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ABSTRACT OF THE DISSERTATION

Gene Function Prediction Based on Sequence or Expression Data

by

Kevin Thomas Horan

Doctor of Philosophy, Graduate Program in Computer Science
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Dr. Thomas Girke, Co-Chairperson
Dr. Christian Shelton, Co-Chairperson

One of the primary goals of bioinformatics is the identification of the function of genes.

The most reliable way of doing this is through experimentation. However, this is a very

slow and expensive process. While this is necessary in the beginning and will continue

to be necessary for special cases, it becomes impractical when one considers the number

of different genes encoded in the genomes of every living organism. A faster way is to

instead identify the function of genes by comparing them to the smaller set of genes

with known function. This comparison may be based on many different kinds of data,

including sequence similarity and gene expression data (Hawkins and Kihara, 2007).

The goal of this dissertation is to provide tools to aid in the identification of the

function of unknown genes. To that end, we first present a study in which gene expression

data was used to annotate many unknown genes by clustering the expression data. We

then present a tool for clustering gene expression data while also identifying short areas

of high sequence similarity (motifs) among members of the clusters. Finally, we present

a tool for identifying the functionally relevant sub-sections of protein sequences. These

sub-sections can then be used to find proteins containing similar sub-sections, even

though the rest of the protein may be quite different. This tool can thus find more

distantly related proteins sharing functionally relevant features.
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Chapter 1

Introduction

Gene function prediction is a primary goal in bioinformatics. As the number of

sequenced genomes increases, the need for automated gene function prediction methods

grows. Approaches for investigating each individual gene experimentally are simply no

longer practical when one considers the number of genes not only in a single organism,

but across every sequenced organism. With the rapid increase in the rate of our ability

to sequence new genomes, we now have access to the sequence data of a huge number of

genes. Automated tools that can make use of this data, along with the existing body of

experimentally obtained data, to assign functions to these newly sequenced genes would

be a great benefit. Even if these assignments are only educated guesses, it would reduce

the amount of manual experimentation by allowing experimenters to focus on testing

for the most likely function, rather than starting from scratch for each gene.

It is commonly known that a gene’s function is directly related to the three-

dimensional structure of the protein it encodes. Since the structure of the protein is

closely related to its function, having the structure information greatly increases the

chances of correctly predicting the function of a protein, and thus its gene. However, ab

initio structure prediction of proteins starting from just their sequence is still very hard

to do. Because experimental methods are very time consuming and protein structure

prediction methods are not accurate enough, we focused in this study on more readily

available data types, such as sequence information and genome-wide mRNA profiling

data.

1.1 Background

Gene function identification makes use of a wide range of methods, databases,

and models to accomplish its goal. In this section the necessary background areas are
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explained.

1.1.1 Molecular Architecture of DNA

The most basic part of a genome is the DNA molecule which carries the genetic

code for each gene in an organism. DNA is a polymer of nucleotides which are composed

of phosphate, 2-deoxyribose and one of four possible bases: adenine, thymine, guanine,

and cytosine, often abbreviated as “A”, “T”, “G”, and “C”. Usually DNA polymers form

double helices, where two DNA polymers are paired according to strict base pairing rules:

“A” with “T”, and “G” with “C” and are referred to as base pairs. A DNA molecule

is itself coiled into a tight shape which is called a chromosome. Different organisms

can have one or more chromosomes. A gene is a region of the DNA molecule which

is transcribed to RNA or messenger RNA (mRNA). Most mRNAs are translated to

proteins, which are encoded by protein coding genes. Forming a protein from a gene is a

complex process. Its most basic steps include: first, the gene is transcribed into mRNA,

a molecule similar in structure to DNA. Next, the mRNA is translated into a polymer

of amino acids. Each set of 3 base pairs (triplet) in the mRNA codes for one of 20

different amino acids. The amino acid string then folds into a specific three-dimensional

structure, called a protein. The sequence and structure of a protein is what determines

its function. It may be a catalyst (enzyme) for certain chemical reactions, or it may

become part of a physical structure, such as the cell wall. Identifying the function of

genes, and hence the proteins they encode, is the primary goal of this work.

1.1.2 Gene Ontology

The Gene Ontology (GO) (Ashburner et al., 2000) system is composed of a

dictionary of gene function terms and a graph structure connecting these terms. The

purpose of this system is to unify the terminology used to describe gene products in

order to simplify computational analyses. The gene ontology system contains three sub-

ontologies: cellular component (CC), molecular function (MF), and biological process

(BP). The cellular component system describes subcellular locations of proteins, such

as organell or protein complex associations. The biological processes ontology describes

complex functional events, such as disease resistance or regulatory processes. The molec-

ular function ontology is dedicated to low-level processes that occur on the molecular

level, such as specific enzyme activities. The main difference between a biological pro-

cess and a molecular function is that molecular functions specify individual actions, like

transporting something, or binding to something, whereas a biological process is a larger

2



collection of actions occurring in a particular order.

Each sub-ontology is organized in a directed acyclic graph (DAG) and each

node in the graph is a term which has a unique identifier. The connections allow terms

to be hierarchically structured, but also to be part of several different parent terms. At

the root of each DAG are the more general terms that become more and more specific

towards the leaves. One or more of terms from each sub-ontology can be used to describe

what is known about each gene.

1.1.3 Sequence Similarity

Since sequence similarity among proteins often correlates well with their func-

tional similarities, it is important to know how similar two sequences are to each other.

This information can be used to infer function and many other things from their primary

sequences. The simplest approach taken in comparing two sequences is to ask how many

edits are required to transform one sequence string into another. This can be answered

by aligning the two sequences together while allowing gaps and substitutions, and then

counting the number of times gaps had to be inserted in one string or the other, as

well as the number of symbols in the same position which where different. Gaps in one

string are referred to as deletions, while in the other string the same region would be an

insertion.

A simple and optimal way to do this is with the global pairwise alignment

algorithm from Needleman and Wunsch (1970). This uses a dynamic programming

method to compute the scores for every possible subsolution and then connects the best

scoring ones to one optimum pairwise alignment. For each possible pair of symbols, a

score is defined by an empirical substitution matrix that is given to the algorithm. For

example, pairing an “H” with an “H” might have a score of 11, while pairing an “H”

with a “C” would have a score of -4. Gaps are also assigned a score, which is usually

negative to penalize them. The final score then is the sum of the scores of each pair of

symbols along the chosen alignment. Given two strings, x and y, the running time of

this algorithm is O(|x||y|), that is, the product of the length of the two strings.

The above algorithm results in a global alignment where two sequences are

aligned from their start to their end. Often times one is interested in aligning the most

similar sub-regions of two sequences, also known as a local alignments. This can be

computed using the Smith-Waterman (Smith and Waterman, 1981) algorithm, which is

a variation of the Needleman-Wunsch algorithm. In this case, instead of starting at the

lower left corner of the dynamic programming table, the highest scoring cell is identified

3



and then the algorithm backtracks from there with certain boundary rules to find the

best scoring local alignment that led to that score. The running time is the same.

Because of the high cost of optimal alignment algorithms, a new algorithm

called BLAST (Altschul et al., 1990) was developed which is sub-optimal, but is often

several times faster. It uses several heuristics to narrow the search space while still

ensuring a high probability of finding a high quality alignment. BLAST has become the

default tool for computing sequence similarity. In addition to computing an alignment

score, BLAST will also produce an E-value, which is the expected probability of the

two given sequences matching with the computed score by chance, given the sequence

database.

1.1.4 Gene Expression Data

Gene expression is a measure of how much of a gene product, mRNA and/or

protein, is produced from a gene under certain conditions. The most commonly used

technologies for measuring gene expression levels on a genome-wide levels are microar-

rays and high-throughput sequencing approaches, such as RNA-Seq. A microarray is a

device containing probes for each gene of interest. Usually, every gene from a particular

organism is represented as probes in a highly ordered fashion on the microarray. Each

probe is a single or double strand of DNA representing a specific part of a particular

gene. The microarray is hybridized with the fluorescently labeled target RNA (or cDNA)

of a sample tissue. The targets bind to their complementary probes in a very specific

manner. The label bound to each probe is proportional to the mRNA expressed in the

sample tissue which can be quantified with a fluorescent scanner.

Microarray experiments are often performed in sets of variable conditions that

specific tissues or cell types are exposed to. To allow statistical tests, the biological

variance of the samples is estimated by replicating each microarray experiment at least

two times. Microarray data is often very noisy, so this is an important first step in

computing confidence levels and eliminating noise. By monitoring a set of different

conditions for each gene, one can obtain an expression profile for each gene in response

to the conditional changes.

1.1.5 Gene Regulation

Regulators of gene expression are usually proteins, such as transcription factors,

or short RNA molecules that modulate the transcription of a gene. There are many

different mechanisms for accomplishing this, but in this work we are only interested in
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transcription factors and their binding sites. The latter are short DNA sections (i.e. 6-

12 base pairs) upstream of a gene. A transcription factor, or set of transcription factors,

bind to these sites in order to trigger or prevent the gene from being transcribed. In

most cases these binding sites occur around 2000 base pairs upstream of the gene they

regulate. This region is called the promoter of a gene. Binding sites are commonly

modeled in a similar way as protein families (see Section 1.1.7 ), using either regular

expressions, PSSMs, or HMMs. The latter will be used in this work.

1.1.6 Motif Discovery

Motif discovery is the identification and functional characterization of motifs,

or short patterns, in either DNA or protein sequences. In the context of DNA, motifs

are usually identified in the promoter region of a gene and indicate the presence of a

transcription factor binding site. Genes sharing identical or similar motifs are often co-

expressed, and thus are likely to either share a similar function, or take part in related

cellular processes. In either case, in this work we will consider such genes as similar and

make use of this information during clustering and family assignment. In the context of

protein sequence data, a highly conserved motif often maps to the functionally active site

of an enzyme or another functionally relevant region of its three-dimensional structure.

For example, it may code for the portion of the protein where another protein physically

binds to this protein.

Motifs are very good indicators of shared or related function among different

genes or proteins because they are often directly involved in their function, and thus

cannot tolerate many mutations. When mutations do occur in a motif, the gene may

cease to perform its function and would thus no longer be useful. This means that a

motif will be highly conserved among genes which share it, even if the rest of the gene

has undergone many mutations and thus has a low sequence similarity score on a global

level. The term “conserved” has a qualitative meaning indicating an over abundance of

something specific, such as a motif, among a set of items. For example, if 90 out of 100

genes contained the exact same motif, one would say that this motif is highly conserved.

There is no specific threshold at which point something is said to be conserved however.

Motif discovery is closely related to gene function identification. Given a set

of sequences which are known to share a similar function, there are several methods of

finding motifs in these sequences which may represent the functionally relevant part of

each sequence. Conversely, given a set of known motifs, these can be used to search for

other unknown sequences containing the same motif, or motifs, and thus can be used to
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infer their function.

Most motif discovery methods start with a set of known sequences which share

the same function. The easiest way to find motifs from such a set is to align the

sequences and look for sub-sections of high conservation. Since motifs are usually highly

conserved, there is a good chance that such sub-sections are directly involved in the

molecular functions of the corresponding sequences. This requires, however, that a

motif occurs in roughly the same location in each sequence, and if there are several

motifs, that they share the same spacing in each sequence as well. This is not always

the case, and even when it is, generating a multiple alignment can be a hard problem

for diverse sequences, often resulting in suboptimal solutions. Another approach is to

look for short string sequences that occur more often in this set of sequences than in any

other set of sequences from some database. Such a string is said to be over expressed

in the given set of sequences. In this case it does not matter where or how many times

the string occurs in each sequence.

1.1.7 Family Models

A protein family is a collection of protein sequences which share sequence

similarity. New, seed, families are generated by sequence similarity search and clustering

approaches as well as manual curation efforts. The latter can be a labor intensive

process. Once a seed for a sequence family has been established, the subsequent goal

is to identify its most conserved features, and then search for other sequences which

share these features. A family model is a particular representation of these conserved

features. The three most common models are regular expressions, position specific

scoring matrices, and profile hidden Markov models.

1.1.7.1 Regular Expressions

A regular expression is a pattern describing what a string should look like,

with some allowable variations. There are several different ways to represent a regular

expression; the method used by PROSITE (Hulo et al., 2006, 2008) will be used as an

example here, using amino acids abbreviations as the alphabet. The same principals can

be applied for any alphabet however. The simplest pattern is just a literal string, such

as “K-H-N-N-P”. If the first character could also be an “L”, for example, the pattern

would become “[KL]-H-N-N-P”. The square brackets indicate that any of the contained

symbols could appear in that location. Sometimes it is shorter to list the set of amino

acids that cannot appear in a location. In that case, curly brackets can be used. To
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indicate that anything can appear, an “x” is used. If the same element of a pattern can

occur consecutively several times, that element can be followed with “(i)” or “(i, j)”,

which indicates that that element occurs exactly i times, or can occur between i and j

times, inclusive. So the first example could also be written as “K-H-N(2)-P”.

While it is possible to create a regular expression automatically from a region

of aligned sequences, the resulting pattern often over fits the data. For example:

Q4SEE8.1 STVIGKVW.LTVLF..IFR

Q4SIT4.1 -SIFLKVL.LEVGF..MSG

Q4SJY4.1 -----RLWaLQLIF..VTC

Q4SK40.1 STFVGKIW.LTLLI..VFR

Q4T6P3.1 STIVGKIW.LTILF..IFR

PATTERN: S-[ST]-[VIF](2)-[GL]-[KR]-[ILV]-[LW]-x-L-[TQE]-[LV]-[LIG]-[FI]-

x(2)-[IMV]-[FST]-[RGC]

This pattern accurately represents the aligned region, but may capture many unim-

portant details along with it. The problem is considerably worse in large alignments.

As a result, automatically generated patterns can only be used as good starting points

for a human, who then modifies the pattern until the desired levels of specificity and

sensitivity are reached. This is done by embedding the family members in a larger set

of sequences and then using the pattern to identify the sequences which match it. From

this the number of false positives (FP), false negatives (FN), true positives (FP), and

true negatives (TN) can be counted. The sensitivity can then be computed as TP
TP+FP ,

and the specificity as TN
TN+FP . Ideally both of these values should be one, but that is

rarely possible to reach in practice.

Because of the requirement for manual tuning and testing, regular expressions

are not well suited for large scale analysis. They also are not the most expressive pattern

available. For example, in a certain column, 90% of the sequences may contain a “K”,

while the remaining 10% contain a “P”. This would result in a pattern like “[KP]” and

throws away the fact that “K” is a much better indicator of membership than “P”, even

though “P” can still occur sometimes.

1.1.7.2 Position Specific Scoring Matrices

A position specific scoring matrix (PSSM) is a flexible way of storing a string

pattern. Rarely is the functional region of a protein always the same sequence of amino

acids, or symbols, so searching for exact string matches is not useful. A regular expres-

sion is slightly better, but several decisions about what part of the pattern is important

must be made in creating a regular expression, and then it cannot say anything about
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close matches, only whether or not a match was found. A PSSM on the other hand

is a statistical model which can be trained on a sample set of strings representing the

pattern and then can be used to give the probability that another string matches the

pattern.

Given an alphabet Σ and a gapless alignment of length n of strings representing

the pattern of interest, a probability distribution, pi, over Σ is computed for each column

of the alignment. The score of a string s of length n is then

n∑
i=0

lg pi(si). (1.1)

For strings longer than n, a sliding window of length n is used and the highest proba-

bility window is considered the best match. Besides their increased flexibility, the main

advantage of PSSMs is their simplicity. The main disadvantage however is that they

cannot model gaps or insertions, which are quite common in biological sequences. This

limits their application to short fragments which can be considered to always appear

without gaps or insertions.

1.1.7.3 Profile Hidden Markov Models

A profile hidden Markov model of a sequence family is a statistical model

over sequences whose structure consists of a number of states and transitions between

states. For each state z there is a distribution, P (x|z) over a set of observations, x ∈ Σ.

In our case, Σ is the set of amino acids. A transition matrix T (z1|z2) defines the

probability of transitioning from state z2 to state z1. We can view this transition matrix

as a graph in which a link exists from z2 to z1 if T (z1|z2) > 0. Figure 1.1 shows the

structure used for aligning protein sequences (Durbin, 1998). For each nominal position

i there are three possible states: a match state Mi, an insert state Ii, and a delete state

Di. P (x|Mi) is a distribution over amino acids occurring at position i. P (x|Ii) is a

background distribution, which is the probability of each amino acid occurring given no

other information. This state is used to model noise sections in the input sequence. The

delete state does not have a real observation distribution; it requires that nothing be

observed (an ε observation). This is used to model sections of the input sequence which

have been lost.

The transition and emission distribution parameters of an HMM can be learned

using the Expectation Maximization (EM) (Dempster et al., 1977) algorithm given a set

of observed protein sequences (but not the hidden state sequence), producing a model

tuned to this set of protein sequences. Once the model has been trained, we can take
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Figure 1.1: The profile HMM of a multiple sequence alignment is illustrated, using the
PLAN 7 model in HMMER2. State transitions are illustrated by arrows, match states
by squares, insert states by diamonds and delete states by circles.

another protein sequence, S, and ask what is the most likely sequence of HMM states to

generate S, and what is the probability of that combination of states and observations.

This is done with the Viterbi algorithm (Forney Jr, 1973). To rank the results, it is

common to calculate the log-odds

scoreHMM(S) = log max
Z

PHMM(S,Z)− logPback(S) (1.2)

In this equation, Pback(S) is the probability of S, assuming each amino acid has been

drawn independently from the background distribution, while PHMM(S,Z) is the prob-

ability that the HMM would generate the state sequence Z and the observed sequence

S. A positive score means that S is more likely to be derived from the HMM than

randomly generated from the background distribution. A more detailed description of

profile HMMs can be found in (Rabiner, 1990).

1.1.8 Minimum Description Length

The idea behind the minimum description length (MDL) (Grunwald, 2005)

principal is to find a model which allows for the highest compression rate of a data

set. Such a model must explain the data well so that most of the data can be thrown

away given the model, but the model itself must not be too big or it would be better to

just keep more of the original data around. Thus, MDL looks for the best and shortest

way to describe a data set. In this work we make use of a specific case of MDL, called

the Bayesian Information Criterion (BIC) (Schwarz, 1978). This formula balances the

likelihood of a model against its complexity. We will use this score to help pick the best

model among different candidates later. The likelihood of a model is the probability of

a data set under that model. The better a model represents a data set, the higher the

likelihood will be, and vice versa. The complexity of a model is the number of degrees

of freedom in the model. This is usually the number of free parameters that must be

estimated from the data. The BIC score for model M trained on n data points and
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having Np free parameters is

ll(M)− 1

2
Np lg n (1.3)

where ll is the log-likelihood. The goal is to find a model which maximizes this ex-

pression. This equation embodies the classic trade-off between overfitting the data and

making the model too general. The log-likelihood by itself can be increased all the

way to 0 by making the model more complex. In the extreme case, the model simply

memorizes the data, giving a log-likelihood of 0. But the complexity term is penalizing

the overall score at the same time, so there is no net gain. Conversely, a simple model

that does not fit the data well is of no value. The complexity penalty may be small,

but the log-likelihood will also be very small, again resulting in no net gain. The best

performance is attained by the simplest model that explains the data well. It is also

important to note that, for a fixed M , as more data is added the magnitude of the log-

likelihood will grow faster than the complexity, so that the influence of the complexity

term is less. Thus it naturally prefers simple, more general models when there is less

data, but will accept a more complex model if there is enough data to justify it.

1.1.9 Arithmetic Encoding

The complexity term in MDL is basically a measure of how much a model

can be compressed. We will use arithmetic encoding to serve this purpose whenever

we use MDL in this work. Arithmetic encoding is a method for compressing a string

S = s1s2 . . . sn, where si ∈ Σ. The basic idea is to use a probability distribution, p, over

Σ to decide how many bits to use for the encoding of each symbol. The entire string is

then encoded as a single rational number between 0 and 1. For this reason, a fractional

number of bits can be used for each symbol, since we never need to represent a single

symbol as a discrete sequence of bits. The optimal number of bits to use for symbol

s ∈ Σ is − lg p(s). This assigns fewer bits to symbols with high probability, and more bits

to symbols with low probability. The compressed size of S is then −
∑n

i=1 lg p(si). For

the purposes of this work, we do not need to go into the details of actually performing

the encoding, we only need to know how many bits a certain symbol sequence can be

compressed to.

For example, if we wanted to encode the string “AAAAAABAAAAACC”, we

would first compute an empirical distribution over the symbols A,B,C, as shown in

Table 1.1. A normal block encoding scheme would assign a unique bit string to each

symbol. Since we have 3 symbols in this example, each symbol would requires 2 bits to

represent it. Thus, with block encoding we need 2∗14 = 28 bits. In arithmetic encoding,
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Symbol (s) Count Probability (p(s)) Bits (− lg p(s))

A 11 0.78 0.34

B 1 0.07 3.8

C 2 0.14 2.8

Table 1.1: Arithmetic encoding of the string “AAAAAABAAAAACC”

each symbol uses only − lg p(s) bits, so we need 11 ∗ 0.34 + 1 ∗ 3.8 + 2 ∗ 2.8 = 13.14 bits.

If the probability distribution over Σ is fixed and known to both the encoder

and the decoder, than only the number of bits per symbols must be considered. However,

if the symbol distribution is not known before hand, there are two main approaches to

sending it to the decoder. The first approach is to scan all the symbols first and compute

an empirical distribution, p̂ and then use this to encode each symbol. In addition to

the number of bits required to send the symbols though, the number of bits needed to

send p̂ to the decoder must also be included. p̂ can be encoded in any way, including

arithmetic encoding again, though at some point this recursion must stop. Usually a

block encoding will be used, assigning a fixed bit string to each symbol.

The second method is called adaptive arithmetic encoding. In this scheme

the encoder starts with a uniform distribution and encodes the first symbol. Then it

updates the distribution to include the observed symbol. The second symbol is then

encoded according to this modified distribution and so on. By the end of the symbol

sequence, we have the empirical distribution again. The advantage of this method is

that the encoder does not need to send the empirical distribution to the decoder. The

decoder decodes the first symbol according to the uniform distribution, then updates it

with the newly decoded symbol and so on, in the same way as the encoder. Thus, each

symbol is decoded with the distribution it was encoded with.

Both of these methods increase the average number of bits needed per symbol

compared to the optimal case where both the sender and the receiver already share p.

Thus, if the receiver does not have p, care must be taken to decide which method will

work best, or even if arithmetic encoding should be used at all. In some pathological

cases, it can even increase the size of S. If p can be represented compactly, compared

to the compressed size of S, then the first method may be best. However, if p is very

complex, and there is a lot of data to encode, then the adaptive method may be best.

The disadvantage of adaptive encoding is that compression can be very poor near the

beginning, before a good estimate of the symbol distribution is obtained. Thus, adaptive

encoding is best suited to longer symbol sequences, where it can be assumed that most
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of the data will be encoded with a good approximation of p.

1.2 Overview

The first study we performed was to identify how many of the currently se-

quenced genes in Arabidopsis thaliana have a known function, either experimentally,

or putatively. This was done by classifying each gene as known or unknown according

to several different tests, including clustering the sequence data to see which genes did

not not match well with anything known, clustering genes by expression profiles, and

analysing the GO terms assigned to each gene.

Having established that there are still many unknown genes, even within Ara-

bidopsis, we worked on creating a better clustering algorithm that could incorporate

many different kinds of data. As part of this, we examined how much existing motif

data could be used to help cluster genes, and also found a way to use the clustering to

help find motifs, in an iterative fashion.

Clustering genes by the similarity of their encoding protein sequences is effec-

tive in finding similar members, but can easily miss more distantly related or homologous

genes. To improve clustering performance in this area, we developed sub-HMMs. These

are short sub-regions of an HMM representing a large domain of a protein sequence.

Each sub-HMM is taken from an information rich part of the larger domain model,

so that together, they retain as much of the most important information as possible,

while still greatly simplifying the overall model. We can then look for the occurrences

of some or many of these sub-HMMs in other proteins, which may represent a distant

relationship between them.

Finally, we found that after extracting sub-HMMs from Arabidopsis we had a

large number of sub-HMMs, and many of them where quite similar to each other. Thus,

we created a way to cluster these sub-HMMs together to create a smaller set of more

general sub-HMMs which could still describe each protein sequence accurately.
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Chapter 2

Related Work

Much work has been done in the area of gene function identification. In this

work we focus only on using microarray expression data, DNA sequences, and protein

sequences. There are many different ways of using this data to assign gene functions,

however, we will only discuss two of the most common methods here. In the first method,

some or all of the data is used to cluster the genes without regard to which genes are

known and which are unknown. Clusters which end up with known genes can be used

to label other unknown genes. In the second method, seed clusters are manually created

by grouping known genes into families of genes with similar or related functions. Given

these seed clusters, the remaining unknown genes are then placed in the most similar

cluster. Once a clustering result is obtained, one way to measure the quality of it is to

compute a score based on the similarity to functional classifications of genes, such as

Gene Ontologies (GO) (Gibbons and Roth, 2002; Ashburner et al., 2000).

2.1 Clustering

The most common way of predicting gene function is to cluster genes together

and then determine the clusters function by examining the function of the known genes

in the cluster. All unknown genes within each cluster are then assigned the function of

the cluster. For each type of data, a distance function is first defined between genes, then

any generic clustering method can be used. In the case of sequence data, the BLAST

E-value is often used as a distance. For expression data, a correlation coefficient is

computed between the vectors of expression levels for each gene. Common coefficients

are the Spearman and Pearson correlation coefficients. There are hundreds of studies

in which one of these data types have been used to cluster genes. Some examples

used for clustering gene expression data are hierarchical clustering (Eisen et al., 1998),
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K-means (Tavazoie et al., 1999), self organizing maps (SOMs) (Nikkila et al., 2002),

and quality threshold clustering (Heyer et al., 1999). Of all these methods, K-means

and hierarchical clustering are the most popular; K-means because it is easy to use,

and hierarchical clustering because it provides a richer set of information about the

clustering.

When using hierarchical clustering, there are three main ways to define a

cluster-to-cluster distance. The first is to use the distance between the two nearest

points from each cluster (single linkage), second, use the distance between the centers

of each cluster (average linkage), and finally, use the distance between the farthest pair

of points (complete linkage). Complete linkage is the most conservative since it requires

every pair of cluster members to be at least as similar to each other as the worst pair.

This prevents transitive relationships from pulling distant sequences together, as can

happen when using single or average linkage, which often lead to poor quality clusters

(Gibbons and Roth, 2002).

Some work has also been done on using multiple data sources together to

perform the clustering. Both Barash and Friedman (2002) and Kundaje et al. (2005)

use DNA motifs and expression data simultaneously to cluster genes. Another approach

is to build a model which can incorporate several diverse types of data, such as that built

by Kasturi and Acharya (2005), which can combine expression data, promoter sequences,

known motifs, and gene ontologies; and a probabilistic relational model (Segal et al.,

2001; Koller and Pfeffer, 1998).

2.2 Motif Discovery

When combining expression data with DNA sequence data, it is common to

look for motifs in the promoter region of each gene. There are two main ways to find these

sites. The most popular method is to first cluster the expression data using any clustering

method, and then search for common promoter motifs within each cluster, with the

assumption that since genes within a cluster share a similar expression pattern, they

may also share a common transcription binding site (Gasch and Eisen, 2002; Tavazoie

et al., 1999). The second method is to combine the clustering and motif discovery steps

into an iterative process, where the current clustering aids in the search for motifs, and

the current set of motifs aids in the clustering. This method is used by Holmes and

Bruno (2000) as well as Segal et al. (2003).

Motif discovery is a highly active area of research and there are thus many tools

and methods for finding motifs, differing by the type of data they work with and the kind
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of motifs they are looking for, among other things. The major statistical algorithms used

by most tools include Gibbs sampling, expectation maximization (EM), and heuristic

enumeration of strings.

Some tools that use EM are MEME (Bailey and Elkan, 1995), The Improbizer

(Ao et al., 2004), and Cosmo (Bembom et al.). In this method, an unaligned set of

sequences and a motif width is given by the user. Every substring of the given width is

then used as a pseudo dataset. An PSSM is usually used to model the motif pattern.

It is first initialized to some pattern and then scored on each substring. The score of

each comparison is the probability that it came from the motif model rather than a

background distribution. After many iterations of EM, the motif model will tend to

settle on the most over-expressed pattern in the data. Once a motif is discovered, each

occurrence of it is statistically erased so that it is not found again. Then the process

is repeated to find another motif. LOGOS (Xing et al., 2004) uses a similar method,

but makes use of a more complex model which is able to model the locations of motifs

within sequences as well and the relationship between different motifs. In this way it is

able to capture both the local information which describes the motif pattern, as well as

global information, which describes where motifs occur in relation to each other. Local

motifs are modeled with HMMs and the whole model is learned with a variant of EM.

Gibbs sampling is another common method and is used by Motif Sampler

(Thijs et al., 2001), Bioprospector (Liu et al., 2001), AlignACE (Hughes et al., 2000),

and GLAM (Frith et al., 2004), among others. Gibbs sampling is a type of Markov

chain Monte Carlo (MCMC), which is a method for sampling from a Markov chain.

Each node in the Markov chain is randomly initialized to a value and then one variable,

chosen at random, is sampled from, conditioned on the rest. The sample from this

one variable combined with the others which are fixed represents one sample from the

whole model. This process is then repeated, often many times between actual complete

samples. Model parameters are then estimated based on these samples. A PSSM is

commonly used to model the motif.

Several other tools are based on enumerating strings in clever ways and checking

for over-expression. Weeder (Pavesi et al., 2001) for example, enumerates every string

up to a certain length and looks for over-expression of any of these short sequences

within the given dataset, compared to their frequency within the entire organism. It

also looks for variations of known motifs from yeast. Another tool, called MDscan (Liu

et al., 2002b), makes use of ChIP data to help decide which enumerated strings are

most likely to be important motifs. Once it finds some candidate strings, it uses them

to initialize PSSMs which are then used to find more examples of the motif and to refine
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the PSSM.

It should be noted that motif discovery is often a goal in itself and is usually

done after a clustering has been created. In this work, we are only interested in motif

detection insofar as it can be used to show that some genes are similar, in either DNA

or protein sequence data.

2.3 Protein Sequence Families

Another approach to gene function identification is to start with a group of

functionally characterized proteins and organize them into families which share a similar

function. This can be done either through clustering, or by hand, using additional

knowledge about the hierarchical structure of the functions of the known genes. The

common features of the family members are then extracted and used to search for other

genes which share these features. There are many ways to represent the features of a

family. Some common representations, or models, are regular expressions, such as those

used by PROSITE (Hulo et al., 2006, 2008); Position Specific Scoring Matrices (PSSM),

used by PSI-BLAST (Altschul et al., 1997); and profile HMMs, such as those used by

SAM (Karplus et al., 1998) and HMMER (Durbin, 1998; Eddy, 1996, 2008). For each

of these methods, the model can be compared to a given sequence and produce a score

indicating how closely the sequence, or some sub-section of the sequence, matches the

model. This score can be used to decide which family a new sequence should be added

to.

2.3.1 Fragment Based Models

All the models given above either only model a single important sub-section of

each sequence in the family, or else model all sequences from start to end. There are also

fragment based models which represent a family as a set of sub-models, each of which

only represents some sub-section of each family member. These sub-models can be any

of the types listed above, e.g., a PSSM or profile HMM. There are several advantages

of this kind of model. First, it is more flexible since the order of the sub-models need

not be fixed for all family members. Second, it is more compact since it only models the

relevant parts of the family. This leads to fewer parameters and better generalization.

One example of this type of model is presented by Plotz and Fink (Plotz and

Fink, 2005). They start with a signal-like protein sequence representation (Plotz and

Fink, 2004) for each family. From this representation they extract the most relevant

parts as individual HMMs, which they call Sub-Protein Units (SPUs). For each family,
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a sequence of SPUs in a fixed order is learned which best models that family. Regions not

covered by any SPU are modeled with a background sequence. Another related method

is Meta-MEME (Grundy et al., 1997). It takes as input a set of motifs discovered

by MEME (Bailey and Elkan, 1995), which are represented as PSSMs. It then finds

the average locations of these motifs on all of the family members and builds a profile

HMM by embedding the PSSMs into the HMM and representing gaps between motifs

as insertion loops in the HMM. Since PSSMs do not allow gaps, there is no information

about insertion or deletion probabilities for the motif sections of the generated HMM.

Therefore, these probabilities are set to 0 and thus the HMM is not as expressive as

it could be. The advantage though is that there are fewer parameters to estimate, so

Meta-MEME should work better when trained on small families. A similar method

developed by Sun and Buhler (2009) attempts to speed up searching with profile HMMs

by extracting un-gapped subsections (blocks) of HMMs and then modifying the match

distributions in each position to make each block as sensitive as possible. These blocks

are then used as pre-filters to eliminate sequences which would not match the whole

HMM well. In this case the sub-models are used only to speed up the search, and the

full model is still retained to compute the final score.

2.4 Comparison to Current Work

In Chapter 4, we try to cluster genes using expression data while also identifying

DNA motifs in an iterative process. The clustering was done with a naive Bayes model

incorporating context specific independences (Boutilier et al., 1996). In the work of

Holmes and Bruno (2000) they use a probabilistic model for both the expression data

and the motifs, whereas in our work we enumerate a small set of candidate motifs and

then perform a local search for better motifs by mutating candidate motifs. The method

created by Segal et al. (2003) relies on being given a set of fixed candidate motifs created

beforehand. These candidates are used to aid in the clustering of the expression data.

In Chapter 5, we create a fragment-based model using profile HMMs as the

sub-models. The basis of this work is similar to work done by Plotz and Fink (2005), and

Meta-MEME. The goal of Plotz and Fink was to make use of a more detailed signal-like

protein sequence representation, as well as to reduce the number of parameters used in

order to improve performance on small families. They also enforced a strict ordering of

sub-models, which was learned from the data. The work presented here however does

not enforce any ordering, and works on more commonly available amino acid sequence

data. In contrast to Meta-MEME and BLOCKMAKER, our model uses profile HMMs
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for the sub-models, which are more expressive than PSSMs since they are capable of

modeling gapped regions. The work done by Sun and Buhler (2009) was focused on

increasing the search speed of profile HMMs, which is only a minor concern in this

work. We also do not retain the full model as they did.
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Chapter 3

Large Scale Co-Expression

Analysis∗

About 40% of the proteins encoded in eukaryotic genomes are proteins of un-

known function (PUFs). Only a small percentage of the proteins encoded in animal or

plant genomes are sufficiently characterized with regard to their cellular functions. The

functions for the majority of these proteins remain either completely unknown (40%) or

only partially understood (Gollery et al., 2006, 2007).

Their functional characterization remains one of the main challenges in modern

biology. In light of this significant knowledge deficit, our understanding about existing

molecular functions appears to be fundamentally incomplete. This is even more evident

when we assume that the vast space of unexplored molecular and biological functions is

composed of proteins with at least comparable or even greater diversity and importance

for cellular processes than the known space. Efforts to narrow this knowledge gap will

provide a wide spectrum of opportunities for advancing our understanding about plant

and non-plant systems.

In this chapter we identified the PUF encoding genes from Arabidopsis (Ara-

bidopsis thaliana) using a combination of sequence similarity, domain-based, and em-

pirical approaches. Large-scale gene expression analyses of 1,310 publicly available

Affymetrix chips was performed to associate the identified PUF genes with regulatory

networks and biological processes of known function. To generate quality results, we

restricted the data to expression sets with replicated samples. First, genome-wide clus-

tering and gene function enrichment analysis of clusters allowed us to associate 1,541

PUF genes with tightly coexpressed genes for proteins of known function (PKFs). Over

∗ Originally published in Horan et al. (2008), copyright American Society of Plant Biologists; used
with permission.
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70% of them could be assigned to more specific biological process annotations than the

ones available in the current Gene Ontology release. The most highly overrepresented

functional categories in the obtained clusters were ribosome assembly, photosynthesis,

and cell wall pathways. Interestingly, the majority of the PUF genes appeared to be

controlled by the same regulatory networks as most PKF genes, because clusters en-

riched in PUF genes were extremely rare. Second, large-scale analysis of differentially

expressed genes was applied to identify a comprehensive set of abiotic stress-response

genes. This analysis resulted in the identification of 269 PKF and 104 PUF genes that

responded to a wide variety of abiotic stresses, whereas 608 PKF and 206 PUF genes

responded predominantly to specific stress treatments. The provided coexpression and

differentially expressed gene data represent an important resource for guiding future

functional characterization experiments of PUF and PKF genes. Finally, the public

Plant Gene Expression Database (http://bioweb.ucr.edu/PED) was developed as part

of this project to provide efficient access and mining tools for the vast gene expression

data of this work.

3.1 Introduction

Two major methods are in use for defining proteins of unknown functions

(PUFs) in model organisms. The widely used similarity approach considers all pro-

teins as PUFs that show no detectable sequence or structural similarities to functionally

characterized proteins in reference databases (Leinonen et al., 2004; Boeckmann et al.,

2003). In contrast to this, the more conservative empirical approach defines as PUFs

all proteins that lack direct experimental evidence as support for a specific function.

Conceptually, the empirical approach incorporates most PUFs identified by the simi-

larity approach, as well as functionally uncharacterized sequences that share sequence

similarities with proteins of known function (PKFs). Sequence families and ortholog

(similar genes from different species) clusters are particularly affected by this funda-

mental difference between the two unknown definitions. For instance, when a group of

related sequences contains one or more members of known function, then the similarity

approach tends to assign all of them to the known space, whereas the empirical approach

distinguishes between functionally characterized and uncharacterized candidates within

groups of related sequences. As a result of this difference, most similarity-based PUFs

of a given genome are either singletons or members of families that consist exclusively of

uncharacterized sequences. These performance characteristics of the similarity concept

result in an underestimation of the number of PUFs, because many genes in eukaryotic
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organisms are members of poorly characterized gene families (Horan et al., 2005). To

illustrate this, all members of large families, like protein kinases or cytochrome P450s,

will be assigned by the similarity approach to the known protein space, even though

most of their members remain functionally uncharacterized (Horan et al., 2005; Nelson

et al., 2004; Wang et al., 2003).

Dividing gene products into only two categories of known and unknown se-

quences is an oversimplification of a complex knowledge system with incremental and

multifaceted differences. Consequently, every definition for drawing a strict separation

line remains artificial and controversial. While acknowledging these difficulties, this

chapter will adopt this two-class system mainly for practical reasons.

To advance our knowledge beyond a roadmap of knowing what we don’t know,

it is important to develop and apply approaches for predicting putative functions for

PUFs. Bioinformatic techniques provide here a wide spectrum of opportunities. For

instance, PUFs can be associated with remotely related PKFs by using sensitive se-

quence and structure similarity search strategies (Altschul et al., 1997; Eddy, 1996).

The detected similarities can reveal important clues for testing their functions experi-

mentally. Additionally, one can predict functional features from their sequences, such as

sub-cellular targeting signals, secondary structures and membrane domains (Schwacke

et al., 2003; Gollery et al., 2006). Proteomics and protein interaction technologies pro-

vide additional important functional links (Johnson and Liu, 2006). However, for plants

the required proteome resources are not yet available on a genome-wide level. One of

the most promising and readily available information resources for systematic functional

assignment studies of PUF genes represent large-scale gene expression data from pub-

lic microarray databases. These data sets offer vast opportunities for associating PUF

genes with molecular functions and cellular processes of co-regulated PKF genes.

3.2 Results and Discussion

In this section we identified and analyzed the genome-wide PUF encoding genes

from Arabidopsis using both empirical and similarity strategies. Large-scale analysis of

publicly available gene expression array data allowed us to associate PUF with PKF

genes based on similarities of their expression and treatment response profiles. For this,

cluster analysis was used to identify groups of co-regulated PUF and PKF genes based

on the similarity of their expression profiles across a wide range of tissue and treatment

samples. Subsequently, enrichment analysis of Gene Ontology terms was applied to

annotate the obtained clusters by over-represented gene functions. Second, statistical
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analysis of differentially expressed genes (DEGs) allowed us to identify PUFs that ex-

hibit generic and specific expression changes in response to a large number of different

abiotic stress treatments. Finally, the Plant Gene Expression Database was developed to

provide to the public efficient data mining utilities for the complex differential expression

and clustering data of this project.

3.2.1 Identification of PUFs

To obtain for this study a comprehensive set of PUFs from Arabidopsis, we

compared three profoundly different PUF identification methods. The three approaches

are based on Gene Ontology annotations, sequence similarities and protein domain

searches.

First, we mined the Gene Ontology (GO) annotations to estimate the number of

PKFs and PUFs from a manually curated knowledge system that combines empirical and

computational methods for assigning gene functions (Berardini et al., 2004; Falcon and

Gentleman, 2007). Alternative pathway annotation systems from KEGG and AraCyc

could have been used for the same purpose (Kanehisa et al., 2006; Mueller et al., 2003).

However, due to the limited number of Arabidopsis genes (<40%) assigned to pathways,

the GO system, with close to 95% genome coverage, appears to be currently the more

efficient resource for identifying nearly complete PUF sets. This number includes the

direct assignments to the root term of each ontology which are the new GO annotations

for sequences of unknown function (see Material and Methods for more details).

The evidence codes of the GO annotations specify which functional assign-

ments are supported by experimental evidence data from the public domain and which

annotations are solely based on computational prediction methods (Ashburner et al.,

2000). To gain insight into the nature of the annotations with regard to the evidence

type for assigning members to the known and unknown space, we combined in Table

3.1 the current set of thirteen evidence codes into four custom categories. The category

with the highest level of functional support (Empirical) is based on direct evidence from

traditional single sample experiments, the second one is based on large-scale screen-

ing data (Large-Scale), the third one on computational predictions (Sequence), and the

fourth one are the GO-based PUF entries that lack functional support from experiments

or in silico analyses. The detailed assignment schema of the evidence codes to the four

categories is provided in the legend of Table 3.1.

According to the above strategy, 32-38% of the Arabidopsis genes are currently

annotated by the GO system as PUF encoding genes (Table 3.1). This is largely in
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agreement with the estimates from previous studies (Wortman et al., 2003; Gollery

et al., 2006). Interestingly, only 7% of all entries are functionally characterized by

traditional one-gene-at-a-time experiments in the Molecular Function (MF) ontology

and 14% in the Biological Process (BP) ontology, while 34% and 18% have functional

support from high-throughput experiments, respectively. This means that 93% of the

genes from Arabidopsis code for poorly characterized proteins or PUFs when the most

conservative empirical criteria are applied within the MF ontology. The relative amount

of PUFs for the combined empirical and large-scale categories is 59% in the MF ontology

and 68% in the BP ontology. The Cellular Component (CC) ontology contains by far

the largest number of entries with sequence-based annotations and the lowest for the

empirical categories. This trend is due to the majority of the CC annotations presently

being based on computational ab initio predictions of sub-cellular localizations, whereas

annotations with experimental support are much less frequent in this category than

in the other two ontologies. The subsequent analysis steps of this study utilize the

standard PUF set from the MF ontology containing 8,665 members. These genes are

exclusively assigned to the root term of the MF ontology (GO:0003674) and they carry

the evidence code ND (no biological data available). The MF category was selected here,

because protein functions are most profoundly described at the mechanistic molecular

level, whereas the other two ontologies, BP and CC, provide rather indirect information

in this regard.

To compare the results obtained from the MF ontology with alternative PUF

identification methods, we also used one sequence similarity and one domain-based ap-

proach using Hidden Markov models. First, all predicted Arabidopsis proteins were

searched against the Swiss-Prot database with the BLASTP program (Altschul et al.,

1990; Wu et al., 2006). Protein sequences that showed no similarities to functionally

characterized proteins in the Swiss-Prot database were classified as PUFs using an ex-

pectation value (E-value) of 10−6 as cutoff. Second, the same protein set was used to

search the Pfam database with the HMMPFAM program (Eddy, 1996; Bateman et al.,

2004). Likewise, sequences without similarities to protein domains of known function

(E-value ≥ 10−2) or those matching exclusively domains of unknown function (DUF)

were considered PUFs. Due to different calculation methods, the E-values of the two

search algorithms are not directly comparable. Therefore, we chose for both meth-

ods conservative cutoff values that are commonly used for sensitive sequence similarity

searching with low false positive detection rates e.g. (Gollery et al., 2006; Horan et al.,

2005; Girke et al., 2004). Table 3.2 provides a comparison of the results from the three
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Empirical Large-Scale Sequence PUFs Missing

MF 1,918 9,061 4,677 8,665 2,228
% 7 34 18 33 8

BP 3,731 4,777 4,462 10,194 3,385
% 14 18 17 38 13

CC 3,333 1,661 8,527 8,426 4,602
% 13 6 32 32 17

Any 5,837 11,005 12,851 14,071 0
% 22 42 48 53 0

Table 3.1: The number of protein coding loci from Arabidopsis are given for cus-
tom categories of evidence codes of the three gene ontologies: MF, Molecular Func-
tion, BP, Biological Process and CC, Cellular Component. A description of the
evidence codes is available on the Gene Ontology project site (http://www.gene-
ontology.org/GO.evidence.shtml). The number of loci with annotations in Any of the
three ontologies are given in the last two rows. The percentage values are calculated
relative to the total number of protein coding genes represented in the three ontologies.
The evidence codes are grouped into the following custom categories of functional assign-
ments: Empirical data (IC, IDA, IGI, IMP, IPI, TAS), Large-Scale experiments (IEP,
RCA, NAS, NR), Sequence similarity or feature predictions (IEA, ISS) and PUFs lack-
ing functional data (ND). The column Missing accounts for genes that lack annotations
within the listed ontologies.

different PUF identification approaches. Based on the chosen confidence thresholds, all

three approaches identified PUF sets of comparable sizes with 8,272-8,681 members,

while 5,456-6,260 PUFs are common among two and 4,667 among all three methods.

To simplify the description of the subsequent functional analysis steps of this study, the

remaining text is restricted to the PUF set obtained from the MF ontology. The GO

PUF set was given preference, because of the high quality of the manually curated GO

annotation system and its broad acceptance in the scientific community.

3.2.2 Relative Amount of Expressed Genes

To functionally associate PUF with PKF encoding genes based on the similar-

ity of their mRNA expression profiles, large-scale gene expression analysis of publicly

available Affymetrix GeneChipR© microarrays was performed. Only experiment sets

containing at least two replicate samples were used for this analysis to enable statisti-

cal analysis of differentially expressed genes (DEG) and to increase the confidence of

the obtained results. In total, the study included the raw expression data from 1,310

Affymetrix chips from the AtGenExpress and GEO sites (Schmid et al., 2005; Barrett

et al., 2006). Table 3.3 provides a summary of the chosen experiment sets that covers a
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Method SWP Pfam GOMF

SWP 8,681 (32%) 6,260 (23%) 5,456 (20%)
Pfam 8,272 (31%) 5,788 (21%)
GOMF 8,665 (32%)

All 4,667 (17%)
Any 12,781 (47%)

Table 3.2: This table provides a matrix representation of the number of PUFs de-
termined by the three different identification methods: BLASTP searches against the
SWP database, HMMpfam searches against Pfam and the GOMF approach from Table
I. The amount of PUFs common between pairwise comparisons of methods are provided
in the corresponding row and column intersects of the matrix. The numbers of PUFs
identified by All three methods or by at least one of them (Any) are given in the last two
rows, respectively. The percentage values are calculated relative to the total number of
protein coding genes.

Category Cel Samples Comp ExpSet

Abiotic Stress 524 254 129 10
Biotic Stress 200 72 55 6
Chemical Treatment 99 46 35 9
Tissue & Development 237 79 40 1
Genotype 86 29 28 4
Hormone Treatment 164 80 46 11
Sum 1310 560 333 41

Table 3.3: This table provides an overview of the different categories of GeneChipR©

microarray experiments (1st column) that were analyzed in this study. The following
numeric columns contain the number of raw data (Cel) files, the amount of the cor-
responding biosamples (Samples), the number of performed comparisons in the DEG
analysis (Comp) and the number of experiment sets (ExpSet) the raw data are derived
from.

wide spectrum of treatment series and tissue samples.

The relative amount of expressed genes can be expected to be lower in the

PUF than in the PKF category, because many predicted PUF genes may be the result of

genome annotation artifacts or may represent untranscribed pseudogenes. In addition,

a certain fraction of PUF genes may be expressed below the detection limit of the

GeneChipR© microarray technology. To estimate the extent of these limitations, the

amount of detectable genes across all experiment categories was compared between the

PUF and PKF sets. The present call information of the non-parametric Wilcoxon signed

rank test of the MAS5 algorithm provides for this purpose relatively reliable estimates

(Liu et al., 2002a; Schmid et al., 2005; McClintick and Edenberg, 2006). According to
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this test, the amount of detectable genes between the PUF and PKF sets differs 0.5-8%

within the five frequency intervals plotted in Figure 3.1. Based on these rather small

relative differences, it is likely that the majority of the PUF genes are expressed at

high enough levels to obtain for them meaningful data in the downstream cluster and

differential gene expression analyses of this study.

3.2.3 Cluster Analysis

Since many dynamic cellular processes are tightly associated with coordinated

transcriptional changes, cluster analysis of gene expression profiles can be used to iden-

tify candidate sets of co-regulated genes that are directly or indirectly involved in related

processes (Steinhauser et al., 2004a; Gachon et al., 2005; Toufighi et al., 2005; Haberer

et al., 2006; Team, 2008; Jen et al., 2006; Vandepoele et al., 2006; Wei et al., 2006;

Gutiérrez et al., 2007). For instance, if a group of genes exhibits correlated expression

profiles and it is significantly enriched in genes involved in a specific process then it is

reasonable to assume that some of the PUF members of this cluster may share over-

lapping functions with its functionally characterized members. This association-based

approach was applied here on a genome-wide level to systematically assign PUF to PKF

genes based on the similarity of their expression profiles. Despite the great potential of

this approach, it is important to keep in mind that correlation does not prove causal re-

lationships. It only provides useful leads for establishing hypotheses and causal links in

downstream investigations. Accordingly, the results of this study need to be interpreted

as preliminary computer predictions that offer useful information for guiding future gene

characterization experiments. Final evidence about gene and protein functions cannot

be inferred directly from this data. Alternative network modeling approaches were not

considered for this study, because of the lack of efficient statistical methods to efficiently

represent, score and interpret the resulting network architectures on a genome-wide

scale e.g. (Wolfe et al., 2005; Gutiérrez et al., 2007; Ma et al., 2007). At this point, the

traditional clustering approach appears to be more practical for the goals of this study.

To generate reliable and biologically relevant gene clusters from expression

data, we evaluated several available clustering algorithms (e.g. K-means, SOM) and

selected agglomerative hierarchical clustering as the method of choice (Murtagh, 1985;

Eisen et al., 1998; de Hoon et al., 2004; Team, 2008). The hierarchical clustering method

was chosen because of three main advantages: (1) the method requires no prior knowl-

edge about the optimum number of the final clusters, (2) it is extremely robust in joining

highly similar items into proper similarity groups and (3) it provides an information-
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Figure 3.1: The relative amount of present calls is plotted for all genes (ALL), the PKF
set and the PUF set using the five frequency intervals (bins): 0, 1-25, 26-50, 51-75 and
76-100% present calls. All experiment sets of this study were used for generating this
plot.

rich data output that represents the relative distances between all clustered items in

a dendrogram (Becker et al., 1988). The main disadvantages of the approach are the

complexity of its data output, the lack of predefined boundaries between clusters and

its weaker performance in identifying local expression similarities in a small subset of

the samples (Prelić et al., 2006). However, most of these challenges can be overcome

by applying efficient post-processing methods of the obtained dendrograms, such as tree

cutting methods e.g. (Gutiérrez et al., 2007). Popular fuzzy clustering approaches (Kr-

ishnapuram et al., 2001) that allow memberships in several clusters - as opposed to

strict clustering with unique memberships - were not considered for this study, because

of the difficulty to efficiently prioritize and mine the complex cluster memberships from

these methods in the downstream functional analysis steps. As an implementation of

the hierarchical clustering algorithm, we used the hclust function (Murtagh, 1985) from

the statistical programming environment R (Team, 2008). As distance measurement we

used correlation coefficients and as cluster joining method complete linkage (see Material

and Methods for more details). To obtain discrete clusters from the resulting dendro-

grams, we developed for this study a novel hierarchical threshold clustering (HTC)

method. This method selects clusters in hierarchical clustering dendrograms based on a

maximum tolerable distance between cluster members by applying an all-against-all dis-

tance test on all possible sub-trees, while maintaining unique cluster memberships. As

threshold we chose for this step a minimum correlation coefficient of 0.6. This relatively

conservative HTC setting ensures that all members of any given cluster share with all
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other members of the same cluster correlation coefficients between the selected cutoff

of 0.6 and the highest possible value of 1.0. The exact cutoff value of 0.6 was chosen

because it resulted in the highest enrichment of functionally related genes compared to

alternative cutoffs settings. Additionally, other gene expression correlation studies have

used the same or very similar cutoff values (Haberer et al., 2006; Team, 2008; Wei et al.,

2006).

Applying the above strategy, we calculated four separate clustering data sets

using both the Pearson and Spearman correlation coefficients, in their signed and ab-

solute forms as distance measures. The following text will refer to the four methods

as PCC, SCC, PCCa and SCCa, respectively. All four data sets were generated, be-

cause of their complementary performance characteristics. The clustering with absolute

correlation values allows the identification of positively and negatively correlated gene

expressions, whereas the sign-specific approach joins only positively correlated items into

similarity groups. The rank-based Spearman approach is limited to identifying global

similarities in expression profiles, while the Pearson approach is very sensitive in detect-

ing both, global and local similarities. In particular, the latter detects local similarities

with wide amplitude changes relative to the background, which can result in extreme

cases in co-clustering of outliers. A consensus approach between several or all methods

was not considered, because such a strategy would artificially deflate the cluster sizes

and compromise the transparency of the results.

The distributions of the obtained numbers of clusters including their sizes from

the four clustering methods are summarized in Figure 3.2. Because the sign removal

increases the potential pool sizes of gene pairs with correlation values above a given

cutoff, one would expect larger cluster sizes for the data sets with absolute correlation

values compared to their signed counterparts. This trend can be observed in the many

individual clusters , but the effect is not very pronounced in the global representation

of Figure 3.2. These relative increases in cluster sizes are not as frequent as expected,

because of two main reasons. First, the number of highly negatively correlated gene pairs

is much smaller than the number of positively correlated gene pairs (data not shown,

compare (Haberer et al., 2006; Team, 2008)). Second, the assignment of a negatively

correlated gene to a cluster at an earlier stage of the hierarchical clustering process can

prevent other potential members from joining the same cluster at a given cutoff level, if

they do not share the required degree of correlation with the existing members. This is

particularly the case in combination with a complete linkage joining method, that was

chosen for this study to minimize the number of false positive members in the generated
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Figure 3.2: The numbers of clusters (a) and genes (b) are plotted for the cluster size
intervals (bins) that are given along the abscissa. Each set of four bars, from left to
right, contains the data for the clustering results using PCC, absolute PCC, SCC and
absolute SCC values as distance measures, respectively.

clusters.

The most obvious differences among the four clustering data sets in Figure 3.2

are the numbers of singlet genes that do not join any clusters in the different methods.

There are about 2000 fewer singlet genes in the Pearson than in the Spearman data sets.

This is expected because the latter method tends to generate slightly lower correlation

values on gene expression data. The subsequent text focuses on the clustering results

from the distance method with the signed Pearson correlation coefficients (PCC).

3.2.4 Functional Categorization of Gene Expression Clusters

Gene expression clusters with highly enriched functions provide more conclusive

information about the potential roles of their PUF encoding members than clusters with

very heterogeneous compositions. To functionally annotate the obtained clusters and to

select the most informative gene sets with over-represented gene functions, we performed

enrichment analysis of Gene Ontology terms using the hypergeometric distribution as a

statistical test (Falcon and Gentleman, 2007). This method computes the enrichment

test for all ∼18,000 GO nodes of the three ontology networks and ranks the results by p-

values (see Material and Methods). The results of this method are more comprehensive
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and informative than generalized functional categorization systems, like GO slim or

high-level pathway classification systems. Clusters with fewer than 5 members were

excluded from this analysis, because the predictive value of extremely small clusters

is rather limited. It contains the data for 916 clusters composed of a total of 11,077

genes. To prioritize the clusters based on the obtained enrichment data, we applied

two selection filters. First, each cluster of interest needed to contain at least one over-

represented GO term in one of three ontologies (enrichment filter). Second, at least

20% of the cluster members had to be associated with this GO term in order to select

clusters with relatively homogeneous compositions (uniformity filter). An overview of

the number of clusters that meet these filter criteria is provided in Table 3.5. It contains

the results for four different p-value cutoffs of the GO term enrichment filter ranging

from 0.05 to 10−6. The corresponding GO annotations for the prioritized cluster set,

that passed the most stringent selection criteria of 10−6, are listed in Table 3.4. For

space and readability reasons, the table presents only the highest ranking GO term for

each of the three ontologies. The following discussion of selected clusters is restricted to

this most conservative data set (Table 3.4). It contains 66 clusters with a total of 1,279

genes that include 277 PUF genes derived from 53 clusters (see Table 3.5). Our focus on

these clusters does not indicate that the other clusters of this study are biologically less

important. This selection is mainly based on the assumption that clusters with uniform

GO annotations are particularly informative for functionally associating PUF with PKF

genes.

Depending on the stringency of the applied prioritization filters listed in Table

3.5, our combined clustering and GO term enrichment strategy associated 277-1,541

PUF genes to overrepresented GO annotations. In comparison to the GO annotations

currently available for these PUF genes, our method associated 216-1050 of them to

more specific GO terms in the MF category, 225-1089 in the BP category and 239-

1096 in the CC category. The large number of PUF genes associated to functionally

informative annotations demonstrates the great potential of our approach for guiding

future experimental studies on these genes.

Based on enrichment p-values, the most highly over-represented functional cat-

egories in the obtained cluster set are the biological processes: ribosome assembly, pho-

tosynthesis pathways and cell wall metabolism (Table 3.4). This finding is largely in

agreement with related gene co-regulation studies in Arabidopsis (Haberer et al., 2006;

Team, 2008; Wei et al., 2006). With regard to ribosome assembly, 124 of the 410 GO

annotated genes for cytosolic, plastidial and mitochondrial ribosome components ap-

pear in seven clusters (see Table 3.4, cluster IDs: 23, 32, 37, 39, 182, 239 and 299);
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and 272 ribosomal genes appear in clusters with ≥5 members of the non-prioritized

data set. While cluster 23 consists exclusively of genes annotated as ribosomal genes

(GO:0005840, p-value: 1.2 ∗ 10−64), the other six clusters are highly enriched in ri-

bosomal genes, and they contain among others 16 PUF genes. Equally interesting is

the observation that photosynthesis-related annotations are highly over-represented in

five large clusters (cluster IDs: 4, 9, 45, 110 and 304). These clusters represent 51

of all the 121 genes that are currently annotated by the GO system as photosynthesis

components (GO:0015979). Because both processes, photosynthesis as well as riboso-

mal activities, require the coordinated assembly of many proteins to large complexes

and protein-protein interaction networks, it is not unexpected that their correspond-

ing genes are tightly co-regulated. In alignment with the association hypothesis of this

study, several of the PUF members in these functionally extremely uniform clusters may

be involved in processes that are connected to the enzymatic or regulatory networks of

photosynthesis and ribosomal activities.

CLID CLSZ PUF Sample P-value Ont GO Term
Reproduction

115 20 5 2 3e-06 BP GO:0010344: seed oilbody biogenesis

115 20 5 11 0.014 CC GO:0016020: membrane

115 20 5 4 4.3e-07 MF GO:0045735: nutrient reservoir activity

Carbohydrate metabolism

95 21 4 4 5.9e-06 BP GO:0006073: glucan metabolic process

95 21 4 8 1.8e-10 CC GO:0005618: cell wall

95 21 4 4 1.9e-07 MF GO:0005199: structural constituent of cell wall

131 18 1 6 1.1e-10 BP GO:0006007: glucose catabolic process

131 18 1 7 1.8e-05 CC GO:0005739: mitochondrion

131 18 1 2 1.3e-05 MF GO:0004738: pyruvate dehydrogenase activity

248 11 2 3 9.3e-07 BP GO:0005982: starch metabolic process

248 11 2 9 1.7e-07 CC GO:0009507: chloroplast

248 11 2 5 0.003 MF GO:0016740: transferase activity

300 11 3 3 1.7e-08 BP GO:0005983: starch catabolic process

300 11 3 5 0.011 CC GO:0044444: cytoplasmic part

300 11 3 2 0.0025 MF GO:0016758: transferring hexosyl groups

548 7 0 3 2.3e-08 BP GO:0006084: acetyl-CoA metabolic process

548 7 0 2 1.7e-06 CC GO:0009346: citrate lyase complex

548 7 0 3 7.3e-09 MF GO:0046912: transferring acyl groups

686 6 1 3 5.6e-08 BP GO:0005982: starch metabolic process

686 6 1 2 0.0018 CC GO:0005829: cytosol

686 6 1 2 3.1e-06 MF GO:0001871: pattern binding

599 5 0 2 7.3e-06 BP GO:0016138: glycoside biosynthetic process

599 5 0 2 0.19 CC GO:0043231: intracellular membrane organelle

599 5 0 3 5e-07 MF GO:0004497: monooxygenase activity

Nucleotide metabolism

25 39 10 8 2.6e-07 BP GO:0006259: DNA metabolic process

25 39 10 3 0.0045 CC GO:0044427: chromosomal part

25 39 10 2 0.033 MF GO:0003777: microtubule motor activity

29 37 5 13 2.1e-14 BP GO:0006259: DNA metabolic process

29 37 5 6 5.3e-07 CC GO:0005694: chromosome

29 37 5 15 1.2e-06 MF GO:0003677: DNA binding

41 33 5 4 1.3e-05 BP GO:0006399: tRNA metabolic process

41 33 5 21 1.8e-15 CC GO:0009536: plastid

41 33 5 2 0.019 MF GO:0004812: aminoacyl-tRNA ligase activity

Translation

23 37 0 36 9.8e-45 BP GO:0006412: translation

23 37 0 37 1.2e-64 CC GO:0005840: ribosome

23 37 0 36 5.3e-65 MF GO:0003735: structural constituent of ribosome
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CLID CLSZ PUF Sample P-value Ont GO Term
32 35 3 31 2.7e-35 BP GO:0006412: translation

32 35 3 33 2e-50 CC GO:0030529: ribonucleoprotein complex

32 35 3 31 2.4e-52 MF GO:0003735: structural constituent of ribosome

37 36 11 8 0.00097 BP GO:0006412: translation

37 36 11 11 5.5e-08 CC GO:0005739: mitochondrion

37 36 11 4 0.00026 MF GO:0008135: translation factor activity

39 34 1 29 7.7e-32 BP GO:0006412: translation

39 34 1 29 4.6e-46 CC GO:0005840: ribosome

39 34 1 29 3.1e-48 MF GO:0003735: structural constituent of ribosome

182 11 0 9 4.5e-10 BP GO:0006412: translation

182 11 0 10 1.8e-16 CC GO:0005840: ribosome

182 11 0 10 7.8e-18 MF GO:0003735: structural constituent of ribosome

239 13 0 8 2.5e-08 BP GO:0006412: translation

239 13 0 6 3.3e-08 CC GO:0005840: ribosome

239 13 0 6 8.4e-08 MF GO:0003735: structural constituent of ribosome

299 11 1 7 3.4e-07 BP GO:0006412: translation

299 11 1 7 2.4e-11 CC GO:0005840: ribosome

299 11 1 7 2.4e-11 MF GO:0003735: structural constituent of ribosome

Lipid metabolism

73 26 8 6 1.8e-14 BP GO:0019915: sequestering of lipid

73 26 8 7 6.5e-09 CC GO:0005576: extracellular region

73 26 8 4 1.6e-06 MF GO:0045735: nutrient reservoir activity

279 10 2 2 9.3e-06 BP GO:0019374: galactolipid metabolic process

279 10 2 2 0.01 CC GO:0031967: organelle envelope

279 10 2 5 1.9e-07 MF GO:0042578: phosphoric ester hydrolase activity

Transport

47 34 8 2 0.00042 BP GO:0045036: protein targeting to chloroplast

47 34 8 23 2.2e-17 CC GO:0009536: plastid

47 34 8 8 1 MF GO:0003674: molecular function (PUF term)

288 11 4 3 2.4e-07 BP GO:0045036: protein targeting to chloroplast

288 11 4 4 1.1e-07 CC GO:0009941: chloroplast envelope

288 11 4 2 0.016 MF GO:0022804: transmembrane transporter activity

536 7 0 5 9.2e-06 BP GO:0006810: transport

536 7 0 5 3.6e-09 CC GO:0005794: Golgi apparatus

536 7 0 4 7.2e-05 MF GO:0005215: transporter activity

708 6 1 3 4.7e-08 BP GO:0006606: protein import into nucleus

708 6 1 3 6.4e-07 CC GO:0005635: nuclear envelope

708 6 1 3 2.3e-06 MF GO:0008565: protein transporter activity

765 5 1 2 3.2e-05 BP GO:0006820: anion transport

765 5 1 2 2.1e-05 CC GO:0005741: mitochondrial outer membrane

765 5 1 2 8.8e-07 MF GO:0008308: voltage-gated ion channel activity

Biological process

17 43 26 28 1.1e-08 BP GO:0008150: biological process (PUF term)

17 43 26 23 1.5e-05 CC GO:0005575: cellular component (PUF term)

17 43 26 26 2.7e-09 MF GO:0003674: molecular function (PUF term)

Photosynthesis

4 134 43 28 2.2e-37 BP GO:0015979: photosynthesis

4 134 43 67 1.3e-89 CC GO:0044436: thylakoid part

4 134 43 2 0.00058 MF GO:0010242: oxygen evolving activity

9 88 18 6 2e-05 BP GO:0015979: photosynthesis

9 88 18 47 4.2e-30 CC GO:0009507: chloroplast

9 88 18 2 7e-04 MF GO:0004045: aminoacyl-tRNA hydrolase activity

45 32 5 7 2.9e-10 BP GO:0015979: photosynthesis

45 32 5 21 3.1e-16 CC GO:0009507: chloroplast

45 32 5 5 1 MF GO:0003674: molecular function (PUF term)

110 20 6 3 8e-05 BP GO:0015979: photosynthesis

110 20 6 12 9e-10 CC GO:0009507: chloroplast

110 20 6 2 0.00093 MF GO:0004176: ATP-dependent peptidase activity

304 9 2 7 1.6e-15 BP GO:0015979: photosynthesis

304 9 2 5 1.9e-11 CC GO:0009523: photosystem II

304 9 2 3 5.1e-07 MF GO:0046906: tetrapyrrole binding

428 8 2 2 0.024 BP GO:0006091: generation of metabolites and energy

428 8 2 6 5.1e-07 CC GO:0005739: mitochondrion

428 8 2 2 1.8e-06 MF GO:0004449: isocitrate dehydrogenase activity

555 5 1 3 1.2e-06 BP GO:0015979: photosynthesis

555 5 1 3 3.8e-10 CC GO:0009502: photosynthetic electr. transport chain

555 5 1 3 3.3e-06 MF GO:0009055: electron carrier activity

923 5 2 3 5.2e-08 BP GO:0009853: photorespiration
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CLID CLSZ PUF Sample P-value Ont GO Term
923 5 2 3 3.9e-08 CC GO:0030964: NADH dehydrogenase complex

923 5 2 2 0.0047 MF GO:0003735: structural constituent of ribosome

Cell organization and biogenesis

77 24 5 6 4.2e-15 BP GO:0009834: secondary cell wall biogenesis

77 24 5 3 0.011 CC GO:0031225: anchored to membrane

77 24 5 6 1.7e-05 MF GO:0016757: transferring glycosyl groups

108 18 7 2 0.00084 BP GO:0009831: cellulose and pectin modification

108 18 7 18 1.3e-09 CC GO:0016020: membrane

108 18 7 2 0.0076 MF GO:0008289: lipid binding

349 9 0 7 1e-15 BP GO:0009664: cellulose and pectin biogenesis

349 9 0 6 0.00028 CC GO:0012505: endomembrane system

349 9 0 7 7.6e-19 MF GO:0005199: structural constituent of cell wall

953 5 1 2 9.7e-07 BP GO:0010020: chloroplast fission

953 5 1 2 0.029 CC GO:0009507: chloroplast

953 5 1 4 0.044 MF GO:0005488: binding

Secondary metabolism

12 73 13 3 0.0076 BP GO:0046148: pigment biosynthetic process

12 73 13 34 1.3e-18 CC GO:0009536: plastid

12 73 13 3 0.00059 MF GO:0003746: translation elongation factor activity

143 17 2 4 8.7e-08 BP GO:0046148: pigment biosynthetic process

143 17 2 8 1.4e-05 CC GO:0009536: plastid

143 17 2 5 0.0023 MF GO:0016491: oxidoreductase activity

347 10 2 3 1.2e-07 BP GO:0009686: gibberellin biosynthetic process

347 10 2 4 0.95 CC GO:0005575: cellular component (PUF term)

347 10 2 5 1.8e-10 MF GO:0016706: oxidoreductase activity

432 8 1 5 6e-13 BP GO:0009813: flavonoid biosynthetic process

432 8 1 2 0.00017 CC GO:0009705: membrane of vacuole

432 8 1 2 0.00023 MF GO:0016706: oxidoreductase activity

600 5 0 2 9.3e-07 BP GO:0009718: anthocyanin biosynthetic process

600 5 0 2 0.63 CC GO:0005575: cellular component (PUF term)

600 5 0 4 0.00049 MF GO:0016740: transferase activity

Response to stimulus

68 22 3 7 5.4e-07 BP GO:0006952: defense response

68 22 3 11 0.02 CC GO:0016020: membrane

68 22 3 5 1.1e-06 MF GO:0004888: transmembrane receptor activity

85 23 9 10 6.7e-18 BP GO:0009408: response to heat

85 23 9 10 0.21 CC GO:0005575: cellular component (PUF term)

85 23 9 2 0.043 MF GO:0005516: calmodulin binding

90 22 5 6 1.6e-09 BP GO:0009408: response to heat

90 22 5 5 0.04 CC GO:0005634: nucleus

90 22 5 3 0.00052 MF GO:0051082: unfolded protein binding

346 10 3 2 0.03 BP GO:0009628: response to abiotic stimulus

346 10 3 9 6.2e-08 CC GO:0009536: plastid

346 10 3 3 0.57 MF GO:0003674: molecular function (PUF term)

356 9 9 8 1.1e-15 BP GO:0009733: response to auxin stimulus

356 9 9 3 0.021 CC GO:0043231: intracellular membrane-bound organelle

356 9 9 9 7.7e-05 MF GO:0003674: molecular function (PUF term)

480 8 1 3 3.8e-05 BP GO:0006979: response to oxidative stress

480 8 1 7 1.1e-08 CC GO:0005739: mitochondrion

480 8 1 2 7.2e-05 MF GO:0046933: hydrogen ion transporting ATP synthase

586 7 1 3 4.2e-05 BP GO:0009737: response to abscisic acid stimulus

586 7 1 2 0.00013 CC GO:0008287: serine/threonine phosphatase complex

586 7 1 3 5.5e-07 MF GO:0015071: protein phosphatase type 2C activity

748 5 0 3 6.5e-08 BP GO:0009404: toxin metabolic process

748 5 0 4 0.01 CC GO:0005737: cytoplasm

748 5 0 3 6.9e-08 MF GO:0004364: glutathione transferase activity

912 5 0 4 7.3e-08 BP GO:0006457: protein folding

912 5 0 3 1.8e-06 CC GO:0009532: plastid stroma

912 5 0 3 1.2e-06 MF GO:0051082: unfolded protein binding

Physiological process

36 34 6 15 0.0011 BP GO:0043170: macromolecule metabolic process

36 34 6 11 2e-08 CC GO:0043228: non-membrane-bound organelle

36 34 6 7 3.5e-06 MF GO:0003735: structural constituent of ribosome

81 24 8 3 0.0011 BP GO:0051188: cofactor biosynthetic process

81 24 8 14 6.7e-08 CC GO:0009536: plastid

81 24 8 8 1 MF GO:0003674: molecular function (PUF term)

130 15 1 3 3.8e-07 BP GO:0010119: regulation of stomatal movement

130 15 1 2 1 CC GO:0005575: cellular component (PUF term)
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CLID CLSZ PUF Sample P-value Ont GO Term
130 15 1 5 0.041 MF GO:0016787: hydrolase activity

134 17 7 12 1.1e-20 BP GO:0006511: ubiquitin-dependent catabolic process

134 17 7 12 1.7e-28 CC GO:0000502: proteasome complex

134 17 7 7 6.5e-08 MF GO:0008233: peptidase activity

199 13 1 9 3.9e-07 BP GO:0009058: biosynthetic process

199 13 1 6 5.6e-12 CC GO:0044445: cytosolic part

199 13 1 6 2.1e-08 MF GO:0003735: structural constituent of ribosome

224 12 3 2 0.045 BP GO:0044249: cellular biosynthetic process

224 12 3 8 1e-07 CC GO:0009507: chloroplast

224 12 3 2 0.043 MF GO:0003723: RNA binding

293 11 3 2 0.00012 BP GO:0042775: ATP synthesis coupled electr. transport

293 11 3 9 3.8e-11 CC GO:0005739: mitochondrion

293 11 3 3 2.1e-05 MF GO:0015078: hydrogen ion transmembr. transporter

366 8 1 3 7.9e-06 BP GO:0006457: protein folding

366 8 1 6 4.5e-10 CC GO:0005783: endoplasmic reticulum

366 8 1 2 0.0016 MF GO:0031072: heat shock protein binding

406 9 1 4 1e-06 BP GO:0006511: ubiquitin-dependent protein catabolic

406 9 1 4 6.2e-09 CC GO:0000502: proteasome complex

406 9 1 3 0.00063 MF GO:0008233: peptidase activity

520 7 0 2 3e-06 BP GO:0006121: mitochondrial electron transport

520 7 0 2 3.4e-06 CC GO:0045273: respiratory chain complex II

520 7 0 3 4.9e-07 MF GO:0016627: oxidoreductase for CH-CH groups

728 6 0 6 5.5e-12 CC GO:0005783: endoplasmic reticulum

728 6 0 2 0.0051 MF GO:0008233: peptidase activity

790 5 1 3 8.6e-06 BP GO:0006511: ubiquitin-dependent catabolic process

790 5 1 3 1.1e-08 CC GO:0005839: proteasome core complex

790 5 1 3 0.00012 MF GO:0008233: peptidase activity

895 5 0 5 0.0099 BP GO:0008152: metabolic process

895 5 0 5 2.2e-07 CC GO:0005739: mitochondrion

895 5 0 2 9.5e-08 MF GO:0004774: succinate-CoA ligase activity

943 5 2 2 0.029 BP GO:0009058: biosynthetic process

943 5 2 4 4.7e-07 CC GO:0005783: endoplasmic reticulum

943 5 2 2 0.44 MF GO:0003674: molecular function (PUF term)

Table 3.4: The GO annotations for the most conservative cluster prioritization filter from Table 3.5 are provided. The three

filtering criteria for selecting the presented clusters are described in the previous legend. Based on space and readability consid-

erations, only the highest ranking GO term within each ontology is included here. As a result of our prioritization criteria, every

cluster listed has at least one GO term assigned that meets both, the enrichment (p-value ≤10−6) and uniformity (≥20%) criteria.

If an ontology did not contain a GO term passing these filters then the candidate with the lowest p-value was chosen. GO slim

terms are used as table subtitles to organize the clusters based on a general biological process classification schema. The different

columns provide the identifiers of each cluster (CLID), the number of genes (CLSZ), the number of PUF genes, the number of

genes matching a given GO term (Sample), the Bonferroni corrected p-value of the hypergeometric distribution test (P-value), the

ontology type (Ont) and the corresponding GO Term, respectively.

Interestingly, our method also identified a cluster (ID 77) that is highly en-

riched in cell wall-related annotations (e.g. GO:0009834, p-value: 4.2 ∗ 10−15), such

as cellulase synthase genes. A very similar cluster of genes was recently described and

experimentally verified by two groups (Persson et al., 2005; Brown et al., 2005) who

specifically mined public expression data for genes that are co-regulated with the cel-

lulose synthase genes CESA4, 7 and 8. In addition, comparable results were described

by Jen et al. (2006). This example demonstrates that our genome-wide expression

clustering approach generates biologically meaningful data. An additional interesting

cell wall-related cluster is cluster 349 that contains eight genes for proline-rich extensin

domain proteins.

The majority of the clusters in our data set contain one or more PUF genes
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Filter Clusters Genes

None 916 (794) 11,077 (2,884)
0.05 519 (429) 6,262 (1,541)
0.01 373 (301) 4,893 (1,126)
0.001 212 (170) 3,315 (744)
1e-06 66 (53) 1,279 (277)

Table 3.5: The amount of clusters and genes are provided for different cluster pri-
oritization filters that were applied to the GO term enrichment data. The values in
parentheses represent the corresponding number of clusters containing PUF genes and
the number of PUF genes in these clusters, respectively. The first row contains the
counts for the unfiltered data set that considered only clusters with ≥5 members. The
subsequent rows refer to the counts after applying the following two-component filter
with four different stringency settings. (1) To select clusters with enriched GO terms,
the clusters had to contain one or more over-represented GO terms in at least one of the
three ontologies based on the Bonferroni corrected p-values of the enrichment analysis.
The four different p-value cutoffs used for this filter are given in the first column. (2) In
addition, ≥20% of the cluster members needed to be associated with the selected GO
term in order to favor functionally homogeneous clusters.

(Table 3.5), but only a few of the larger clusters consist predominantly of PUF genes.

Cluster 17 represents an exception to this rule. The 43 members of this cluster contain 26

PUF genes, and its characterized members show no clear enrichment of specific functions.

Based on the high abundance of PUF genes in the entire data set (∼32%), PUF gene

enriched clusters occur much less frequent than those enriched in PKF genes; and clusters

consisting exclusively of PUF genes are entirely absent (Table 3.5). One explanation for

this difference could be that the expression of most PUF genes is controlled by the same

regulatory networks as many PKF genes. If this is the case, PUF genes are more likely

to appear in expression clusters together with PKF genes than without them.

Our method also identified clusters that are enriched in abiotic stress response

annotations. For instance clusters 85 and 912 are highly enriched in heat stress-related

genes (GO:0009408, p-values: 6.7 ∗ 10−18, 1.8 ∗ 10−6). Interestingly, 10 of the 23 mem-

bers in the cluster 85 were identified by the subsequent DEG analysis of this study,

as genes that respond specifically to heat stress and to a much lesser extent to other

types of abiotic stresses. Based on the available co-expression data, the 9 PUF genes of

this cluster are now excellent candidates for discovering novel gene functions involved in

heat stress response pathways. Additionally, this example illustrates that the two cho-

sen approaches of this study, expression clustering and DEG analysis, complement and

confirm each other. The hypoxia cluster 203 is another interesting abiotic stress cluster

(Fukao and Bailey-Serres, 2004). This cluster does not appear in the most stringently
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prioritized data set (Table 3.4), because it did not pass the applied uniformity filter.

Nevertheless, it is enriched in hypoxia-responsive genes (cluster ID 203, GO:0001666,

p-value: 2.0 ∗ 10−5), and it contains several members that are involved in cellular res-

piration processes, such as genes for the alcohol dehydrogenase ADH1 (AT1G77120),

a pyruvate dehydrogenase (AT4G33070) and a hemoglobin-like oxygen binding protein

that affects ATP levels under hypoxia (AT2G16060, (Hebelstrup et al., 2007)). Whether

the five PUF genes of this cluster are also involved in hypoxia-response processes, can

be addressed in experimental studies.

In conclusion, the combined clustering and gene function enrichment strategy

allowed us to associate a considerable fraction of the PUF encoding gene pool with tightly

co-expressed gene sets of known function. Depending on the chosen stringency settings,

the approach allowed us to assign 277-1,541 PUF genes (Table 3.5) to more specific GO

terms than those available in the latest GO annotation release for Arabidopsis.

3.2.5 Analysis of Differentially Expressed Genes (DEGs)

DEG analysis can identify groups of genes that exhibit expression changes in

response to specific treatments or cellular changes. Because this information is not

easily obtainable from clustering of global expression profiles, DEG analysis of pub-

licly available expression data complements the previous approach by associating PUF

with PKF encoding genes based on common differential expression responses to envi-

ronmental changes, such as abiotic stresses. If a group of genes shares similar expression

patterns across a wide spectrum of treatments then it is likely that certain members

are involved in similar or connected response pathways to these perturbations. The

association of genes with these response mechanisms can provide valuable information

for future functional characterization experiments of PUF or PKF genes.

One of the main challenges of performing systematic DEG analyses on large

and diverse gene expression data sets from public sources is the identification of the given

design parameters to determine for each experiment set its biologically most meaning-

ful analysis strategy. This step is extremely crucial, because every analysis needs to

focus on the specific treatment factors of an experiment. The alternative of performing

simply all possible comparisons will provide meaningless results for many experimen-

tal designs, because it would generate a large number of illegitimate contrasts between

biologically incomparable samples. In order to define reasonable analysis strategies

for public GeneChipR© microarray expression data sets, all their replicates and the most

useful sample comparisons need to be determined manually to provide the proper exper-
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imental design parameters to the downstream statistical methods for identifying DEGs.

The MIAME and MGED Ontology annotations (Brazma et al., 2001; Whetzel et al.,

2006) of the public microarray depositories provide the essential information about the

experiments, but efficient facilities to completely automate the DEG analyses on a large

scale are not available at this point.

To perform large-scale DEG analysis of public expression data, we chose for

this study a human-supervised analysis strategy, in which we determined for each exper-

iment set its optimum analysis parameters. The goal of this analysis was to identify all

PUF and PKF genes that respond to specific or a wide range of conditions by enumer-

ating their significant expression modulations in the corresponding experiment classes.

For this, the available experiment annotations were manually evaluated and the most

reasonable set of sample comparisons were recorded in an experiment definition table

that contained all the required input parameters to control the downstream statistical

DEG analysis in an automated manner. Typically, we chose for each experiment set a

design strategy that focused the analysis on the primary treatment as the main experi-

mental factor. Multifactorial analysis strategies were avoided as much as possible. For

instance, when an experiment contained a stress treatment as the primary experimental

factor and time or different tissue types as secondary factors, then we compared only

samples from identical tissues that were collected at the same time points. Additionally,

comparisons between different experiment sets were not considered to exclude unknown

variables, such as sample handling differences between laboratories (Hong et al., 2006).

It is important to stress here, that depending on the design of a given experiment and

its available annotations, it is often difficult to select a single most meaningful analysis

strategy. Thus, our chosen strategy may not provide a perfect solution for every ex-

periment set, but it represents a practical and reasonable compromise for performing

systematic DEG analyses on large expression data sets from public databases.

In total our large-scale DEG analysis survey included 333 comparisons between

samples with 2-4 technical or biological replicates from 41 experiment sets of 6 exper-

iment categories. Table 3.3 provides an overview of the corresponding sample and ex-

periment sets. Since the abiotic stress category is by far the largest data set, containing

524 chip hybridizations of 254 biosamples (Kilian et al., 2007), the following description

of our DEG results will be restricted to this most comprehensive treatment category

(Table 3.6). The data for the other categories are provided in the online database of

this project (see below). As the statistical method for identifying DEGs with the de-

termined experiment analyses strategies, we used Linear Models for Microarray Data

(LIMMA) from (Smyth, 2004, 2005) using in all cases as confidence threshold a false
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discovery rate (FDR) of ≤ 0.01 in combination with a minimum fold-change filter of 2.

Applying the above DEG analysis strategy, we were able to identify 269 PKF

and 104 PUF genes that showed expression changes in the majority of the ten considered

abiotic stress categories (Figure 3.3). This set of a total of 373 generic stress DEGs was

determined by filtering the generated DEG data set for members that showed one or

more significant expression changes in at least 80% of all stress categories. Interestingly,

95% of these DEGs also appear in the generated gene expression clusters of the previ-

ous analysis. The subsequent GO term enrichment analysis revealed that stress-related

annotations are highly over-represented in this group of DEGs. About 48 of its mem-

bers (13%) are associated with the GO term ”response to stress” from the BP ontology

(GO:0006950, p-value: 2.0 ∗ 10−13). This enrichment indicates that our strategy has a

high selectivity for identifying stress-response genes. Therefore, many PUF encoding

genes in this data set may be directly or indirectly involved in generic stress response

pathways. Among the different groups of identified stress responsive genes (see below

and Figure 3.3), the generic stress DEG set represents by far the largest group. Simi-

larly, other studies have shown that stress-regulated genes frequently exhibit expression

changes to a wide range of different abiotic stress treatments rather than a refined sub-

set of stresses (Rodriguez and Redman, 2005; Kilian et al., 2007). The group of generic

stress DEGs contains 48 genes that are annotated as transcription regulators in the MF

ontology (GO:0030528, p-value: 2.5∗10−3). This enrichment emphasizes the central role

of transcription factors for the control of many stress response pathways. Moreover, it

opens the possibility that several of the 104 PUF genes of this data set may be involved

in similar transcription control processes.

We also used the generated abiotic stress DEG data set for identifying genes

that respond predominantly to a specific type of stress. These specific stress DEGs

were defined as follows. Firstly, they had to show in 25% of all comparisons of a given

stress type significant changes. Secondly, they had to exhibit at the same time at

least four times as many changes than in the other nine stresses (Figure 3.3). This

frequency-based filtering approach appeared to be more efficient for associating DEGs

with specific stresses than overly strict filtering methods. This is the case because most

stress response genes are not highly specific for a single type of stress (Kilian et al., 2007).

As a result, strict filtering for genes responding only to a single stress will fail to identify

any candidate genes in our comprehensive data sets. It is important to emphasize here

that the chosen filtering approach is a practical compromise, but not a perfect solution

to the problem of assigning DEGs reliably to different stress types.
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Stress Chips Samples Comp

Heat 68 34 17
Cold 48 24 12
Osmotic 48 24 12
Salt 48 24 12
Drought 56 28 14
Oxidative 48 24 12
Wounding 56 28 14
UV-B 56 28 14
Light 48 16 10
Genotoxic 48 24 12

Table 3.6: The table provides an overview of the different types of abiotic stress ex-
periment sets (Stress) that were used in the DEG analysis of this study. The numeric
columns contain the number of the analyzed GeneChipR© microarrays (Stress), the num-
ber of the corresponding biosamples (Samples) and the number of the performed com-
parisons (Comp).

With the chosen frequency filter we were able to identify specific stress DEG

sets within six of the ten treatment types (Table 3.6, Figure 3.3). The data sets for the

stress treatments - light, oxidative and wounding stress - did not contain any genes that

meet our filtering criteria, and the drought data set contained only a single member. The

lack of specific stress DEGs in these data sets indicates that the genome-wide expression

response patterns to these four stresses widely overlap with those from other stresses.

For the remaining six treatment categories we identified in total 608 PKF and 206

PUF genes that responded predominantly to single stresses. The functional analysis

of these specific stress DEG sets with our GO term enrichment approach showed no

outstanding enrichment of specific gene functions. Instead, the results contained mostly

moderately enriched GO annotations from a wide spectrum of molecular and biological

processes. Similar to the generic stress data, the different groups of specific stress DEGs

included various marker genes that are characteristic for stress-related gene sets. For

instance, they contained many genes that are annotated with the GO term ”response

to stress” (see Figure 3.3). This term is significantly enriched in the heat stress data set

(p-value: 1.3 ∗ 10−2), while the other five treatment sets contain it with considerable,

but not significantly enriched frequencies (p-values ≥ 5 ∗ 10−2). In addition, the heat

stress and genotoxic stress data sets showed the expected enrichment of genes that are

associated with heat response and DNA repair processes, respectively (GO:0009408,

p-value: 4.9 ∗ 10−3 and GO:0006281, p-value: 6.1 ∗ 10−5).

In summary, the above large-scale DEG study identified a comprehensive set of
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Figure 3.3: The number of PUF and PKF encoding genes are plotted that were identified
as generic and specific stress DEGs. The values above the bars provide the corresponding
numbers of genes that are currently annotated with the GO term ”response to stress”
(GO:0006950 in BP ontology). The different stress types are given along the abscissa.
Genes responding to the majority of the 10 abiotic stresses were considered as generic
stress DEGs (Generic), while those responding predominantly to a specific type of stress
were classified as specific stress DEGs. The following filters were used for assigning genes
to the two stress categories. (1) Generic stress-response genes are those that showed in at
least 80% of all stress treatments one or more significant changes. (2) Whereas, specific
stress-response genes are those that showed in ≥25% of all comparisons of a given stress
significant changes, and exhibited there ≥4 times as many changes than in the other
nine stresses. For both filters, the observed expression changes were only counted when
they meet our confidence criteria of a FDR ≤0.01 and a fold change ≥2. The specific
stress data for the four treatment sets - light, oxidative, drought and wounding - are not
plotted here, because their data sets did not contain any DEGs that meet our specific
stress criteria.
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candidate PKF and PUF genes that are involved in generic and specific stress response

pathways. These results suggest the existence of one or more abiotic stress response

regulons in Arabidopsis similar to the environmental stress regulon (ESR) described in

yeast (Gasch et al., 2000; Gasch, 2002). Furthermore, the generated data sets represent

an important resource for other scientists, who are interested in addressing more specific

questions relevant to abiotic stress research by querying the generated DEG information

in alternative ways.

3.2.6 Plant Unknown-eome and Gene Expression Databases

To provide efficient access to the extensive data sets of this study, we have

developed two publicly available online portals: the Plant Unknown-eome Database

(POND, http://bio web.ucr.edu/scripts/unknownsDisplay.pl) and the Plant Gene Ex-

pression Database (PED, http://bioweb.ucr.edu/PED). The POND interface provides

query and download options for the latest PUF sets from Arabidopsis. Their predictions

are based on the three search methods used for this study: (1) BLASTP searches against

the PKFs from Swiss-Prot, (2) HMM searches against the Pfam domain database and

(3) retrieval of the ’unknown’ annotations from the Gene Ontology system (MF).

The PED integrates our diverse co-expression data with a variety of online

tools for user-friendly DEG analysis, cluster visualization and data mining (Figure 3.4).

The aim of this service is not to duplicate or compete with the excellent web resources

that are already available for array-based expression data from plants, such as GEO,

Genevestigator, BAR, AtGenExpress, ATC, PageMan, CSB.DB and MetNet (Barrett

et al., 2006; Grennan, 2006; Zimmermann et al., 2004, 2005; Toufighi et al., 2005; Schmid

et al., 2005; Jen et al., 2006; Usadel et al., 2006; Steinhauser et al., 2004b; Yang et al.,

2005). Instead PED complements the available resources by providing a subset of the

publicly available Affymetrix expression data from Arabidopsis in pre-analyzed form us-

ing various statistical methods for DEG identification combined with expression cluster

information for co-regulation analysis. To provide high-confidence data, the database is

restricted to data sets with two or more replicates. The following text provides a brief

overview of the most interesting features of the database.

All expression data in PED were normalized with the RMA and MAS5 algo-

rithms (Irizarry et al., 2003; Qin et al., 2006). The incorporation of the expression values

from both normalization methods increases the utility spectrum of the provided data

sets. The quantile-based RMA method generates more accurate expression measures

for weakly expressed genes, whereas the MAS5 scaling approach is more appropriate
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Figure 3.4: The outline illustrates important utilities of the database (URL:
http://bioweb.ucr.edu/PED).

42

http://bioweb.ucr.edu/PED


for comparisons between expression studies (Lim et al., 2007). The option to identify

DEGs by statistical modeling is a very unique feature of this online service. For this,

PED provides the results of experiment design-based expression changes from several

statistical methods, such as LIMMA (Smyth, 2004, 2005). The corresponding experi-

ment analysis strategies are available for online viewing and download. A combinatorial

query page allows searching for DEGs by specific treatments and filtering by various

quantitative values to obtain candidate gene lists with strategies that resemble typical

microarray analysis routines. Furthermore, the expression intensity and DEG data in

PED are fully integrated with a comprehensive set of gene co-expression data from cor-

relation and cluster analyses. To identify for a gene of interest its most positively or

negatively co-regulated neighbors, the interface contains a correlation tool that provides

for every gene on the arrays the Pearson and Spearman correlation profiles against all

other genes. Information on discrete expression clusters is combined with the correla-

tion data. It contains the four separate HTC cluster data sets that were generated by

this study using as distance measures the two correlation coefficients in their signed and

absolute forms (see previous section). An expression profile plotting tool is available

for evaluating the quality of expression clusters or visualizing the expression patterns

for custom gene sets across all samples in the database. This utility offers convenient

options for inspecting the vast number of expression clusters of this study efficiently.

Extensive download options for imports into local spreadsheet programs are available

on all query levels for intensity, DEG, correlation and cluster data.

While the backend of the database is based on PostgreSQL and the web inter-

face is implemented in Java, the framework of data analysis and online tools is largely

designed around R and BioConductor utilities (Team, 2008; Gentleman et al., 2005).

The latter design feature will allow us to routinely add to PED’s online services in

the future additional useful tools from the wide spectrum of statistical data analysis

packages that are provided by the R open source community.

3.3 Conclusion

We present here one of the most comprehensive gene co-regulation studies that

are currently available for Arabidopsis. Our study is unique by focusing on the analysis

on PUF genes and their systematic association with functional annotations of PKF

genes. By applying a combination of genome-wide cluster and DEG analysis methods,

we identified many interesting groups of potentially co-regulated genes from a wide range

of biological processes and stress response pathways. This approach allowed us to assign
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1,541 PUF genes to relative specific and functionally informative GO terms. These gene

associations provide a valuable resource for guiding future functional characterization

experiments of PUF and PKF genes. In addition, the developed large-scale expression

data analysis methods and the associated database represent important components of

a future open-source framework for other scientists who are interested in performing

similar studies, or utilizing public gene expression resources more efficiently. Finally,

users of the provided data sets should keep two limitations in mind. First, the generated

associations are hypotheses and not final proofs of gene functions. Second, even the most

careful statistical approaches for large-scale data can only reduce, but not fully eliminate

errors in the decision making processes associated with the interpretation of microarray

data.

3.4 Material and Methods

We now describe the details of each process used in the above discussion, as

well as the specific data sets used and where they were obtained from.

3.4.1 Sequence Similarity and Domain Searches

We performed sequence similarity searches of the Arabidopsis proteome against

the SwissProt database with the BLASTP program (Altschul et al., 1997) using an

E-value of 1 ∗ 10−6 as cutoff and the default settings for the remaining parameters.

The Arabidopsis protein sequences were obtained from the TAIR site (version 7 release,

ftp://ftp.arabidopsis.org/home/tair/Sequences) and the SwissProt sequences (Wu et al.,

2006) were downloaded from the ExPASy site (release 54.4, ftp://ftp.expasy.org/data-

bases/uniprot). To query only the functionally characterized protein space, we removed

all entries annotated as sequences of unknown function from the SwissProt data set.

To identify protein domains of known function in the above Arabidopsis pro-

teins, we performed domain searches against the hidden Markov models of the Pfam

database (Bateman et al., 2004) with the HMMPFAM program (Eddy, 1996) using an

E value of 1 ∗ 10−2 as cutoff. The global models of the Pfam release 22 were used

for these searches (ftp://ftp.sanger.ac.uk/pub/databases/Pfam/). We ignored matches

against domains of unknown function in the post-processing of the search results in

order to identify only candidate sequences with domains of known functions.
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3.4.2 GO Analysis

The Arabidopsis gene-to-GO mappings from TAIR/TIGR were used for all GO

analysis steps of this study. They were downloaded from the Gene Ontology site (10-

12-2007 release, http://gene ontology.org). Direct assignments to the root node of each

ontology were considered as unknown function annotations. These root assignments,

in combination with the evidence code ND (No biological Data available), are the new

official GO terms for sequences of unknown function. The former terms, molecular

function unknown (GO:0005554), biological process unknown (GO:0000004) and cellular

component unknown (GO:0008372), were discontinued by the consortium on 10-17-2006.

In the subsequent GO term enrichment analysis steps, the new unknown annotations to

the root were considered as artificial terminal annotations. This was necessary, because

the root node is connected with all other genes in the GO network, which makes it

impossible to obtain for the new unknown annotations meaningful enrichment data

with most GO analysis approaches. This modification does not affect the results for any

of the other GO nodes.

The hypergeometric distribution was used to test gene sets for the over repre-

sentation of GO terms. To perform this test, we developed a set of modular functions

using the R language for statistical computing for their implementation (Team, 2008).

The corresponding GOHyperGAll script computes for a given sample population of genes

the enrichment test for all nodes in the GO network, and returns raw and adjusted p-

values. As an adjustment method for multiple testing, it uses the Bonferroni method

according to Boyle et al. (2004). GOHyperGAll is based on the GOstats package (Fal-

con and Gentleman, 2007) from the BioConductor project (Gentleman et al., 2005), and

it provides similar utilities as the hyperGTest function included in this package. The

main differences of our method are that it simplifies the usage of custom gene-to-GO

mappings, and it contains various utilities for efficiently analyzing large numbers of gene

sets from cluster analyses in batch mode.

3.4.3 Microarray Analysis

A total of 1,310 Affymetrix raw data Cel files were downloaded from the At-

GenExpress and GEO sites (Schmid et al., 2005; Barrett et al., 2006; Kilian et al.,

2007). All of them are derived from the Affymetrix ATH1 gene GeneChipR© microarray

for Arabidopsis, and the corresponding samples contained at least two replicate samples.

A summary of the utilized experiment sets is provided in Table 3.3. The required probe

set-to-locus mappings for the ATH1 chip were obtained from TAIR (ftp://ftp.arab-
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idopsis.org/home/tair/Microarrays/Affymetrix, version 2-5-2007). All ambiguous probe

sets on this chip were treated in the gene enumeration steps of this study in the following

manner: controls and probe sets matching no or several loci in the Arabidopsis genome

were ignored in the downstream analysis steps. In addition, redundant probe sets that

represent the same locus several times were counted only once.

The normalization of the raw data Cel files was performed in R using the MAS5

and RMA algorithms, that are implemented in the affy package form the BioConductor

project (Irizarry et al., 2003, 2006; Qin et al., 2006). To allow in the DEG analysis com-

parisons between the different samples of an experiment set, the RMA normalization was

performed in batches for entire experiments sets (Table 3.3). This batch normalization

is only required for the quantile-based RMA approach, but not for the MAS5 scaling

approach. The present call information of the non-parametric Wilcoxon signed rank test

was computed with the affy package to estimate the amount of unexpressed genes (Liu

et al., 2002a; McClintick and Edenberg, 2006). The obtained expression values from

both normalization methods were uploaded to the PED database.

For the DEG analysis, the replicates and the most appropriate sample com-

parisons were determined manually for each experiment set. The generated analysis

strategies were recorded in experiment definition tables. These tables were used to

control the downstream DEG analysis steps in an automated manner by providing all

information on replicates and sample comparisons to the statistical test methods. The

actual analysis of DEGs was performed with the LIMMA package from (Smyth, 2004,

2005). The Benjamini & Hochberg method was selected to adjust p-values for multiple

testing and to determine FDRs (Benjamini and Hochberg, 1995). As confidence thresh-

old we used an adjusted p-value of ≤ 0.01 in combination with a minimum fold-change

filter of 2. All DEG analyses were performed on both the MAS5 and RMA normal-

ized data sets. While both DEG analysis results were uploaded to the PED database,

only the RMA set is discussed in this study, because the RMA algorithm provides more

accurate measurements on weaker expressed genes (Qin et al., 2006).

3.4.4 Cluster Analysis

The correlation and cluster analysis steps were performed in R on the MAS5

normalized expression data set. For this, the mean values from replicated biological

measurements were combined in one large expression matrix. The RMA data were not

used for cluster analysis, because they are less reliable for correlation studies than MAS5

data (Lim et al., 2007). The Pearson and Spearman correlation coefficients were calcu-
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lated with the cor function in R. The obtained correlation coefficients were transformed

into a correlation-based distance matrix after subtracting their values from 1. Four

separate distance matrices were calculated for the Pearson and Spearman correlation

coefficients in their signed and absolute forms. The matrices were passed on to the

hclust function (Murtagh, 1985; Team, 2008) that performs agglomerative hierarchical

clustering. Complete linkage was used as cluster joining method.

In order to obtain from hierarchical dendrograms discrete clusters, we devel-

oped a new hierarchical threshold clustering (HTC) method for this project. This

method identifies sub-clusters in dendrograms based on a minimum tolerable similar-

ity cutoff between all cluster members. This is achieved by applying an all-against-all

similarity test for the clusters from all possible sub-trees. At the same time, unique

cluster memberships are maintained and all items in the processed dendrogram are as-

signed to clusters with one or more members. As cutoff we used for this cluster selection

procedure a correlation coefficient of ≥0.6. This cutoff was chosen because it resulted

in the highest enrichment of functionally related genes compared to alternative cutoffs

settings. As a result of this method, the members of every identified cluster shared with

all other members of the same cluster correlation coefficients between 0.6 and 1.0.
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Chapter 4

Gene Network Analysis Using

Bayesian Clustering

The goal of this project is to identify gene regulatory networks in Arabidopsis

by integrating different kinds of genomic data, such as expression and regulator data.

In addition, we also try to identify the function of previously unknown genes, and find

novel regulators. Our dataset consists of 26 thousand genes, for each gene we use 571

microarray experiments, and the promoter sequence data for each gene.

We take a Bayesian approach to this problem primarily because the data is

very noisy and Bayesian methods have been shown to be effective in modeling this noise

(Friedman et al., 2000). A secondary reason is that Bayesian models are very flexible,

which allows us to easily add additional components to the model that represent different

kinds of data.

We started with a Naive Bayes model, which is a simple way to model a clus-

tering problem. In this case we are clustering the genes of Arabidopsis. The model has

one hidden cluster variable and several independent (given the cluster) child variables.

The child variables represent different features of the data, in this case we have child

variables for each experiment, and we test two different methods of representing the

promoter. Since the cluster variable is hidden, we use Expectation Maximization (EM)

to learn its parameters.

In addition to this model, we also use Context Specific Independence (CSI)

(Barash and Friedman, 2002) to better model the data. It is often the case that some

features are only relevant to some clusters, and completely useless to other clusters.

With CSI, we can find out which clusters depend on which features, then the useless

clusters can be summarized with a single distribution. CSI both reduces the complexity
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of the model, and provides us with more information about the data. In order to learn

this mapping, we use Structural Expectation Maximization (SEM).

4.1 Introduction

A gene network is a directed graph indicating which genes regulate which

products. A product can be either something that promotes or inhibits the transcription

of another gene, or it can be an end product itself, commonly a protein. An important

first step in constructing this graph is identifying the regulators of each gene. The most

common way of doing this is to start with a set of expression data from experiments

done under different conditions and then look for groups of genes that were expressed in

similar ways. Such groups are likely to be regulated by the same regulator. Other types

of data can also be used to group genes together, such as GO identifiers and previously

identified regulators. Ideally, a clustering algorithm should be able to make use of all of

these types of data.

Once a clustering of genes is found one can search for common patterns in each

cluster, which are good candidates for regulators. Additionally, if some of the genes in a

cluster have a previously identified function we can predict that other cluster members

share the same function.

When combining different kinds of data, and even between different experi-

ments in the expression data, there are cases where some features will be irrelevant to

the correct grouping of certain genes. For example, two genes may be very similar in all

but one feature, but that feature may have nothing to do with what is truly common

between the genes, so it is acceptable for it to be different. Most standard clustering

algorithms, such as K-means or hierarchical clustering, do not deal with this case very

well. In the above example, that pair would be penalized for differing in that one vari-

able, when it should not be penalized. The algorithm presented here is able to make use

of a wide variety of data types as well as identify which variables are relevant to each

cluster, thus avoiding this problem.

4.2 Method

In this work we present two stages. In the first stage we implement a Naive

Bayes clustering algorithm with CSI. In this stage we make use of expression data and

previously identified regulators to cluster genes. In the second stage, we extend and

modify this algorithm to make use of expression data and the raw promoter sequence of
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Figure 4.1: Naive Bayes clustering model with expression variables E1, . . . , En, and
regulator count variables R1, . . . , Rm.

each gene. In addition to clustering the genes, the algorithm identifies a set of regulators

for each cluster. Regulator identification and clustering are then repeated in an iterative

fashion, each helping the other to find a better solution.

4.2.1 Clustering

We start with a simple naive Bayes model for clustering. We have a cluster

variable, C, and feature variables, each dependant on C. In stage one we have two

kinds of features, real valued expression level variables, Ei, i ∈ [1, n], and discrete valued

variables, Rj , j ∈ [1,m], for the counts of each regulator in each gene. Each of these

features are conditioned on the value of C. This model also assumes that each data

variable is independent of all other data variables, given the cluster label. While this is

not guaranteed to be true in practice, it is often a close approximation and keeps things

simple and fast. The whole data set is denoted by D, and the mth row by D[m]. A

specific value of a variable, such as r1 in the mth row, will be denoted as r1[m].

C is modeled as a multinomial with parameters θ1, · · · , θk. Here k is the

number of clusters, which must be set by hand. P (Ei|C) ∼ N(µEi , σEi) and P (Rj |C) ∼
Multinomial(θ1Rj

, · · · , θqRj
), where q is 4, each value representing either 0, 1, 2, or “more

than two”. All these variable are observed, except for C, which is a hidden variable

and represents the cluster label. Expectation maximization (EM) is used to learn the

parameters of C. Given an initial set of parameters though, we can define a clustering

by assigning each sample to the most likely cluster:

cluster(sample) = arg max
c∈C

P (c|e1, · · · , en, r1, · · · , rm) (4.1)

The goal of EM is to find a set of parameters for the cluster variable which

maximizes the likelihood of the given dataset. This is done by iterating two steps.

We start with a set of random parameter values for C and then compute the expected
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sufficient statistics as follows:

M̄ [c] =
∑
m

P (c[m]|D[m]) (4.2)

M̄e[ei, c] =
∑
m

ei[m]P (c[m]|D[m]) (4.3)

M̄e2 [ei, c] =
∑
m

ei[m]2P (c[m]|D[m]) (4.4)

M̄ [rj , c] =
∑
m

rj [m]P (c[m]|D[m]). (4.5)

A sufficient statistic is the smallest set of numbers needed to compute the parameters of

a distribution. For example, a Gaussian distribution has two parameters, the mean and

the variance. We can compute both of these values knowing just the number of data

points, the sum of the values, and the sum of the squares of each value. Given these three

values, we no longer need the original data to compute the parameters of a Gaussian.

Since we don’t actually have all the data in this case, we compute the expected value

of the sufficient statistics, based on our current estimate of the distribution parameters.

Given the sufficient statistics, we can compute the optimal parameters, in terms of

likelihood, as follows:

θ̂c =
M̄ [c]

M̄
(4.6)

µ̂ei,c =
M̄e[ei, c]

M̄ [c]
(4.7)

σ̂ei,c =
M̄e2 [ei, c]

M̄ [c]
− µ̂2ei,c (4.8)

θ̂qrj ,c =
M̄ [rj , c]

M̄ [c]
. (4.9)

Here M̂ is the total number of pseudo counts,
∑

c M̂ [c]. Each iteration of these steps is

guaranteed to not decrease the likelihood.

We also make use of Context Specific Independence (CSI) in this model. With-

out CSI, each data variable must store a distribution for each possible cluster label.

However, it may be that a variable is really only relevant, or distinct, for some of the

clusters, while its behavior is identical for all other clusters. Then it makes sense to only

store distributions for the clusters for which the variable has distinct differences, and

summarize all other clusters with a single distribution (Barash and Friedman, 2002). A

second advantage of CSI is that it reduces the number of parameters that need to be

learned, which leads to better generalization of the model. For example, if we had a

regulator variable, R, and it usually only appears in sequences in clusters 1 and 3, we
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q=0 q=1 q=2 q=3

C=1 0.1 0.1 0.5 0.3
C=3 0.1 0.1 0.2 0.6
C=∗ 0.7 0.2 0.05 0.05

Table 4.1: Example Context Specific Independence (CSI) of a single regulator variable.
Here only clusters 1 and 3 are relevant to this variable, while all other clusters are
summarized by the C = ∗ distribution.

might a have set of distributions that look like Table 4.1, where C = ∗ is called the

default cluster and is used as the distribution for every cluster label besides 1 and 3.

Which clusters to keep distributions for must itself be learned, for each variable.

Because each variable in independent given the cluster, we only need to consider one

variable at a time which searching for the best structure. The structure here is a

binary string for each variable, with bit for each cluster label. A 1 bit signifies that a

specific cluster distribution is stored for that cluster, while a 0 bit indicates that the

default cluster should be used for that cluster. We thus have an exponential number of

structures to search through, for each variable. Since the number of clusters can be large,

an exhaustive search through this space is intractable. To solve this problem we perform

a local search through the space of structures. To do this we need a score with which we

can compare structures. Using the likelihood itself is not sufficient since that will always

lead to a bit string with all ones. The goal of CSI is to simplify the structure by removing

unnecessary distributions. Thus, we need to trade off the performance, measured by the

likelihood, with the complexity, measured by the number of parameters needed.

We used the Bayesian Information Criterion (Schwarz, 1978), or BIC, score for

this purpose, which is defined as

ScoreBIC = lnP (D|M, Θ̂M)− 1

2
ln(M)Dim(M). (4.10)

This is the difference in the log-likelihood of the data given the current model M and

the current parameter estimate for that model Θ̂M, and the complexity of M. The

complexity is weighted by the log of the number of data points, M , used to learn the

model. As the amount of data grows, the complexity term will grow more slowly than

the log-likelihood, and so will exert less influence on the final score. In this way, more

complex models will be accepted if there is enough data to justify the extra complexity.

But where there is only a small amount of data available, the complexity term encourages

simpler, more general models.

Using this score, we can search for better structures. We initialize each variable
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with a random structure and then run EM as described above. Then, for each variable,

we perform a greedy search for a better structure. We first compute the BIC score of

the current variable, and then try flipping each bit to see if the score improves. If a

change is found to improve the BIC score for a variable, EM is run again for just that

variable to re-estimate the parameters. The greedy search is then resumed. This process

is iterated until no improvement in the structure is found. This is known as structural

EM, or SEM.

The final likelihood expression of this model with CSI is

P (D|M, Θ̂M) =

[∏
m

P
(
C = c[m]|M, Θ̂M

)]
·

∏
xi∈X

L
(
xi, ∗, Θ̂xi|∗

)Qi ∏
l∈Li

L
(
xi, l, Θ̂xi|l

) (4.11)

where

L
(
xi, l, Θ̂xi|l

)
=
∏
m

P (X = xi[m]|C = l,M, Θ̂M) (4.12)

is the likelihood of variable xi. Here, M represents the set of structures for all the

variables, and Θ̂M is the set of parameters for the whole model, estimated with structure

M. Li is the structure for the ith variable, and Θ̂x|l indicates the parameters at veriable

x given structure l. Finally, Qi is the number of default clusters used by the ith variable.

During experimentation we found that the algorithm did not always make good

use of all the cluster labels given to it. Some clusters would become arbitrarily small

so that the probability of any data point belonging to it was extremely small. To solve

this we tried two different methods of re-initializing such clusters. One method is to try

to split the largest cluster. This is done by initialing the degenerate cluster to almost

the same parameters as the largest cluster, but slightly perturb them. Then these two

clusters would, hopefully, gradually fit two distinct parts of the data more closely. A

second method is to instead set the parameters of the degenerate cluster to the average

parameter values over all the cluster distributions. This should then allow the cluster

to fit any part of the space more closely, as EM is iterated. Both of these methods

are heuristic, of course, and provide no guarantees that the cluster will not become

degenerate again. However, the goal is to help the algorithm out of local optima.

In the second stage we modified the model to make use of a more complex reg-

ulator model. In this model the regulator variables Rj are replaced by a single promoter

variable, M . M is itself a Markov model which models the entire promoter sequence.

This model consists of an alternating chain of two types of variables, a background
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variable and a regulator variable. The number of regulator variables is fixed. A back-

ground variable, B, models the length of the DNA sections between end points and

regulators, P (B|C) ∼ N(µB, σB). This essentially models where the regulators occur

in the promoter sequence. Each regulator variable, R, is itself a hidden Markov model

(HMM) (see Section 1.1.7.3). which models the regulator sequence. We can represent

the state of M with a triple, ω = (i, j, s), where i is the current position in the promoter,

j is the current state of the top level Markov model, and s is either 0 if j represents a

background state, or else the state of the regulator HMM. The position, i, can advance

by any amount when transitioning out of a background state, but must only advance

one position at at time while in a regulator state, which includes advancing through the

underlying HMM. The initial state distribution of this model is

π((i, j, s)) =

Pj(B = i) j = 0

0 otherwise
. (4.13)

The model is required to start in the first background state, thus the probability of

every state with j 6= 0 is 0. Given that j = 0, the probability of a state is equal to

the probability that that background section has length i. The transition matrix is best

described as a decision tree, where right branches are taken when the condition is true.

The value of τ((i′, j′, s′)|(i, j, s)) is given by

j′ is a motif and i+ 1 = i

j′ is not a motif and
j + 1 = j′ and

i < i′

0 j′ is the last section

Pj′ (B=i′−i)es
λi,j

es

j + i = j′

1 j = j′

0 Tj(s, s
′)(1− es)

This is the probability of transitioning to state (i′, j′, s′) given a current state of (i, j, s).

There are only four non-zero terminal states here. If we are moving from a motif to a

background state, that is, j′ is not a motif, then we must also have that j increments

by one and i increases by some non-zero amount. Then, if we are moving into the last

section, we are forced to jump to the end of the sequence because we must account for

the whole sequence. In this case we have an exit probability of es for exiting the current
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section while in HMM state s. Otherwise we get the probability of observing a gap of

length i′ − i along with the exit probability ej,s, dividided by λi,j =
∑

l p(B = li − i),
where l ranges over the valid next states of (i, j, s). If we are moving into a motif state

we require that the position, i, only increment by one, in line with the requirements of

the motif HMM model. If j incremented by one, then we just came from a background

section. The first state of an HMM is the only possible place to transition to after a

background section, so that has probability 1. Otherwise, if j stays the same, we are

transitioning within the HMM, so we use Tj , the transition matrix associated with the

HMM in section j. We also multiply Tj with the probability of not exiting early. We

set es = 0.9
2r−s where r is the number of states in each motif HMM.

In order to perform EM on this model we have the following sufficient statistics:

Tj(s, s
′) =

#[ transition from s to s’ in regulator j ]

#[ being in state s in regulator j ]
(4.14)

bjs(m) =
#[ see symbol m in state s in regulator j ]

#[ being in state s in regulator j ]
(4.15)

NBj = #[ being in background j ] (4.16)

sumBj =
∑
l

∑
k∈ prev(l)

(li − ki)ξ(k, l)I[lj = j] (4.17)

sum2
Bj

=
∑
l

∑
k∈ prev(l)

(li − ki)2ξ(k, l)I[lj = j]. (4.18)

T and b are the transition and observation counts needed for the HMM in the jth state.

The remaining statistics are for the background length distributions. We sum first over

all positions we could end in, l, then over all the positions we could have come from,

denoted by prev(l). For each pair we have the length of the jump, times the number of

times that jump occurred, represented by ξ(k, l). Finally, only jumps ending in state j

are included in the statistics for state Bj , so the indicator, I, filters these. To learn the

best state sequence for a given sequence, we use the forward-backward algorithm. The

forward message is defined as

α((i, 0, 0)) = P0(B = i)b(O0:i) (4.19)

α(k) =
∑

l∈prev(k)

α(l)τl,kb(l, k) (4.20)

and the backward message is

β((i, J, 0)) =

1 ki = end

0 kp 6= end
(4.21)

β(k) =
∑

l∈next(k)

τk,lb(k, l)β(l). (4.22)
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4.2.2 Motif Discovery

As a first step towards discovering novel motifs, we developed a simple greedy

search method as an addition to our existing model. In addition to the known regulators,

we add Nu random regulator variables, each associated with a random DNA string of

length l. We then run the above EM and SEM algorithms until convergence and then

look at each random regulator variable to see if its structure indicates that it was used

for some cluster. If a variable was used, then the regulator is extended until no more

improvement is found. If a variable was not used, than it is replaced with another random

DNA string up to 50 times, or until some improvement is found. If some improvement

is found, the regulator is extended, as in the other case.

To extend a regulator, each of “C”, “T”, “G”, and “A” are added and the

improvement computed. If any of these actions improves the score, that addition is

kept and the process is repeated until there is no more improvement. To compute the

improvement of a new regulator, we must first count the number of times it occurs in

each sequence in the dataset. Then the expected sufficient statistics are updated, as

described above, and the new parameters are computed. To compute the difference in

log-likelihood of the old regulator, r1, compared to the new one, r2, we keep r1 as is, and

add r2 as an additional variable in the model, but with an empty structure. In this way

we can pretend that r2 has always been there, but it never affected the log-likelihood.

We have two different structures then, M1 in which r1 has its original structure L and

r2 has an empty structure, and M2 in which r1 is given the empty structure, thus

effectively removing it from the model, and r2 is given structure L. We can compute

the ratio of these two likelihoods as

P (D|M2, Θ̂M2)

P (D|M1, Θ̂M1)
.

Expanding this and canceling terms we are left with

L
(
r1, ∗, Θ̂r1|∗

)k
L
(
r2, ∗, Θ̂r2|∗

)Q∏
l∈L L

(
r2, l, Θ̂r2|l

)
L
(
r2, ∗, Θ̂r2|∗

)k
L
(
r1, ∗, Θ̂r1|∗

)Q∏
l∈L L

(
r1, l, Θ̂r1|l

) .
Taking the log and rewriting we end up with

(ll(r1, ∅) + ll(r2,L))− (ll(r1,L) + ll(r2, ∅)) (4.23)

where ll(V, S) is the log-likelihood of variable V with structure S. If r2 is better, the

first term will be larger and the difference will be positive. In this case r2 would be

accepted to replace r1, otherwise we would retain r1.
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Figure 4.2: Performance of synthetic data. The first plot shows how different the
learned clustering is from the correct clustering, in terms of the number of mismatched
pairs. The second and third plot show the false positive and false negative rates of the
regulator variables. This would be how many regulators were found that were not real
regulators, and how many regulators were missed.

In the second stage of the model, this scheme is replaced by a single model,

M , which models the entire promoter sequence, including the location and pattern of

the regulators. With this model we don’t need to perform a greedy search for specific

regulators, we instead treat is as part of the rest of the model and perform EM to find the

best set of parameters. This model also only works with a small number of regulators,

around 2 or 3, which must be fixed before hand.

4.3 Results

To test the first stage of the model we generated some synthetic data from the

model itself, mixing it with some percentage of random data. We first construct a ran-

dom model with a set of random parameters and CSI structures. We then sample from

this model to generate synthetic datasets. Then, since we know the correct model for the

synthetic data we can test how well the algorithm is able to recover the correct model.

For this test we used 5 clusters, 93 expression variables, and 25 regulator variables. We

generated 50 different datasets, which 1000 samples each. For each dataset, we used the

best result out of 10 restarts. The results are shown in Figure 4.2, for varying amounts

of noise. We can see that the correct clustering is found perfectly when 30% or less of

the data is noise. The false positive and false negative plots show how well the set of

regulators was recovered. Overall, both values are good, but the false negative rate is

adversely affected by noise more easily.

Tests on synthetic data can really only show that the algorithm is working.

The real test is whether or not the model accurately represents real biological data.

To test this aspect, we created two subsets of the real dataset. The data set used is
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(a) Hierarchical (b) Bayesian (c) Refined

Figure 4.3: Subset 1, expression data. The green and black bars on the left denote
cluster boundaries

the Arabidopsis thaliana genome, which consists of 26,000 genes. We used only the

expression data from 571 experiments in these tests. In the first subset we selected

808 genes that other hierarchical clustering methods had performed well on, and the

second dataset consisted of 1000 randomly selected genes. Both of these datasets are

then clustered using a standard complete linkage, agglomerative hierarchical clustering

algorithm, and then using our model, with and without the cluster refinement methods.

The clustering results can be seen in Figures 4.3, 4.4, 4.5, and 4.6. The clusters are

denoted by alternating green and black bars on the left side of each plot. Each row

represents the expression data for one gene. Each column is a different experiment and

the color of each cell represents the value of the expression level of a gene in a certain

experiment. The color scale ranges from red to black to green, where black represents

the average expression level over the entire dataset, shades of red are below average

levels, and shades of green are above average levels.

It can be seen that the Bayesian clustering method creates a much smaller

number of clusters, but they are much more uniform in expression levels. The cluster

refinement method is able to increase the number of clusters, creating more specific

clusters than the plain Bayesian method did. In the second subset, we can see that the

hierarchical method creates a very poor clustering while the Bayesian method is still able

to create a set of uniform clusters. The structures learned are shown in Figures 4.4 and

4.6. For each experiment (column), a white bar is shown for each cluster that had been

set to the default distribution, thus indicating it was not helpful for that experiment. It

can been seen that this situation did occur with some regularity, so the reduced number
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(a) Bayesian (b) Refined

Figure 4.4: Subset 1, CSI structures

of parameters should make the learned model more robust and general.

We then compared these algorithms on the full dataset, including expression

data and 237 previously known motifs. We set the number of clusters to 100. The

results are shown in Figures 4.7 and 4.8. We again see a similar result as with the two

previous data subsets. In Figure 4.9 we can see the results of the clustering on the

regulator counts. Here the color red indicates a count of 0 and bright green indicates

more than 2 occurrences. We can see that the regulator counts look quite similar across

all clusters, although structures learned for each regulator do differ between clusters.

This may indicate that this particular set of regulators were not useful in distinguishing

among these clusters.

To test how well we could discover novel motifs, we generated some synthetic

promoter data and injected regulator patterns into it. We generated 20 random motifs

of length 7 and assigned each to a different cluster. Each promoter in each cluster

then had one of its associated motifs inserted at a normally distributed position. Each

promoter sequence was 500 base pairs long. We also inserted motifs at random among

all promoters to simulate noise. Figure 4.10 shows the results of this experiment. In

this case we can see that the regulator counts have distinct patterns in each cluster and

we also found that almost all of the injected regulators where recovered.

This same dataset was used to test the second stage model, using only 2 motifs

per cluster however. We will show the results of two clusters here. In the first cluster,
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(a) Hierarchical (b) Bayesian (c) Refined

Figure 4.5: Subset 2, expression data

(a) Bayesian (b) Refined

Figure 4.6: Subset 2, CSI structures
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(a) Hierarchical (b) Bayesian (c) Refined

Figure 4.7: Full dataset, expression data
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(a) Bayesian (b) Refined

Figure 4.8: Full dataset, CSI structures
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(a) full (b) masked

(c) Bayesian

(d) full (e) masked

(f) Refined

Figure 4.9: Clustering of regulator variables
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(a) full (b) masked

Figure 4.10: Regulator clustering on synthetic data
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Figure 4.11: Motif discovery result on cluster 1

the two patterns inserted were “TGTCTTA” and “ATGGTCGCCG”. The resulting

regulator models are show in Figure 4.11. We can see that in both cases a significant

part of the regulator pattern was recovered by the HMM. In the second cluster, the two

patterns were “AAGCAAC” and “CCTTCAC”. Figure 4.12 shows the resulting models.

In this case the first pattern is recovered well, but the second one quite poorly. The

performance of the model overall was very sensitive to the initial parameter settings. To

initialize the model, we enumerated every 6 base pair pattern and looked for patterns

which where over expressed in a cluster, according to a hyper-geometric test. The

top two or three scoring patterns per cluster where used to initialize the regulator

HMMs. While this was effective in synthetic data, as the above results show, results

on Arabidopsis sequence data were not as good. The most likely reason for this is that

higher order organisms, such as Arabidopsis, have much more complex promoter regions

as well as more complex motif patterns and transcription processes. As a result, patterns

are more difficult to find, and our model may have been too simple to capture these

additional complexities.

4.4 Conclusion

In this work we have presented a flexible model which can make use of diverse

data types to cluster genes. In addition, we have presented a novel method of discovering

new motifs by iterating between clustering steps and motif discovery steps. For the
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Figure 4.12: Motif discovery result on cluster 2

motif discovery step we tried both a simple greedy motif search which could find short

exact motifs, and a full Bayesian model which could learn an HMM representation of

discovered motifs. We also demonstrated a method to improve the utilization of given

clusters, so that the desired number of clusters is actually used. Finally, both motif

discovery methods where shown to be effective in discovering novel motifs in synthetic

data.
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Chapter 5

Predicting conserved protein

motifs with Sub-HMMs∗

Profile HMMs (hidden Markov models) provide effective methods for modeling

the conserved regions of protein families. A limitation of the resulting domain models is

the difficulty to pinpoint their much shorter functional sub-features, such as catalytically

relevant sequence motifs in enzymes or ligand binding signatures of receptor proteins.

To identify these conserved motifs efficiently, we propose a method for extract-

ing the most information-rich regions in protein families from their profile HMMs. The

method was used here to predict a comprehensive set of sub-HMMs from the Pfam do-

main database. Cross-validations with the PROSITE and CSA databases confirmed the

efficiency of the method in predicting most of the known functionally relevant motifs and

residues. At the same time, 46,768 novel conserved regions could be predicted. The data

set also allowed us to link at least 461 Pfam domains of known and unknown function

by their common sub-HMMs. Finally, the sub-HMM method showed very promising

results as an alternative search method for identifying proteins that share only short

sequence similarities.

Sub-HMMs extend the application spectrum of profile HMMs to motif dis-

covery. Their most interesting utility is the identification of the functionally relevant

residues in proteins of known and unknown function. Additionally, sub-HMMs can be

used for highly localized sequence similarity searches that focus on shorter conserved

features rather than entire domains or global similarities. The motif data generated by

this study is a valuable knowledge resource for characterizing protein functions in the

future.

∗ Originally published in Horan et al. (2010), used with permission.

67



Figure 5.1: An example of the sub-HMM excision process is given for the fatty acid
desaturase domain (PF00487). The light gray line is the KL-divergence of each position
in the original HMM. The darker line is the result of smoothing with s = 8. The
horizontal line is the threshold, set to the average KL-divergence. Each section of the
curve with more than l = 8 positions above the threshold produces a sub-HMM. The
details about the different parameters are given in the Method section.

5.1 Extracting Sub-HMMs

The proposed protein sub-HMM method starts with a profile HMM that has

been trained on the multiple alignment of a protein family. We then extract sub-HMMs

from the generated HMM. A robust scoring method is used to predict the presence of

the sub-HMMs in any protein sequence of interest.

The first step is to find a small set of the most information-rich sub-HMMs

(or smaller HMMs), which still captures most of the information present in the corre-

sponding regions of a larger HMM built for a particular family. To extract the desired

sub-HMMs we first compute the Kullback-Leibler divergence (or relative entropy) of

each position in the large HMM, hi = DKL(mi||B), where mi is the observation dis-

tribution of the match state at position i, and B is the background distribution. We

normalize h so that each position has a value between 0 and 1, and then smooth the

values as follows: hsi = 1
s

∑s
j=1 hi−j for i ≥ s. The smoothness of the curve is determined

by parameter s, with higher values producing a smoother curve. Then we extract every

sub-sequence of hs that is always above some threshold t, and is at least l positions long.

We always set t to be the average over hi. An example is shown in Figure 5.1a.
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5.2 Scoring

Sub-HMMs can be matched and scored against protein sequences either as

single models or as sets of models. When scoring a set of sub-HMMs against a protein

sequence S, such as all sub-HMMs extracted from a Pfam HMM, we used a method

based on a complete generative model. We hypothesize the entire protein sequence can

be generated according to the following sampling semantics: First, choose the length of

the sequence. Then, for each sub-HMM y, sample the starting location from a uniform

distribution, and then sample a sequence from y and place it at the chosen starting

point. After this is done for all the sub-HMMs, fill in the gaps with samples from the

background distribution. This assumes that each of the sub-HMMs generates a portion

of the protein sequence, while their order is not important. In addition, we ignore

possible overlaps among sub-HMMs. We use the Viterbi algorithm to find, for each

sub-HMM, the most likely hidden state sequence and position in S, using a local-local

alignment. Let M be the length of S and Y the set of sub-HMMs. Then the resulting

score is

final score(S) =
∑
y∈Y

scorey(S)− |Y | logM . (5.1)

Here scorey(S) is the score from Equation 1.2 for HMM y. The term |Y | logM arises

from the uniform distribution over positions at which any sub-HMM might begin.

5.3 Data Set

Sub-HMMs were extracted from Pfam domain families using HMMER2 and

HMMER3 models (Finn et al., 2010). Pfam 22.0 was used for all experiments, whereas

Pfam 24.0 was mainly used in the performance comparisons with HMMER3. This is

because Pfam has adopted HMMER3 models only very recently, and at the time this

work was done many of its families had not been as rigorously tested and curated by

experts in the field as in the earlier HMMER2-based releases.

Using our new sub-HMM method, we extracted 48,535 sub-HMMs (Table 5.3)

from the Pfam 22.0 database (Pfam-A, Pfam ls). This database consisted of 9,318

domain profile HMMs with 2,990,695 unique protein sequences associated with at least

one domain. Due to the presence of multiple domains in many sequences, the data

set contained a total of 4,070,949 family memberships. The length distributions of

the original Pfam HMMs and our sub-HMMs for all families are shown in Figure 5.2.

As expected the sub-HMMs are much shorter than the original Pfam HMMs, with an

average length of 17 residues compared to 210 residues, respectively. This has several
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Figure 5.2: (a) The length distribution of Pfam HMMs is depicted in the form of
a histogram. The Pfam HMMs consist on average of 210 positions, while it is only
90 positions for the combined set of sub-HMMs per Pfam HMM. (b) The length per
domain model is computed by summing the lengths of the sub-HMM extracted from
that model. (c) The length distribution of individual sub-HMMs is shown. In all cases
the sub-HMMs were created with a minimum length setting of 8 and a smoothing factor
of 8.

Name Size Description

Pfam proteins 2,990,695 Proteins in Pfam database
Pfam HMMs 9,318 Domains in Pfam database

DKFs 7,435 Pfam domains of known function
DUFs 1,883 Pfam domains of unknown function

Sub-HMMs 48,535 Sub-HMMs excised from Pfam domains
Sub-DKFs 39,217 Sub-HMMs excised from DKFs
Sub-DUFs 9,318 Sub-HMMs excised from DUFs

Table 5.1: The sizes of the different data sets used and generated by this study using
Pfam 22.0.

advantages for the goals of this study. First, the sub-HMMs have a length distribution

similar to the size of many known functional motifs, which is essential for predicting

features with related properties (Hulo et al., 2006, 2008). Second, their shorter length

reduces the computation time for scoring a protein. Finally, it reduces the number of

parameters, which should improve the accuracy of the detector.

Subsequently, we performed several benchmark tests to determine the per-

formance of the new sub-HMM method in identifying functionally relevant sequence

features and searching for sequences sharing them. For this, we determined the pres-

ence of each Pfam HMM and our sub-HMMs in all protein sequences from the Pfam

database by applying the scoring system described in Section 5.2.
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Figure 5.3: The true positive rates versus false positive rates are plotted in the form
of ROC (Receiver Operating Characteristic) curves to compare the performance of the
HMMER2 and sub-HMM methods. The full Pfam 22.0 data set was considered in this
test.

5.4 Search Performance

In order to compare the sensitivity and selectivity performance of the sub-HMM

method with the widely used HMMER2 software, we tested how well each method could

recover the members of each domain family from all proteins in the entire Pfam 22.0

database. We used the scores computed for each protein to generate an ROC (Receiver

Operating Characteristic) curve for each method (Figure 5.3). This allowed us to com-

pare the methods without choosing a fixed threshold, which is usually hard to define

a priori. In this preliminary test, we used the original Pfam HMMs for the HMMER2

method, and the sub-HMMs extracted by our method from the same Pfam HMMs. As

a test sample, all proteins in Pfam were used. This experimental design gives a slight

advantage to both methods, because the Pfam HMMs are trained on a representative

subset of proteins that overlaps with the total protein set in each family. Despite this

limitation, the difference in performance is still meaningful due to the identical starting

conditions for both methods. Figure 5.3 shows the resulting ROC curves for assembling

all 9,318 families. The results show that the HMMER2 method has a higher sensitivity

at false positive rates less than 0.02, but the sub-HMM method performs slightly better

at higher false positive rates. Due to the much shorter profiles used by our method, it

is expected to have a higher false positive rate when it is benchmarked against a test

data set that is based on the family assignments of complete domain models.

We also performed more rigorous comparisons of our method against HM-
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MER2, HMMER3, SAM and PSI-BLAST (Altschul et al., 1997). Additionally, we

tested our sub-HMM method with HMMER3 profile HMMs. In this case the sub-

HMMs where excised from HMMER3 models and the HMMER3 search tool was used

to map and score the individual sub-HMMs to the sequences. We then combined the

scores as described in the Methods section. In the following text of this section, the

sub-HMM experiments performed with HMMER2 and HMMER3 are referred to sub-

HMM-HMMER2 and sub-HMM-HMMER3, respectively. In all tests we trained the

models ourselves by randomly selecting 20% of the members from each protein family,

but the training data were not included in the test data sets. HMMER2, HMMER3 and

SAM use a multiple sequence alignment for the model building step. Since it was not

our goal to test the alignment quality, we used the curated domain alignments provided

by Pfam as input to all methods. Although SAM can create its own alignments, we

forced it to use the alignments we provided to make this method more comparable to

HMMER2 and HMMER3. For PSI-BLAST, we first created multiple sequence align-

ments for all the training data sets using CLUSTALW. Subsequently, we built PSSMs

to search the test data set with PSI-BLAST. For all methods, we compared how well

they could recover the remaining 80% in each protein family from the combined set of

all test sequences. Due to computational resource constraints, it was not possible to test

these methods on all Pfam families. Instead we created two smaller subsets of families,

one composed of smaller families and one composed of larger families. The small family

set contained 933 families randomly selected from Pfam 22.0 with of 10 to 100 members,

while the large set contained 1002 families with more than 100 members. In addition, we

tested the different methods on the HMMER3-based Pfam 24.0 data set. To maximize

the comparability of the results, we selected only families that were available in both

Pfam releases and fell into the same size categories. For the small set, we found 899

families in Pfam 24.0 but only 491 of them had less than 100 members. For the large

set, 988 families were also available in Pfam 24.0 and all of them contained more than

100 members.

The ROC plots for all comparisons are shown in Figures 5.4 and 5.5. For the

experiments with Pfam 22.0, the results indicate that the sub-HMM-HMMER2, sub-

HMM-HMMER3 and PSI-BLAST methods perform better on the small family set than

on the large one, while HMMER2, HMMER3 and SAM show an opposite performance

trend. When comparing the six methods, both sub-HMM methods perform at least as

well as HMMER2, whereas SAM, HMMER3 and PSI-BLAST show the best performance

in assembling the families from both family size categories. Direct comparisons of the

Pfam 22.0 and Pfam 24.0 results indicate that HMMER3, PSI-BLAST, SAM, sub-
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1
Figure 5.4: The performances of sub-HMM-HMMER2, sub-HMM-HMMER3, HM-
MER2, HMMER3, SAM and, PSI-BLAST on the Pfam 22.0 data set are compared
in the form of ROC curves (compare Figure 5.3). The first test (a) considers smaller
families with 10 to 100 members, whereas the second one (b) considers large families
with more than 100 members.

HMM-HMMER2 and sub-HMM-HMMER3 perform very similarly on the small family

set, while HMMER2 improves slightly. These trends are almost identical for the large

family set, except that sub-HMM-HMMER3 performs better on this data set.

Since our method is designed to find short sequence similarities, it is expected

to have a lower selectivity (higher false positive rate) than the other methods when

reassembling family relationships that are based on longer domain similarities. In fact,

such a performance characteristics on known family data sets is required for discovering

novel conserved fragments in sequences that do not necessarily belong to the same

domain family. The latter is the main utility feature of the sub-HMM method.

5.4.1 ROC Comparisons

For the PSI-BLAST tests, the training sets were aligned with CLUSTALW

(Thompson et al., 1994) and then a PSSM was generated using blastpgp with just one

round of searching. The test data was then scored by blastpgp using the trained PSSM

as a starting point and running for up to 6 rounds. For each sequence, we recorded

the maximum log-odds score from all the rounds. For the SAM tests, we extracted the
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Figure 5.5: Performance comparisons with Pfam 24.0. The first test (a) considers
families used for Figure 5.4 that were also present in Pfam 24.0 for the small (a) and
the large sets (b).

aligned training data from the Pfam database and used them to train the models, forcing

SAM to use the given alignments rather than create its own. These models were then

used to classify the test data. In the case of HMMER2 and HMMER3, we trained models

with hmmbuild and hmmcalibrate (HMMER2 only) using the same alignments as for

the SAM tests. In all cases, HMMER2 tests were performed with HMMER2 models and

HMMER3 tests with HMMER3 models. We then used these models to classify the test

data with hmmsearch. If multiple domains were found in one sequence, the result from

the best scoring one was used. For the sub-HMM method, we used the aligned training

data to build HMMER2 and HMMER3 models, and then extracted sub-HMMs from

them. We then used our hmmsearch implementation to score each sequence according

to our model. For all tests, the training sets consisted of a random selection of 20% of

the sequences from each Pfam family, while the test database contained the union of the

remaining sequences. The ROC curves where computed with the ROCR library (Sing

et al., 2005) using the concatenation of all the scores for each method. Log-odds scores

were used for all methods to obtain comparable results. In the case of SAM, we used

reverse log-odds scores (Karplus et al., 2005).
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5.5 Cross Validation with PROSITE and CSA

Next, we determined how well the sub-HMM method performed in identify-

ing known motifs that are likely to be of functional relevance. This was addressed by

comparing the extracted sub-HMMs from the Pfam 22.0 database with the hand cu-

rated conserved protein motifs from the PROSITE database. If the sub-HMMs are

enriched in functionally relevant candidates, then one would expect a high degree of

overlap with the motifs from the PROSITE database. This should be the case because

the PROSITE motifs are derived from a comparable protein knowledge space as the

sub-HMMs generated by this study. The overlaps were determined by comparing the

matching positions of the two fragment data sets in their corresponding protein family

sequences. For counting overlaps, we used relatively conservative filtering criteria: the

two fragment models had to have 50% of their matching protein sequences in common

and the overlaps had to occur in least 95% of the common protein members. In addition,

we consider a sub-HMM to match only if it has a score of 0 or higher. Furthermore, we

compute the probability of this event happening by chance and require that it be less

than 0.01.

According to these comparisons, 1,054 of the 48,535 sub-HMMs overlapped

with 937 of the 1,303 (72%) PROSITE motifs by at least 10% of the length of the shortest

fragment. The probability of finding ≥937 matches just by chance was estimated to be

< 1.6 ∗ 10−6 (see Section 5.5.1 for details). Of these 1,303 PROSITE motifs, 958 were

associated by Pfam with one or more of its protein families. The number of matching

families for varying percent overlaps is shown in Table 5.2. An example of a matching

pair is shown in Figure 5.6.

A similar test was performed for the catalytic residue annotations from the

Catalytic Site Atlas (CSA) (Porter et al., 2004). This is a database of active site residues

from enzymes represented in the Protein Data Bank (PDB). Due to their functional

importance, most of these residues are highly conserved within protein families. In our

tests, we considered only those sites which are supported by the literature and also

mapped to protein domain regions in the Pfam data set. This left us with 4147 sites

mapping to 642 proteins. Subsequently, we counted how many sub-HMMs overlapped

with these sites and found that 847 sub-HMMs overlapped with CSA residues. These

corresponded to 2903 active sites from 546 proteins. Thus, our sub-HMM data set

contained 70% of these active sites. The probability of observing ≥2903 overlaps among

the two data sets just by chance is < 1.5 ∗ 10−18.

75



Figure 5.6: An example of a sub-HMM matching with a PROSITE pattern. In this
case, the sub-HMM (PF00334.10-3, top) extracted from domain PF00334.10 matched
against PS00469 (bottom) with a p-value of less than 10−315.

Overlap Sub-HMMs PROSITE TP TPR

10% 1,054 937 562 0.58
25% 1,023 932 558 0.58
50% 965 912 549 0.57
75% 849 827 495 0.51
90% 720 716 423 0.44
100% 620 624 366 0.38

Table 5.2: The numbers of sub-HMMs are listed that overlapped with PROSITE motifs.
The first column provides the relative overlap among the two feature types. The second
and third columns contain the number of overlapping sub-HMMs and PROSITE motifs,
respectively. The details of the filter settings used in these comparisons is given in the
Result and Discussion section. The column TP contains the number of true positives
that we identified out of the 958 PROSITE families annotated by Pfam 22.0. The last
column TPR gives the corresponding true positive rate.
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Match Type Sub-HMMs Pfam HMMs OL PROSITE/Sub-HMM

sub-DKF → DKF 28,794 6,571 689
sub-DKF → DUF 21,615 1,751 502
sub-DUF → DKF 6,798 5,487 0
sub-DUF → DUF 5,070 1,516 0

Table 5.3: The table lists the numbers of sub-DKFs and sub-DUFs which matched in
addition to their source families other DKF and DUF families. A sub-HMM is considered
to have matched a Pfam 22.0 family if it scores greater than 0 on more than 50% of its
members. The last column contains the counts of sub-HMMs that also overlapped with
PROSITE motifs.

The considerable agreement of our method with the PROSITE and CSA data

sets indicates that the sub-HMM method is efficient in identifying many of the known

functionally important residues in protein families. Therefore, it is reasonable to assume

that the novel conserved regions, identified by this study, are a useful resource for char-

acterizing the functional hotspots in protein sequences of known or unknown function

in the future.

5.5.1 Comparison Method

The overlaps of sub-HMMs and PROSITE motifs were computed by matching

them against the domain sequences in each Pfam family. The PROSITE matches were

determined with ps scan (Gattiker et al., 2002). To minimize the compute time of

these overlap comparisons, we considered only those Pfam and PROSITE sets (families)

which had at least 50% of their sequences in common. Among these, at least 95% of the

matches had to overlap by variable lengths specified in Table 5.3. The overlaps with the

CSA data set were computed similarly. Due to the short length of the active sites, their

positions had to be completely contained in the sub-HMM matches. The probability of

a sub-HMM matching with a PROSITE motif by chance was computed as follows.

Let qij be the probability that by chance a query fragment of length Fj overlaps

a PROSITE fragment of length Pj on a protein of length Sj in PFAM family i by a

fraction of at least x, assuming both fragments were placed uniformly at random:

qij ≤ min

(
1,
Pj + Fj − 2xmin (Pj , Fj) + 1

Sj − Fj + 1

)
(5.2)

Then we want to compute the probability, Di, that a certain number of overlaps occurs

between a PFAM family i and a PROSITE family. In particular, given that at least

50% of the members of either family lie in the intersection, we want the probability that

95% of the sequences in the intersection have an overlapping fragment.
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Let F be a PFAM family and P be a PROSITE family. We define R as the

set of all subsets of F ∩ P which contain at least 95% of the intersection:

R = {R|R ⊂ F ∩ P ∧ |R| ≥ 0.95n} (5.3)

where n = |F ∩ P |. Let pij = {qij |j ∈ F ∩ P}, then

Di =
∑
R∈R

∏
j∈R

pij
∏

j∈(F∩P )\R

1− pij

 (5.4)

Since this would require enumerating every set in R, this would take too long to

calculate, so we approximate it with an upper bound. Let j∗ = argmaxjpij and

R∗ = argminR(|R|) ∀R ∈ R. Then we have

Di ≤
∑
R∈R

∏
j∈R

pij (5.5)

≤
∑
R∈R

p
|R|
ij∗ (5.6)

≤ |R|p|R
∗|

ij∗ (5.7)

=

 n∑
k=d0.95ne

(
n

k

) p
d0.95ne
ij∗ (5.8)

This bound is often too loose in practice however. This is because for large

values of pij∗ , the last term in equation 5.4 makes that term very small, whereas the

corresponding term in our bound would still be large. Therefore, we adopt a method of

removing these large outliers to get a tighter bound.

Di =
∑
R∈R

∏
j∈R

pij
∏

j∈(F∩P )\R

1− pij

 (5.9)

=
∑
R∈R

∏
j∈R
j≤n′

pi(j)
∏
j∈R
j>n′

pi(j)
∏

j∈(F∩P )\R

1− pij

∀n′ ∈ [1, n] (5.10)

= min
n′∈[1,n]

∑
R∈R

∏
j∈R
j≤n′

pi(j)
∏
j∈R
j>n′

pi(j)
∏

j∈(F∩P )\R

1− pij

 (5.11)

To simplify the notation, we re-write this in terms of the following sets:
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U = F ∩ P (5.12)

U− = {x|x ∈ U ∧ pix ≤ pin′} (5.13)

U+ = U\U− (5.14)

R− = {S|S ⊂ U− ∧ |S| ≥ n′ − 0.05n} (5.15)

R+ = 2U+ (5.16)

These essentially divide U and R into their corresponding sets for elements less than

pin′ and elements greater than pin′ . Now we can rewrite Equation (5.11) as:

≤ min
n′∈[1,n]

∑
S−∈R−

∑
S+∈R+

 ∏
j∈S−

pij
∏
j∈S+

pij
∏

j∈U−\S−
1− pij

∏
j∈U+\S+

1− pij

 (5.17)

= min
n′∈[1,n]

∑
S−∈R−

 ∏
j∈S−

pij
∏

j∈U−\S−
1− pij

 ∑
S+∈R+

 ∏
j∈S+

pij
∏

j∈U+\S+

1− pij

 (5.18)

= min
n′∈[1,n]

∑
S−∈R−

 ∏
j∈S−

pij
∏

j∈U−\S−
1− pij

 (5.19)

The last step follows because the last sum in Equation (5.18) is over every subset of U+,

so it sums to 1.

We can then bound this expression as follows:

min
n′∈[1,n]

∑
S−∈R−

 ∏
j∈S−

pij
∏

j∈U−\S−
1− pij

 ≤ min
n′∈[1,n]

∑
S−∈R−

∏
j∈S−

pij (5.20)

≤ min
n′∈[1,n]

∑
S−∈R−

(pin′)
|S−| (5.21)

≤ min
n′∈[1,n]

n′∑
k=n′−b0.05nc

(
n′

k

)
pkin′ (5.22)

In equation (5.22), we replace the sum in the previous equation with a sum over the

possible sizes of R. For each size, the binomial term gives the number of sets of size k,

and the last term gives the probability of a set of size k.

We use the Hoeffding bound (Hoeffding, 1963) to upper-bound the likelihood

of finding a certain number of PROSITE or CSA overlaps with our sub-HMM data set

by chance (that is, if the sub-HMM data set had instead been chosen at random). The
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Hoeffding bound states that if the random chance of any single test matching is p, then

the probability of m or more matches in M tests is less than e−2Mε2 where ε = m
M − p.

For the PROSITE comparisons, matches are only considered if the prior prob-

ability is less than 0.01, therefore, p = 0.01. We found m = 1, 054 overlaps out of a total

set of M = 48, 535 sub-HMMs. This yields a p-value (by the Hoeffding bound) of less

than 1.6∗10−6 for the probability of our sub-HMMs matching PROSITE models at this

level by chance.

For the CSA comparison, each site is only a single amino acid. We restrict

the comparisons to only those sequences containing annotated CSA sites. There are

M = 95, 076 amino acids matching our sub-HMMs, of which m = 2, 903 are annotated

by CSA. There are a total of 261, 857 amino acids, of which 4, 147 are annotated by CSA.

Therefore, p = 4147
261857 , and we obtain (again with the Hoeffding bound), a p-value of less

than 1.5 ∗ 10−18 for the probability of our sub-HMMs overlapping these CSA-annotated

amino acids by chance.

5.6 Discovery of Conserved Fragments in Protein Families

To evaluate the utility spectrum of sub-HMMs for conserved feature discovery,

we tried to see which other families sub-HMM performed well in, excluding the family

a sub-HMM was excised from. We used Pfam 22.0 for this test. To define a match

between a sub-HMM and a family, we required a sub-HMM to match at least 50%

of the sequences in each Pfam family with a log-odds score of 0 or higher. Table 5.3

shows how many sub-HMMs from Pfam domains of unknown function (DUFs) matched

Pfam families of known function (DKFs) and vice versa. A sub-DUF is defined as a

sub-HMM that was extracted from a DUF, whereas a sub-DKF was extracted from

a DKF. Interestingly, the sub-DKFs shows considerable overlaps with the PROSITE

data set, whereas the sub-DUFs do not overlap with PROSITE at all (last two rows in

Table 5.3). The latter is expected because PROSITE focuses on motifs from functionally

characterized proteins. This also indicates that our sub-DUF data sets contains many

novel conserved and potentially functional motifs that are not represented in PROSITE.

A similar approach was used for constructing networks of Pfam 22.0 families by

their common sub-HMM matches. The obtained clusters in this network showed many

similarities to the clusters from the Pfam clan database, but also significant differences

(Finn et al., 2006). The Variation of Information (VI) coefficient (Meilă, 2007) for the

two network sets was 0.275. This score has a range from 0 to log(9318) = 9.1, with

lower scores indicating more similar clusterings. Two small sub-graphs of the sub-HMM
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Figure 5.7: The graph shows an example of a Pfam clan and the corresponding sub-
HMM network. The sub-HMM method clusters Pfam domains by conserved fragments.
In the given example, the results from both methods agree very well. The Pfam clan
membership is indicated by the large box labeled CL0063. The oval nodes with a
PF* label represent domain families for which only one sub-HMM was created. The
rectangular boxes labeled with a PF* number represent that domain family and nodes
inside are sub-HMMs created from that family.

based domain network are shown in Figures 5.7 and 5.8. The box in Figure 5.7 encloses

those families which are part of a clan according to the Pfam database. In this case

the sub-HMM-based grouping of families agrees almost perfectly with the corresponding

Pfam clan assignment. In contrast to this, Figure 5.8 gives an example of a new cluster

of domains predicted by our method. Such differences in the results of the two methods

are expected, because the Pfam clans are assembled with a profile HMM to profile HMM

alignment method (Madera, 2008) that is fundamentally different from our sub-HMM

method.

The large number of sub-HMMs matching different Pfam domains indicates

the usefulness of our sub-HMM approach for discovering short sequence features that

are conserved among different protein domains. Due to their high conservation, an

important functional role for many of these features can be expected. Many of the
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Figure 5.8: An Example is given for a novel Pfam domain cluster that could be predicted
by the Sub-HMM method. The dark nodes indicates a domain of unknown function
(DUFs). The other symbols in the graph are explained in the legend of Figure 5.7.
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sub-DKFs will be useful for assigning potential functions to DUFs.

5.7 Conclusion

We have developed a simple but effective method for identifying the most highly

conserved residues in protein sequences in a fully automated manner. Its design strategy

is highly practical and versatile by making efficient use of a well-established bioinfor-

matic infrastructure, such as existing domain databases and profile HMM search tools.

In addition, the conserved patterns, identified by this study, are useful for characteriz-

ing proteins of unknown function by associating them with those of known function by

their common sub-HMMs. Furthermore, the sub-HMM search method appears to be a

very effective tool for finding sequences that share only very short sequence similarities

with a sensitivity performance similar to HMMER2. The possibility to ignore the or-

der of different sub-HMM matches in sequences is another advantage, which will allow

the identification of more complex similarity arrangements among otherwise unrelated

sequences.
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Chapter 6

Sub-HMM Clustering

Sub-HMMs offer additional insight into the most important sub-sections of a

more general family HMM, but they may not be the best representation of the true,

defining patterns of a given family of protein sequences. Models representing extracted

sub-HMMs where forced to be built on sequence fragments occurring at a specific lo-

cation in the sequence which is dictated by the structure of the family HMM. Each

fragment from a sequence used to build the extracted region of the model may not be

the best fragment among all possible fragments on a given sequence however. Further,

a family may be properly defined by a set of sub-HMMs, but an individual sub-HMM

might also occur within other families. By finding these links, we can take advantage of

the additional sequence data to improve the quality of models built on small families.

In this chapter we demonstrate methods to address both of these concerns and show

that search performance can be improved by taking advantage of them.

The first problem is addressed through a process we call retraining, in which

the sub-HMM is allowed to match anywhere on each sequence and a new model is

trained from the resulting fragments. This processes is iterated until no more movement

occurs. See section 6.2 for details. The second problem is really a specific case of a

more general problem of clustering HMMs, sub-HMMs or otherwise, in order to identify

similar patterns. The sequence data associated with each model in a sub-HMM cluster

can then be combined to train a new, more robust, model to replace all members of

the cluster. Additionally, clustering will reduce the total number of unique sub-HMMs,

which will make functional analysis easier and may also reveal interesting links between

families. An in depth functional analysis is not pursued in this work however.
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6.1 Notation

We first introduce some notation. Let Fj be the set of sequences associated

with the jth family. Let Aij be the matrix of scores of sub-HMM Mi scored on the jth

family. That is,

Aij =
∑
S∈Fj

lo(Mi, S) (6.1)

where lo() is the log odds score. Let f(i) be the index of the family that Mi was extracted

from. Finally, ci is the complexity of sub-HMM Mi.

6.2 Retraining

This process improves the quality of individual sub-HMMs. For each sub-

HMM, Mi, we find the matching fragment on each S ∈ Ff(i) and create a new alignment

from these fragments by using hmmalign to align the fragments back to Mi. From this

new alignment, a new model M ′i is trained and the process is iterated until the set of

extracted fragments in one step is identical to the set of fragments in the previous step,

or some maximum number of iterations is reached. This process allows extracted sub-

HMMs to find their best matching location, which may be different than the location

they were forced into by the original HMM. This is in line with our hypothesis that the

order and location of sub-HMMs is not as important as the presence of a certain set of

sub-HMMs.

We found that there are many cases where the sub-HMM matches some se-

quences with a poor score, and the resulting sequence fragments then corrupt the align-

ment, and thus the new model. To avoid this, we weight each sequence by the probability

that the given sub-HMM is really present in the given sequence. That is, we compute

P (Dij |Sj), where Dij is a hidden variable which indicates whether or not Mi is present

in Sj .. Ideally, we would then use these probabilities for each sequence as weights and

tell the alignment program to treat sequences with lower weights as less important, and

vice versa. We where unable to find an alignment algorithm which did this satisfactorily

however, so we ignored these weights during the alignment step. The model builder

though was able to use these weights to build a model which was more heavily influ-

enced by sequences with larger weights and less corrupted by poor scoring, low weight

sequences. Our results showed that this was still helpful, despite having a possibly

corrupted alignment.
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6.2.1 Estimating the Contribution of Each Sub-HMM

In the retraining step we want to compute

P (Dij |Sj) =
P (Sj |Dij ,Mi)P (Dij)

P (Sj |Dij ,Mi)P (Dij) + P (Sj |¬Dij ,Mi)P (¬Dij)
(6.2)

=

P (Sj |Dij ,Mi)
P (Sj |¬Dij ,Mi)

P (Dij)

P (Sj |Dij ,Mi)
P (Sj |¬Dij ,Mi)

P (Dij) + P (¬Dij)
(6.3)

=
2lo(Mi,Sj)P (Dij)

2lo(Mi,Sj)P (Dij) + (1− P (Dij))
. (6.4)

In order to compute this value, we need to know P (Dij). We estimate this value by

using EM in addition to the retraining procedure. We initialize P (Dij) to be 0.75, then

the first step of retraining computes the weights for each sequence fragment. Given

these weights, we can re-estimate P (Dij):

P (Dij) =
∑

Sj∈Ff(i)

P (Dij |Sj)P (Sj) (6.5)

=
∑

Sj∈Ff(i)

P (Dij |Sj)
1

|Ff(i)|
assuming each Sj is equally likely (6.6)

=
1

|Ff(i)|
∑

Sj∈Ff(i)

P (Dij |Sj) (6.7)

This new value is then used in the next step of retraining.

6.3 Clustering

Clustering the sub-HMMs would first reduce the number of sub-HMMs to a

more manageable number. Secondly, it would reduce the number of parameters while

increasing the amount of data available per parameter for estimation, which should lead

to better generalization of the model. Clustering the sub-HMMs would also provide

evidence that cluster members are functionally related.

There are several different approaches to clustering sub-HMMs. The most

straightforward is to first compute some distance between each pair of sub-HMMs and

then use a standard clustering algorithm. The distance function could be based on

comparing models directly, or indirectly, by looking at the strings they match. However,

since what we really want is to improve the search performance while reducing the

total model complexity, it makes sense to optimize this directly by using the Minimum

Description Length (MDL) criterion (Grunwald, 2005). This score provides the optimal

way to trade-off between performance and complexity.
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6.3.1 Distance Based Clustering

6.3.1.1 Comparing Models

One way to cluster sub-HMMs is to compute some distance score between

sub-HMMs, using only the models themselves. We used the PRC (Madera, 2008) tool

for this purpose. This tool creates an alignment between two profile HMMs and then

computes a log odds score for the alignment. It currently only works reliably for local-

local alignments, although we would prefer to use a global-global alignment. It also

produces asymmetrical scores which we overcome by summing the scores from both

directions.

Because the alignments from PRC are local-local, it is often the case that a

short sub-HMM can match to a very long sub-HMM, even though most positions are

quite different. This creates a problem when aligning extracted fragments from sub-

HMMs of diverse lengths. The fragments themselves are often of very diverse lengths,

and the alignments are very poor. Because of this problem, we did not pursue this

method any further.

6.3.1.2 Comparing Matches

A second way to compare sub-HMMs is to compute a distance score based on

which sequences the models matched. If two models tend to match the same strings,

then they are more similar than two models which rarely match the same strings. This

method better simulates a global-global comparison between sub-HMMs since we are

looking at complete matches, so it thus avoids the alignment problem caused by PRC.

However, it requires matching every sub-HMM on every sequence, which is a very time

consuming process, and the time required will grow in proportion to the size of the

dataset.

For each model, we score it on every sequence in the database and record the

start position, the length of the match, and the score. This gives a vector of triples for

each model:

Sk = {(s1, l1, c1), . . . , (si, li, ci), . . . , (sn, ln, cn)}

where Sk stands for the kth model and Sksi , Skli , and Skci stand for the start, length, and

score, respectively, of the kth model matched on the ith sequence of the database. These

vectors are then used to compute distances between models. The different functions we

tried are:
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• Euclidean

dE(k, l) =
n∑
i=1

√
(Sksi − Slsi )

2 + (Skli − Slli )
2 + (Skci − Slci )

2

• Location

dL(k, l) =

n∑
i=1

√
(Sksi − Slsi )

2 + (Skli − Slli )
2

• Length Normalized

Norm(i, j) =

(
si

max(li, lj)
,

li
max(li, lj)

,
ci

li + lj

)

dLN(k, l) =
n∑
i=1

dE (Norm(Sk, Sl),Norm(Sl, Sk))

• Family Limited Location

dFL(k, l) =
∑

i∈Ff(k)∪Ff(l)

√
(Sksi − Slsi )

2 + (Skli − Slli )
2

• Family Limited Overlap Count

dFLO(k, l) =

∑
i∈Ff(k)

I(¬overlaps(k, l, 0.5))

|Ff(k)|
+

∑
i∈Ff(l)

I(¬overlaps(k, l, 0.5)

|Ff(l)|

dE is of course just the sum of Euclidean distances in three dimensional space.

dL is the sum of Euclidean distances in two dimensional space, where we just ignore

the score dimension. For dNL, we first normalize each triple and then just use dE .

The length of the longest sequence in scaled to 1 and the start and length values are

rescaled to match. The score is set to the score per unit length of both sequences. These

modifications should remove the effect of the sequence length on the distance value.

dFL is just dL in which we only consider sequences belonging the family of

either model. Here, Fk is the set of sequence indices in the family from which sub-HMM

k was extracted. This function effectively compares the performance of one model on the

sequences of the model which it may be merged with, thus removing any noise caused by

other sequences. Ideally, two similar models should perform similarly on any sequence,

for better or worse, but in practice, we found that this is not always the case.

dFLO is a stricter version of dFL in which we count the number of times an

overlap of 50% or more does not occur in a sequence, for each sequence in each models

family. This value is divided by the size of the family to remove any dependence on the

family size.
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6.3.1.3 Cluster Algorithm

Given a distance matrix between all pairs of sub-HMMs, we used a hierarchi-

cal agglomerative complete linkage clustering algorithm (Johnson, 1967) to cluster the

models. We then cut the tree at different heights to produce clusterings of different

sizes.

6.3.1.4 Merging

Given a cluster of sub-HMMs, we want to create a new sub-HMM which sum-

marizes all the cluster members. For each sub-HMM in a cluster, we extract the match-

ing protein fragments from that sub-HMMs family members. These fragments are then

aligned, weighted and used to build a new HMM, as described in section 6.2.1. The

same iterative process is used, with one exception. On the first iteration, we cannot use

hmmalign because we don’t have one unique HMM that all fragments came from. In-

stead, we use clustalw to create the first alignment. On subsequent iterations, hmmalign

is used with the HMM from the previous iteration.

6.3.2 MDL Based Clustering

In this method we combine the merging step with the clustering step, so mod-

els are merged as we go. Having the merged model at intermediate steps provides

more information about which merges will produce the best result. It is based on a

hierarchical clustering (HC) algorithm. The ideal algorithm would start off computing

the improvement in MDL score obtained by merging, for every pair of sub-HMMs. It

would then merge the pair with the largest improvement and then update the MDL

improvement values between this new model and all other models. At some point all

the improvements would be negative, indicating that merging any pair of models will

make the overall MDL score worse, so we stop at that point. This provides a natural

clustering, unlike normal HC, which will continue merging things until it runs out of

things to merge.

The MDL score balances the likelihood of a model against is complexity. Given

a model Mi, trained on n sequences and having Np free parameters, we have:

MDL(Mi,Ff(i)) =
∑

S∈Ff(i)

lo(Mi, S)− 1

2
Np lg n (6.8)

= Aif(i) − ci. (6.9)
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The complexity term here is for the most general case. For any model with Np pa-

rameters which need to be estimated, the count for each parameter cannot exceed the

number of data points, n, so we can encode each count in lg(n) bits. In the case of

profile HMMs, this complexity term overestimates the true complexity in most models.

Many of the distributions in an HMM have no support from the data so we end up

with a large number of 0 counts. To encode these counts efficiently we used arithmetic

encoding.

In arithmetic encoding, we first compute the empirical distribution of the

counts to be encoded, then we used this distribution to encode the counts. The best

compression rate is achieved when the computed distribution closely matches the actual

counts. In the case of profile HMMs, we found that the best performance was achieved

by using 9 different count distributions, one for insert counts, one for match counts,

and 7 more for the 7 different transition types. Each of these model sections can have

very different count distributions. For example, empirically, it is common to have very

little support for the insert emission distributions at most positions, resulting in a large

number of 0 counts. In the match emission distributions however, we have much more

support from the data so we see a very wide range of counts. Similarly, some transitions

occur very seldom and so have more 0 counts than is seen in other transition distribu-

tions. By using a different count distribution for each of these sections, we ensure that

each one fits the data as close as possible. This gives us the best compression rate for

encoding the counts. However, we must also encode the count distributions themselves,

and encoding 9 distributions instead of just 1 will certainly add to the complexity. In

practice we found that using 9 count distributions was still a net gain in the compression

rate. Our final complexity term is

ci =
∑
s∈SEC

2 lg(Ms) +

Ms∑
j=0

2 lg(#s(j)) +

Ns∑
j=0

lg(ps(nj))

 (6.10)

where SEC is the set of 9 sections described above, Ns is the number of counts in that

section that need to be encoded, and Ms is the index of the last non-zero value in ps.

The difference between the complexity term for the general case, and the com-

plexity we compute with arithmetic encoding will shrink as the amount of data available

to train the model on grows. At the same time, the log odds term will start to dominate

the complexity term as the amount of data grows. Thus, computing a more accurate

complexity value is most beneficial for small families. We also tried a simpler encoding
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scheme that sends just 1 bit if a distribution has no support, and sends

1 +
20∑
i=1

lg

(
ki√
w

+ 1

)
bits for supported distributions. Here, ki is the count and w is the sum of the weights

of each sequence in the data set. This proved to be inferior to arithmetic encoding in

almost every case though.

The improvement in MDL of the merged model is computed as:

MDL(Mi,j ,Fi ∪ Fj)− (MDL(Mi,Fi) + MDL(Mj ,Fj)) (6.11)

where Mi,j is the model obtained by merging Mi and Mj . This is the difference in MDL

score between using the two original models to score the sequences from their respective

families, and using the merged model to score the union of sequences. The two original

models should have a higher likelihood since they are more specific to their respective

sets of sequences, but the total complexity will be higher since there are two models.

The merged model may have a lower likelihood, but also a lower complexity. If the two

original models where sufficiently similar, the likelihood of the merged model should not

decrease too much, resulting in an higher MDL score.

The problem with the ideal algorithm is that computing the merged model

between every pair of models is too expensive. To merge two models, say Mi and Mj ,

they must first both be scored against each sequence in their respective families. Then

an alignment of all the resulting fragments must be created, and a new model built.

Finally, this process is iterated a small number of times to let the model find the best

final position. A single merge takes O(nTN) time, where n is the number of sequences

to be scored from both families, T is the average sequence length, and N is the average

model length. Then we must perform O(|Y |2) merges. In our case, |Y | ≈ 1000, n ≈ 100,

T ≈ 300, and N ≈ 17. This gives us around 1011 operations, which is not practical.

6.3.2.1 MDL Exemplar

We thus tried a few simplifications of the ideal algorithm. The first is called

MDL Exemplar. In this algorithm, instead of creating a merged model for each pair, we

choose one member of the pair, the exemplar, and treat it as if it was the merged model.

That is, this one exemplar is used to score the sequences from both respective families.

We let f(k) be the set of family indices that model k currently represents, which will

change as the algorithm progresses. It is initialized so that each model represents the

family it was extracted from. Then the improvement of using Mi as the exemplar can
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be computed as

MDL(Mi,Ff(i) ∪ Ff(j))−
(
MDL(Mi,Ff(i)) + MDL(Mj ,Ff(j))

)
(6.12)

=
(
Aif(i) +Aif(j) − ci

)
−
(
(Aif(i) − ci) + (Ajf(j) − cj)

)
(6.13)

= Aif(j) −Ajf(j) + cj (6.14)

The final improvement used is the maximum of both exemplars:

max(Aif(j) −Ajf(j) + cj , Ajf(i) −Aif(i) + ci) (6.15)

If Mi is chosen as the exemplar then we set f(i) = f(i)∪ f(j). At the end, each cluster

is represented by one of its members.

One thing to note is that the likelihood of an exemplar, trained on family f(i),

on Ff(i) ∪Ff(j) should be smaller than a merged model, trained on Ff(i) ∪Ff(j), on the

same set. This is because the merged model has strictly more information about the

sequences it will be later scored on. We can only say ’should’ however, since the quality

of the alignment will have a large effect on the model that is built and the addition of

sequences Ff(j) can change the alignment substantially. The other thing to look at is

the complexity of the merged model, Mij . In the worst case, the alignments of i and j

could be concatenated lengthwise resulting in a merged model whose length is the sum of

the lengths of Mi and Mj . The complexity of Mij in this case would be approximately

ci + cj . This is highly unlikely though, and was never observed in our experiments.

Generally, we can assume that the complexity of Mij will be less than ci + cj . If the

complexity of Mij is less than min(ci, cj) than we would have that

MDL(Mij , Dij) < min (MDL(Mi, Dij),MDL(Mj , Dij))

where Dij = Ff(i) ∪ Ff(j). We can use this fact to decide before hand if merging Mi

and Mj will improve the MDL score. Without any prior knowledge, we can say that it

is likely that the complexity term will improve in the merged model, but it is not clear

what will happen to the likelihood without already knowing how similar the models

are to each other. Thus, we cannot say much about the resulting MDL score either.

However, if we know that one of the models performs well as an exemplar, then the

above inequality tells us that the merged model will improve the MDL score under the

given conditions. If neither exemplar has a better likelihood than that obtained using

Mi and Mj , then we can’t say anything about the performance of the merged model.
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6.3.2.2 MDL

We can thus use the MDL Exemplar improvement score as a lower bound

on the improvement obtained by using a merged model, in most cases. This leads to

another version of the above algorithm. It starts off the same, but each time it choses

a pair to merge, it creates a merged model and then keeps the model with the best

MDL score, among the exemplars and the merged model. This model is then used in all

future improvement calculations, which still use the MDL Exemplar method to compute

improvements. Thus, the expensive merge step is only performed when we know it can

improve things, instead of speculatively merging things.

Since there are still cases where the complexity of the merged model is suffi-

ciently bad to offset the improvement in the likelihood, we would like to find a way to

minimize the number of these cases. We found that most of these cases are caused by the

model builder building a model that is too long. This is because the default HMMER2

model builder uses a different complexity term when it is deciding which columns of the

alignment should be marked as match states. By modifying this complexity term to

match what we use in our MDL score, we were able to reduce the frequency with which

this problem occurs. See 6.3.2.3 for details.

At the end of this algorithm, each cluster is represented by a new sub-HMM

which is the result of merging the cluster members together. This merged model has

an advantage over the cluster merging done in section 6.3.1.4 in that the merging can

take advantage of the clusters structure. In the unstructured case, fragments from each

cluster member are aligned together and a new model is build from that. But multiple

alignment algorithms can be very sensitive to the order in which things are aligned, and

in the unstructured case we don’t have any special information about the best order. In

the structured case though, the order in which things are merged, as the algorithm runs,

is also the best order to align the alignments associated with each pair in the merge.

This results in the most similar sequences being aligned together first, which leads to a

better overall alignment and thus a better model can be build from it. We used muscle

(Edgar, 2004) to perform the alignment alignment alignment.

6.3.2.3 MDL Model Builder

The default HMMER2 model uses a dynamic programming method to decide

which columns of the given alignment should correspond to match states in the resulting

HMM. Once these columns are marked, the rest of the model construction process is

trivial. The goal of this method is to optimize the likelihood of the data. Since this
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alone would result in marking every column, a penalty factor is included for the addition

of each match state. This method works fine in general, however, it is not optimizing

the MDL criteria that the rest of our method is trying to optimize. In particular, the

penalty term used by HMMER2 does not consider the complexity of the model. To

address this issue we implemented a new model builder which optimizes the MDL score

directly.

The main challenge in this is estimating the resulting model complexity while

making use of only column local data so that we can maintain the efficiency of dynamic

programming. To do this we use arithmetic encoding, described above, to encode the

counts of each column. Doing this however, requires that we already have a distribu-

tion over counts. We therefore create an initial model using the “fast” algorithm of

HMMER2. In this algorithm, any column in which more than half of the symbols in

that column are non-gaps is marked as a match position. We then use this marking to

compute the distribution of counts which will then be used for the arithmetic encoding

during the final model building step. The complexity for each column is then computed

based on the size of the arithmetic encoding of the counts in that, as described above.

6.3.3 Sub-HMM Match Discovery

Given the complexity and the amount of time required to run the above MDL

clustering algorithm we decided to develop a vastly simplified method with the goal of

simply finding a few high quality sub-HMM to sub-HMM matches. This could produce

the most important clusters relatively quickly. This method could also take advantage of

the pre-filtering techniques of HMMER3 in order to vastly speed the rate at which sub-

HMMs could be scored against the Pfam 24 database. The method works as follows.

Every Sub-HMM is scored on every sequence in a database and only those matches

which met a very strict score cutoff were kept. Pairs of sub-HMMs matching the same

sequence were then clustered. We then use an MDL test on each cluster to see if merging

the member sub-HMMs would result in some improvement or not.

6.3.3.1 Match Criteria

This test was only performed on PFAM 24 using HMMER3. The match criteria

we used was the default HMMER3 criteria, that is, what ever matches HMMER3 reports

with the default settings. Each sub-HMM was scored on every sequence and any reported

matches were noted as a link between the sub-HMM and every family the matched

sequence was a member of. We then look for cases where sub-HMMs from two different
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families match a sequence, or some fraction of sequences, of the same family. A match in

this case means that, for each sequence, the two fragments matched by the sub-HMMs

overlap by at least 10%. All such pairs are assigned a distance of 0 and all other pairs

have a distance of 1. A standard hierarchical complete linkage clustering is then used

to cluster the sub-HMMs.

To make the match test more strict, we used two different criteria. First is to

require that x% of the family sequences be matched by both sub-HMMs. The second is

that the fragments matched fall in similar locations on each sequence, according to the

original family alignment. To measure this second criteria, we compute for each column

of the alignment, the fraction of sequences which are part of the fragment. This is the

entropy of that column. We then sum the entropies for each column and divide by the

number of columns in the alignment. This gives us a number between 0 and 1, with 0

indicating a better alignment of the fragments. Let

Aij =

 0 if position i of sequence j does not match

1 if position i of sequence j does match
(6.16)

and let

pi =
1

NS

NA∑
j=0

Aij ,

where NA is the length of the alignment and NS is the number of sequences in the

alignment. Then the final entropy is

H =
1

NA

NA∑
i=0

−pi lg pi − (1− pi) lg (1− pi).

6.3.3.2 MDL Test

We used an MDL test similar to that described above, but generalized for n

sub-HMMs instead of just 2. Each member sub-HMM of a cluster C is used to extract

its matching fragment from the sequences of a family. Then the MDL score is computed

for the sub-HMM on those fragments. The sum of these scores is then compared to the

score of the merged model MC . If the merged model has a larger score then we accept

the cluster as helpful. The final improvement is computed as

MDL(MC ,
⋃
i∈C
Fi)−

∑
i∈C

MDL(Mi,Fi). (6.17)

6.4 Results

We tested the search performance of retraining alone, as well as each different

clustering method proposed above. The general test setup for these two tests was the
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same as that described in Section 5.4, with differences noted in each section below. We

also tested our sub-HMM match discovery process on the entire PFAM 24 dataset, using

HMMER3.

6.4.1 Improvements From Retraining

We found in practice that the retraining step alone can sometimes result in

significant improvements in search performance. In Figure 6.1 we can see the results

of retraining on several different datasets. In some cases it improves the performance,

but in some cases it does not. Using HMMER2 on the small set we see that using the

original sub-HMMs, we are able to improve the sensitivity somewhat, but the refinement

procedure improves it even more, by about 5% at a specificity of 0.995. The small set

on HMMER3 however does about 1% worse after retraining, while the large set does

about 7% better at the same specificity. In general retraining was a useful thing to do,

even when it doesn’t improve things, it doesn’t make them significantly worse either.

6.4.2 Sub-HMM Clustering

Each clustering method was used to cluster the set of sub-HMMs extracted

from the PFAM 22 small set, about 4,953 sub-HMMs. For the Hierarchical Clustering

(HC) clusterings, each cluster was used to create a single, merged representative model

for that cluster, and all the cluster members were replaced with this representative. For

the MDL Exemplar and MDL methods, the representative is output by the algorithm, so

that is used in place of the cluster members. Then we use this new set of sub-HMMs to

perform the search performance test, in the same way as described in Section 5.4. The

results were compared against using the original, retrained sub-HMMs, without any

clustering. We tested several variations of each clustering method. Figure 6.2 shows

the best result from each method. For the HC methods, we could cut the cluster tree

at different levels to create differing numbers of clusters. We found that about 3000

clusters produced the best trade off between fewer models, and good performance. As

the number of clusters decreased, the performance also decreased.

We can see that Euclid and Location work the best and about the same as each

other. Limiting the comparison to just the families of the corresponding sub-HMMs,

that is, the Family Limited methods, caused a higher false positive rate at first, but

they met or exceeded the other methods after the false positive rate exceeded about 0.1.

The MDL method performed reasonably well compared to the HC methods, though it
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(a) HMMER2 Small (b) HMMER3 Small

(c) HMMER3 Large

Figure 6.1: The improvement of retrained sub-HMMs over original sub-HMMs and full
HMMs.
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Figure 6.2: ROC curves of the search performance comparison of different clustering
methods on the PFAM 22 small set. The number of clusters is given for each method.

used 200 more clusters and was still dominated by Euclid and Location. For the MDL

methods, the number of clusters is determined by the algorithm. The MDL Exemplar

method chose a rather small number of clusters, which led to its poor performance,

although, for that few clusters, the performance is actually quite good. It was able to

reduce the number of parameters needed by about 80%.

Overall, non of these methods did better than not performing any clustering at

all, so in terms of search performance, they were not helpful. However, they did succeed

in reducing the number of models and thus parameters needed by about 40% in most

cases, with only a minor reduction in search performance. This has benefits in terms

of speed and also in identifying groups of similar sub-HMMs, which is of interest on its

own.

6.4.3 Match Discovery

In this test we first extracted 55,265 sub-HMM’s from PFAM 24. We then used

HMMER3 to score every sub-HMM against every protein in PFAM 24. The sub-HMMs

were then clustered and merged, as described above. If we require at least 30% of family

members to match and an alignment entropy less than 0.5, we found 18 matching pairs,

13 of which where considered helpful merges according to the MDL test. Relaxing the
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% Family Max Entropy # Clusters # Passed MDL % Passed # U-K

30% 0.5 18 13 72% 3
20% 0.5 30 22 73% 6
> 0% 0.5 285 177 62% 47
> 0% 1 391 254 64% 59

Table 6.1: Number of clusters found at different filter strictnesses and how many of them
passed the MDL test. The first column is the fraction of the family members that must
match. The last column is the number of clusters containing both known and unknown
domains.

filter to 20% of family members, we found 30 clusters, of which 22 where beneficial. If

we require only one sequence to match in a family, we find 285 clusters with 177 being

helpful. Ignoring the filters all together, we found 391 clusters, 254 of which improved

the MDL score when merged. Figure 6.3 shows and example of a good pair and a bad

pair, according to the MDL test.

From these results we can see that this method was effective in finding groups of

sub-HMMs which are similar enough to benefit from being merged. Requiring at least

20% of family members to match a sub-HMM improved the enrichment of beneficial

clusters from 60% to 70%, but also greatly reduced the total number of clusters

found. Since the total number of clusters found without the filters is still a manageable

number, the filter restrictions are probably not necessary. Also interesting to note is

that removing the entropy restriction did not noticeably change the fraction of beneficial

clusters (62% → 64%), and thus may not be as important a factor. We also found that

many clusters contained sub-HMMs from both known and unknown families, which

indicates a potential functional link between these families. See Table 6.1.

6.5 Conclusion

We developed and tested several ways of improving individual sub-HMMs and

clustering similar sub-HMMs together. We found that allowing variable placement of

each sub-HMM, through retraining, produced a more accurate representation of the

motif being modeled. This was shown through the improved search performance in

most cases, when using retrained sub-HMMs. We developed several clustering methods

in order to group similar sub-HMMs together. We found that a simple HC method based

on the Euclidean distance of start, length pairs for each sub-HMM performed the best.

The MDL clustering method was also able to create competitive clusterings, but at a
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(a) Good Merge (b) Bad Merge

Figure 6.3: An example of merging two sub-HMMs. The top two logos are the clus-
ter members and the bottom logo is the merged model. The MDL score indicates
that (a), PF00400.25-0 and PF11715.1-4, is a good merge, while (b), PF08450.5-3 and
PF01436.14-0, is a bad merge. Visually, this makes sense.
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greater computational cost. The method was effective in deciding when a merge was

helpful however. The test for matching up highly similar sub-HMMs was also effective in

finding high quality clusters and the MDL test was able to filter out those clusters which

would not be worth merging, from a search performance standpoint. These clusters,

many of which contained both known and unknown members, may indicate additional

relationships between families.
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Chapter 7

Conclusion

In Chapter 3 we first establish that almost half of the protein coding genes in

Arabidopsis are unknowns, at the time of the study, and explore ways of automatically

assigning functions based on comparisons to other known genes. We present a process

for assigning functions to unknown proteins in Arabidopsis and assign 1,541 previously

unknown genes a function. The data used in this study was made available for searching

through an online website.

Chapter 4 presents a model for clustering genes based on diverse data types

and which could also learn novel motifs in the promoter regions of genes. Motif detection

was done first with a simple greedy search among motif sequences, and then improved

upon by using a Bayesian model to represent the entire promoter sequence. This method

proved effective in finding novel motifs in synthetic data. In addition, we added several

improvements to the naive Bayes clustering algorithm to ensure the best use of each

available cluster label. This ensures that if the user asks for k clusters, the algorithm

actually uses all k of them.

An automated method for extracting the most highly conserved regions in a set

of protein sequences was presented in Chapter 5. These extracted motifs, or sub-HMMs,

where shown to be similar to many hand curated motifs in PROSITE and also covered

many known active sites documented in CSA. Sub-HMMs were also shown to be effective

in searching for family members among a large database of proteins, despite using only

half the number of model parameters and allowing re-arrangements of the sub-HMMs.

We were also able to find links between different PFAM families by searching for the

occurrence of sub-HMMs in families other than their own. These links may represent

some functional similarities between these families, which is of particular interest since

many of these links were between known and unknown domains.

Finally, in Chapter 6 we developed and tested several ways of improving indi-
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vidual sub-HMMs and finding similar sub-HMMs. We found that allowing variable place-

ment of each sub-HMM, through retraining, produced a more accurate representation of

the motif being modeled. This was shown through the improved search performance in

most cases, when using retrained sub-HMMs. We developed several clustering methods

in order to group similar sub-HMMs together. We found that a simple HC method based

on the Euclidean distance of start, length pairs for each sub-HMM performed the best.

The MDL clustering method was also able to create competitive clusterings, but at a

greater computational cost. The method was effective in deciding when a merge was

helpful however. The test for matching up highly similar sub-HMMs was also effective in

finding high quality clusters and the MDL test was able to filter out those clusters which

would not be worth merging, from a search performance standpoint. These clusters may

indicate additional relationships between families.

We have established that many genes still have an unknown function and that

assigning functions in an automated way will become increasingly important as new

genomes are sequenced. In this work we have developed several novel tools and meth-

ods of associating unknown genes with known genes, and thus providing hypothetical

functions for these unknown genes.
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