., Elinas, R., and Little, J. J. (2007). A study of the rao-blackwellised particle filter
for efficient and accurate vision-based slam. International Journal of Computer Vision,
(3):303–318.

Soule, A., Salamatian, K., and Taft, N. (2005). Combining filtering and statistical methods
for anomaly detection. In Internet Measurement Conference, pages 331–344.

Soule, A., Salamatian, L., Taft, N., Emilion, R., and Papagiannali, K. (2004). Flow classifi-
cation by histogram. In ACM SIGMETRICS.

Tandon, G. and Chan, P. K. (2005). Learning useful system call attributes for anomaly
detection. In The Florida Artificial Intelligence Research Society Conference, pp. 405-
410.

Warrender, C., Forrest, S., and Pearlmutter, B. (1999). Detecting intrusions using system
calls: Alternative data models. In IEEE Symposium on Security and Privacy, IEEE Com-
puter Society.

106

Xu, J. and Shelton, C. R. (2008). Continuous time bayesian networks for host level network
intrusion detection. In European Conference on Machine Learning.

Xu, K., Zhang, Z.-L., and Bhattacharyya, S. (2005). Profiling internet backbone traffic:
Behavior models and applications. In ACM SIGCOMM.

Ye, N., Emran, S. M., Chen, Q., and Vilbert, S. (2002). Multivariate statistical analysis of au-
dit trails for host-based intrusion detection. IEEE Transactions of Computers, 51(7):810–
820.

Yeung, D.-Y. and Chow, C. (2002). Parzen-window network intrusion detectors. In Interna-
tional Conference on Pattern Recognition.

Yeung, D.-Y. and Ding, Y. (2002). User profiling for intrusion detection using dynamic and
static behavioral models. Advances in Knowledge Discovery and Data Mining, 2336:494–
505.

Zuev, D. and Moore, A. (2005). Internet traffic classification using Bayesian analysis tech-
niques. In ACM SIGMETRICS.

107

