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ABSTRACT OF THE DISSERTATION

Towards Information-Economical Classification and Ranking

by

Kin Fai Kan

Doctor of Philosophy, Graduate Program in Computer Science
University of California, Riverside, August 2008

Dr. Christian R. Shelton, Chairperson

The standard formulations of classification and ranking arerather strict in terms of

information usage and may incur high information costs. Standard classification assumes

that we need all the attributes to classify every test example. This is neither cheap nor

necessary because the attributes can be expensive to obtainand quite often we can predict

the label of a test example by looking at a small subset of the attributes. A more economical

approach is to acquire the attributes of test examples sequentially and weigh the benefit

and cost of acquiring more attributes at every step. To do this, we need to learn a sequence

of decision rules that together minimizes the penalty costsdue to misclassification and

information acquisition costs. We focus on rejecting negative examples as early as possible

and present the catenary support vector machine (catSVM).

Standard classification learns a prediction function from aset of labeled examples.
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However, it is often expensive (and sometimes impossible) to obtain labels of individual ex-

amples. One economical alternative is to learn from aggregate label information which are

easily available and cheap to obtain. We propose an SVM method to learn classification

from group label proportions and provide a theoretical bound on its generalization error.

The idea of learning from aggregate label information is also useful for ranking. Standard

ranking relies on the relative preferences between individual examples for training which

can be expensive or difficult to obtain. We propose a probabilistic model for the relative

preferences among groups of individual examples and present several estimation methods.
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Chapter 1

Introduction

Classification is a fundamental problem in machine learningand statistics. Given a train-

ing set consisting of a number of input objects together withtheir output labels, the goal of

classification is to learn a model to predict the output labels of future input objects. Usually

input objects are represented by feature vectors of real numbers and in binary classification,

output labels are either+1 or−1 indicating positive or negative class. Classification has nu-

merous real-world applications. For example, a mortgage company migth use classification

to predict whether a customer is likely to repay a loan based on her personal information.

Also, biologists use classification to predict the functionof new proteins based on their

sequence structures. Table 1.1 shows some training and testexamples for the task of clas-

sifying mortgage applicants. The input objects are mortgage applicants who are described

by age, sex, marital status, and income. The output labels indicate whether the applicants

repaid the loans. The widely used classifiers are decision tree, k-nearest-neighbor classifier,
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Age Sex Marital status Income Repay?
20 M Single 10k No
25 M Married 60k Yes
36 F Single 200k Yes
48 M Divorced 90k No

Age Sex Marital status Income Repay?
27 M Single 50k ?
55 F Married 110k ?

(a) Training examples (b) Test examples

Table 1.1: An example of classification task: mortgage applicants classification

naive Bayes classifier, neural network, support vector machine, and logistic regression [7].

Ranking is a relatively new problem compared to classification. It has gained con-

siderable attention in the machine learning community in recent years. Given a training

set consisting of pairs of input objects together with theirpreference relations, the goal of

ranking is to learn a scoring function that assigns a higher score to a more preferred input

object. A scoring function induces an ordering over all possible input objects. Ranking

has important applications in information retrieval. For instance, search engines rank web

pages depending on their relevance to a user’s query. It is reasonable to assume that a web

page is more relevant than the others if a user clicks to visitthat web page. Thus, we can

extract preference relations between web pages from query logs and use the extracted pref-

erence relations to learn the relevance function for a query. Ranking is closely related to

classification. In fact, we can reduce ranking into binary classification by regarding a pair

of input objects as a single input object and the preference relation between a pair of input

objects as a binary label. A number of classification algorithms have been adapted to solve

ranking, namely RankBoost [19], RankSVM [27], and RankNet [9].

Although information is everywhere, useful information often comes with a price. The
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standard formulations of classification and ranking are rather strict in terms of information

usage and hence not ideal in many scenarios. First, they do not take the cost of information

collection into account during testing. Standard classification assumes that we need all

input features to test every example. This is neither economical nor necessary because

input attributes of a test example do not come for free and quite often we can predict

the label of a test example by just looking at a small subset ofinput features. A more

economical approach is to obtain input features sequentially at the test phase and weigh

the benefit and the cost of acquiring more input features at every step. In this way, we re-

formulate binary classification as sequential stopping problem. For instance, to diagnose

heart disease, a doctor conducts a number of tests on a patient. Clearly, there is no need

to perform all relevant tests for every patient. The common practice is to conduct medical

tests sequentially. Based on the currently available test results, the test costs, as well as the

penalty costs for mis-diagnosis, a doctor decides whether to rule out the possibility of heart

disease completely or to perform additional tests to confirmthe diagnosis.

Second, standard classification and ranking rely on labels and preference relations

about individual examples which are often expensive (and sometimes impossible) to ob-

tain. Semi-supervised learning [11] provides one solution. It uses plenty of unlabeled

examples in addition to a small number of labeled examples totrain a classifier (or a rank-

ing function). Recently, some researchers have proposed tolearn classification and ranking

from aggregate statistics [16, 29, 36, 4, 25]. In this setting, a training set consists of groups
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Age Sex Ethnicity Income For?
20 M Latino 10k
25 M Asian 60k 3 Yes
36 F White 200k 1 No
48 M Black 90k
69 M Black 30k
71 F White 150k 1 Yes
54 F White 500k 3 No
87 M White 0

Age Sex Ethnicity Income For?
27 M Latino 50k ?
55 F Black 110k ?
33 F White 300k ?

(a) Training examples (b) Test examples

Table 1.2: An example of group statistics classification: voter classification

of individual examples and each group is associated with some aggregate statistics about

individual labels. Different forms of aggregate statistics have been considered. Multiple

instance learning [16] relies on aggregate label that indicates the presence of any positive

example in a group multiple examples. Group statistics classification [29, 36] relies on the

fraction of positive examples in each group. Multiple instance ranking [4, 25] relies on

the knowledge of the group that contains the highest rankingexample in a collection of

groups of individual examples. Since aggregate statisticsare often cheap and easy to ob-

tain, learning from aggregate statistics is a promising solution to reduce the collection cost

of labeled information and has many potential applications. For example, a political party

wants to find out who would vote for their presidential candidate. It may be difficult to

know exactly how individual people vote. It is straightforward to find out how many votes

each candidate gets in different areas of the country. Together with an existing database of

registered voters, a political party can learn a model to predict how individual people vote.

Table 1.2 illustrates what the training and test data may look like. Table 1.2(a) shows two

groups of voters from two different areas of the country. Theinput objects (i.e., the voters)

4



are described by age, sex, ethnicity, and income. The outputlabels indicate whether the

voters vote for the candidate and they are unknown. But we know that the candidate gets

3 votes out of 4 in the first group and he just gets one vote in thesecond group. Another

possible application is to use multiple instance ranking tolearn the relevance of sections or

paragraphs in web documents based on the relative preferences of web documents. Sup-

pose someone enters a search query “multiple instance ranking”. This dissertation may be

returned as one search result because it contains a chapter on multiple instance ranking.

It may be helpful if search engines do not only find this dissertation relevant but can also

identify the most relevant chapter. We can represent this dissertation by multiple document

frequency vectors, one for each chapter, and rank the chapters based the relative preferences

at the document level (which can be extracted from query logs).

In this dissertation, we study sequential stopping problem, group statistics classifica-

tion, and multiple instance ranking. These new formulations of classification and ranking

pose significant challenges. The sequential stopping problem requires learning a sequence

of decision rules to achieve a common goal. Group statisticsclassification and multiple

instance ranking requires dealing with aggregate statistics which are ambiguous in nature.

Our contributions are summarized as below.

1. We propose catenary support vector machine (catSVM) to solve sequential stopping

problem and provide a generalization bound for catSVM.

2. We propose a SVM approach to learn to classify individual examples from group

5



statistics and provide a generalization bound for group statistics classification.

3. We propose a probabilistic model for multiple instance ranking and derive methods

to estimate the model.

6



Chapter 2

Background

In this chapter, we will review some fundamental concepts. First, we will look at the

principle of empirical risk minimization and common loss functions in classification and

regression. Then, we will review boosting, support vector machines, and some theory of

kernel functions. We will also discuss how to derive boosting algorithms and SVM from

the risk minimization principle. After that, we will see howto minimize an important class

of nonconvex functions – the difference of convex functions.

2.1 Empirical Risk Minimization

The task of classification (or regression) is to predict the output label of an example from

its input features. LetX be the space of input attributes andY be the space of output

label. We want to learn a functionf : X → Y that predicts the output label of any test

example well. We posit that test examples are drawn independently from an unknown but
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fixed probability distributionP (x, y) (the i.i.d. assumption). Suppose we have a function

L(y, f(x)) that can quantify the loss of predictingf(x) when the true output label isy.

It makes sense to find a predictive functionf(x) that minimizes the riskEP [L(Y, f(X))].

SinceP (x, y) is unknown, we approximate it using a set of labeled trainingexamples

{xi, yi}ni=1. Thus, we seek to find a predictive functionf(x) that minimizes the empirical

risk

EP̂ [L(Y, f(X))] =
1

n

n∑

i=1

L(yi, f(xi))

whereP̂ is a uniform distribution on then training examples. Under mild conditions on

L(y, f(x)), one can prove that the empirical risk converges to the true risk as the number

of training examples increases [50]. However, for a small number of training examples, the

true risk of a predictive functionf(x) can be much greater than the empirical risk especially

if the class of predictive functions we consider has a high complexity. This problem is

known as overfitting and can be avoided by adding a regularization term to encourage

simplef(X). We introduce a complexity termR(f) and minimize the regularized risk

EP̂ [L(Y, f(X))] + λR(f),

whereλ is parameter that controls the tradeoff between the empirical risk and the complex-

ity of the predictive function.
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So far, we have not mentioned how to pick the loss functionL. We cannot overstate the

importance of picking theright loss function. There are two criteria to consider.

1. Does the loss function capture the actual loss well?

2. Is the loss function easy to optimize?

In binary classification, the output label of an example can either be+1 or −1. The

natural loss function is the 0-1 loss.

L0−1(y, f(x)) =





1 if yf(x) ≤ 0

0 otherwise.

Here we assume thatf(x) is a real-valued function and an example is classified as+1

if f(x) is positive and−1 otherwise. Therefore, we have a classification error ify and

f(x) have opposite signs. The major drawback of the 0-1 loss is that it is a discontinuous

function and hence difficult to optimize. A number of alternative loss functions have been

proposed. AdaBoost [20] uses exponential loss, logistic regression [7] uses logistic loss,

and support vector machines [51] use hinge loss.

LExp(y, f(x)) = e−yf(x)

LLogit(y, f(x)) = log(1 + e−yf(x))

LHinge(y, f(x)) = max(0, 1− yf(x))

9
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Figure 2.1: Classification loss functions: (a) convex loss functions, (b) ramp loss

Figure 2.1(a) depicts exponential loss, logistic loss, hinge loss, as well as the 0-1 loss as a

functionyf(x). Exponential loss and logistic loss are continuous and differentiable while

hinge loss is continuous but not differentiable atyf(x) = 1. Importantly, exponential

loss, logistic loss, and hinge loss are all convex inf(x). They have one unique minimum

and they can be optimized using efficient convex algorithms.However, since they are

unbounded above for classification mistakes, they do not capture the 0-1 loss very well.

With an unbounded loss function, it may appear better off to make many classification

mistakes than just classify one single example wrongly. On the other hand, Ramp-SVM

[13] andψ-learning [40] use ramp loss which is always bounded above by1 (also known as

truncated hinge loss). Ramp loss can be expressed as the difference of two convex functions

and hence is not convex.

Lramp(y, f(x)) = max(0, 1− yf(x))−max(0,−yf(x))
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Figure 2.1(b) shows ramp loss as a function ofyf(x).

For linear regression, the most popular loss function is thesquared error

LSE(y, f(x)) = (y − f(x))2.

The squared error leads to an analytic solution, so the optimization is very efficient. It is

well-known that the squared error can be interpreted as implicitly assuming independent

Gaussian noise in output labels. However, the squared erroris not appropriate if the as-

sumption of independent Gaussian noise does not hold. One alternative, used in support

vector regression [38], isǫ-insensitive loss

Lǫ(y, f(x)) =





|y − f(x)| − ǫ if |y − f(x)| ≥ ǫ

0 otherwise.

Whenǫ is chosen to be zero,ǫ-insensitive reduces to the absolute error.ǫ-insensitive loss is

convex inf(x), albeit it does not have an analytic solution. It is more appropriate than the

squared error if the loss increases slowly with the prediction error. Figure 2.2 shows the

squared error andǫ-insensitive loss as a function ofy − f(x).
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Figure 2.2: Regression loss functions

2.2 Boosting

Boosting is a technique that combines a number of weak learners into a strong learner.

Roughly speaking, a weak learner is simple and not very accurate (barely better than

random guess) while a strong learner is more sophisticated and can attain high accuracy.

Boosting trains one weak classifier at a time on a weighted version of the given training

set. Initially, every training example has equal weight. After a weak classifier is trained,

the weights of the training examples that are wrongly (correctly) classified are increased

(decreased). The intuition is to give more attention to the more difficult training examples

in the later iterations. In addition to updating the weightsof training examples, a weight

is computed for every weak classifier based on their accuracyon the weighted training ex-

amples. The final strong classifier is specified by the weighted voting majority of the weak

classifiers.

There are many variants of boosting. Perhaps the most well-known one is AdaBoost

proposed by Freund and Schapire [20]. AdaBoost computes themultiplicative update of

12



the weight of thei-th training example(xi, yi) using the following equation.

wi ← wie
−αtyiht(xi)

whereht is the new weak classifier andαt is its weight. The multiplicative update is less

than 1 ifyi = ht(xi) and is greater than 1 ifyi 6= ht(xi). The weightαt of ht is

αt =
1

2
ln

1− ǫt
ǫt

where ǫt is the error rate ofht on the weighted training set. Mason et al. [33] points

out that AdaBoost can be understood as performing gradient descent in a function space

to minimize the empirical exponential loss. This risk minimization perspective leads to

the AnyBoost framework [33]. Given a loss functionL, the objective is to minimize the

empirical riskJ(F ) = 1
n

∑n
i=1 L(yiF (xi)). We start withF (X) ≡ 0 and add one step

αf(X) toF (X) iteratively. The direction of the stepf(X) is chosen to match the negative

gradient of the empirical risk∇J(F ). The step sizeα is chosen to minimizeJ(F ) along

f(X). To matchf(X) with −∇J(F ), we minimize the inner product betweenf(X) and

13



∇J(F )

min
{f(xi)}n

i=1

n∑

i=1

f(xi)yiL
′(yiF (xi))

⇔ min
{f(xi}n

i=1

n∑

i=1

(−f(xi)yi)(−L′(yiF (xi)))

⇔ min
{f(xi)}n

i=1

n∑

i=1

I[f(xi) 6= yi]D(i)

whereD(i) = −L′(yiF (xi))
Z

andZ is the normalization term. Note thatD is a valid probabil-

ity distribution becauseL is a loss function and should have a negative derivative. There-

fore, every descent step is equivalent to finding the best classifierf on the weighted training

examples.

2.3 Support Vector Machines

The support vector machine (SVM) is one of the most importantalgorithms in machine

learning [38]. SVM is based on a simple intuition. A hyperplane that separates data of

different classes with a large margin is likely to generalize well to future examples. The

bigger the margin, the better the classification rule generalizes to future examples. SVM

was originally designed for binary classification and it hasbeen extended to linear regres-

sion [17], one-class classification [37], multiclass classification [14], ordinal regression

[12], and ranking [27]. It has also inspired maximum-margin-based algorithms for cluster-

ing [58], feature selection [23], distance metric learning[56], kernel learning [30], matrix

14



factorization [44], and structured prediction [48].

2.3.1 Linear SVM

Let {(xi, yi)}ni=1 be a training set with(xi, yi) ∈ ℜd × {−1,+1}. The SVM optimization

problem can be formulated as a quadratic program.

min
w,b,{ξi}n

i=1

n∑

i=1

ξi + λ‖w‖2

s.t. yi(w · xi − b) ≥ 1− ξi, ∀1 ≤ i ≤ n

ξi ≥ 0, ∀1 ≤ i ≤ n

In this formulation,w is the normal vector of the hyperplane and the inverse of its norm

1
‖w‖

is chosen to be the size of the margin. The positive examples should be on the side of

the separating plane pointed to by the normal vector while the negative examples should be

on the opposite side. Thus, the constraints imply that everyxi should be further away from

the separating hyperplane than the size of the margin. The slack variables{ξi}ni=1 are used

to give SVMs some flexibility to allow some noisy examples or outliers to fall within the

margin or even on the wrong side of the separating hyperplane. The objective function is

the sum of the slack variables and the squared norm of (the normal vector of) the separating

hyperplane.λ is a parameter used to control the tradeoff between the slackvariables and

the norm of the separating hyperplane. By solving the SVM quadratic program, we obtain

a hyperplane that separates the examples with a large margin.
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Notice that the SVM quadratic program can be re-formulated as an unconstrained opti-

mization problem.

min
w,b

n∑

i=1

max(0, 1− (w · xi − b)) + λ‖w‖2

The first term is the empirical hinge loss. The second term canbe regarded as a regularizer

that prefers a separating hyperplane with a smallℓ2 norm. Therefore, we can also interpret

SVM as an example of regularized risk minimization. This risk minimization perspective

often provides a more convenient way to design new SVM algorithms for new problems

than the geometric perspective does.

2.3.2 Nonlinear SVM

The linear SVM is good for (almost) linearly separable data.For nonlinear separable data,

we can use kernel functions to implicitly map the original data space to a (possibly in-

finitely dimensional) feature space and find a separating hyperplane in the feature space.

LetX be the space of input objects. A kernel functionK(x, x′) measures the similarity be-

tweenx, x′ ∈ X . K(x, x′) is a positive semi-definite kernel if for any subset{xi}mi=1 ⊆ X ,

∑m
i=1

∑m
j=1K(xi, xi)cicj ≥ 0 for any real numberscimi=1. Every positive semi-definite ker-

nel function corresponds to the inner product in some feature space. For instance, the poly-

nomial kernelK(x, x′) = (x · x′ + c)q corresponds to a mapping to an
(

d+q
q

)
-dimensional

feature space, containing all monomials of the formxi1xi2 . . . xiℓ that are up to orderq.
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Below is the dual formulation of SVM. It can be obtained by setting the derivative of

the Lagrangian of the primal SVM to zero with respect to the primal variablesw, b, and

{ξi}ni=1.

max
{αi}n

i=1

n∑

i=1

αi −
1

2λ

∑

i,j

αiαjyiyjx
T
i xj

s.t.
∑

i

αiyi = 0

0 ≤ αi ≤ 1, ∀0 ≤ i ≤ n

The key observation is that in the dual formulation the training data only appears in the

form of inner product. We can replace the inner products by a kernel function. In doing

so, we can find a separating hyperplane in a feature space without explicitly calculating the

feature space representation of the training data. The technique is known as thekernel trick

[38]. The kernel trick does not only enable SVM to deal with nonlinear separable data,

but also makes SVM applicable to data that are not represented by real-valued vector (e.g.,

strings of letters).

Alternatively, we can obtain a similar result by resorting to the theory of reproduc-

ing kernel Hilbert space (RKHS). Let us review some basics about reproducing kernel

Hilbert space. We regard the kernel function evaluated atx, K(·, x) as a function that

measures the similarity betweenx and any object inX . Informally speaking, the repro-

ducing kernel Hilbert spaceH associated with kernel functionK(x, x′) is the space of
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functions that are linear combination of kernel function evaluated at objects inX . Let

f(·) =
∑m

i=1 αiK(·, xi) andg(·) =
∑m′

i=1 βiK(·, x′i) be two functions from the RKHS as-

sociated with kernel functionK(x, x′). The inner product betweenf(·) andg(·) is defined

as

< f, g >=
m∑

i=1

m′∑

j=1

αiβjK(xi, x
′
j) .

The corresponding RKHS norm is‖f‖H =
√
< f, f >. Intuitively, to make‖f‖H small,

we requireαi’s to be small in magnitude.

Consider a general risk minimization problem.

min
f∈H

L(f, {xi, yi}ni=1) + Ω(‖f‖H)

where{xi, yi}ni=1 are the training data,L is some function depending onyi’s and the values

of f at xi’s, andΩ is a monotonically increasing function. The Representer theorem states

that every minimizer of the above problem admits a representation of the form

f(·) =

n∑

i=1

αiK(·, xi) .

The Representer theorem can be proved by the orthogonality argument. For details of the

proof and a more formal treatment of reproducing kernel Hilbert space, readers can refer

to [38]. Compared to the kernel trick, the Representer theorem is especially attractive

when the dual formulation of the optimization problem is difficult to derive. Applying the
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Representer theorem to the primal SVM, we obtain

min
{αi}n

i=1,b,{ξ}n
i=1

n∑

i=1

ξi + λ
∑

i,j

αiαjK(xi, xj)

s.t. yi

(
n∑

j=1

αjK(xj , xi)− b
)
≥ 1− ξi, ∀1 ≤ i ≤ n

ξi ≥ 0, ∀1 ≤ i ≤ n

2.4 The Concave-Convex Procedure

So far we have focused on convex loss functions. However, we might like to consider

nonconvex loss functions. In general, it is difficult to minimize a nonconvex function ef-

ficiently. However, some efficient algorithms have been developed for some special class

of nonconvex functions. We focus on the difference of convex(D.C.) functions and the

Concave-Convex procedure. D.C. functions are nonconvex and may have multiple local

minima. D.C. functions are very common and appear in kernel methods with missing data

[41], kernel selection [2], ramp-SVM [13], sparse PCA [45],and semi-supervised learning

[13].

The Concave-Convex procedure was first introduced by Yuilleand Rangarajan [59] to

solve minimization problems whose objective functions canbe expressed as the sum of a

convex part and a concave part. While Yuille and Rangarajan considered only linear con-

straints, Smola et al. [41] generalized the CCCP to handle concave-convex constraints. The
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CCCP is an iterative procedure. In each iteration, it replaces the concave parts of the objec-

tive function and the constraints by their first-order Taylor approximations. The resulting

problem is convex and can be solved using efficient convex minimization algorithms.

Consider the following optimization problem:

min f0(x)− g0(x)

s.t. fi(x)− gi(x) ≤ ci ∀i

wherefi andgi are real-valued convex and differentiable functions onℜn for i ∈ {0, . . . , m},

andci ∈ ℜ for i ∈ {1, . . . , m}. The CCCP computesx(t+1) from x(t) by solving the fol-

lowing convex optimization problem.

minx f0(x)−
(
g0(x

(t)) +∇g0(x
(t))T (x− x(t))

)

s.t. fi(x)−
(
gi(x

(t)) +∇gi(x
(t))T (x− x(t))

)
≤ ci ∀i

It can be shown that the CCCP converges to a local minimum [41]. In case of a non-

global minimum, one may restart the CCCP with a differentx(0). Notice that the CCCP

can be seen as a special case of D.C. programming. Tao and An [46] states that the D.C.

minimization algorithm (DCA) often converges to a global solution.
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Chapter 3

Caternary Support Vector Machine

Many problems require making sequential decisions. For these problems, the benefit of ac-

quiring further information must be weighed against the costs. In this chapter, we describe

thecatenary support vector machine(catSVM), a margin-based method to solve sequential

stopping problems. We provide theoretical guarantees for catSVM on future testing exam-

ples. We evaluated the performance of catSVM on UCI benchmark data and also applied

it to the task of face detection. The experimental results show that catSVM can achieve a

better cost tradeoff than single-stage SVM and chained boosting.

3.1 Introduction

In many problems, information are obtained sequentially and the benefit of further informa-

tion acquisition must be weighed against the costs at every step. In product testing, parts

are inspected throughout the manufacturing process. Humans or computers must decide
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whether to continue manufacturing or whether to stop (in case the piece is not salvage-

able). In medical diagnosis, doctors, patients, and insurers must decide whether the current

information is sufficient to make a decision or whether to conduct the next of a bank of

tests.

In object detection in images, a similar problem is faced. Scanning an image for an

object of interest takes processing time. If the image can bescanned more quickly or at a

lower resolution (reducing the number of pixels to be examined), the detection can be sped

up. In doing so, the speed of detection must be weighed against the accuracy of detection.

Most classification methods assume full information about testing examples and are

thus not suitable for sequential decision making scenarios. Recently, we proposed chained

boosting to solve sequential stopping problem [39]. We assume that the relative costs of

stopping at each stage are known and can be made explicit. Given the stopping costs for

each training example, the goal is to minimize the cost of thedecision rules applied to

future examples. The difficulty of the problem lies in the fact that the decisions in later

stages depend on what happens in early stages. Motivated by the success of support vector

machines (SVMs) in many classification problems, we presentthecatenary support vector

machine(catSVM), a novel margin-based method to solve sequential stopping problems.
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3.2 Related work

We are interested in direct estimation of a sequence of decision rules. For this reason we

are not considering density estimation (like a hidden Markov model) followed by a cost

analysis to derive the decision rules. This rules out approaches like influence diagrams [24]

as we would like to skip the density estimation step.

Our formulation (see the next section) appears similar to cascade classification [52, 57,

43] in that there are stages of classification. For applications like face detection, negative

examples are far more frequent than positive examples. Rejecting negative examples as

quickly as possible is crucial to the speed of the classification process. Viola and Jones [52]

propose an iterative approach to train the cascade. In each iteration, a new stage is added to

the cascade and a new stage classifier is trained to achieve a very low false negative rate and

an approximately 50% false positive rate using a modified AdaBoost algorithm. Stages are

added to the cascade until the number of false positives is reduced below a small number

on a validation set. Bi et al. [5] propose to use 1-norm SVM as the stage classifiers in the

cascade. Like Viola and Jones, their approach trains the stage classifiers sequentially from

the first stage to the last stage. In every stage, an 1-norm SVMis trained to minimize the

sum of the weighted errors and the regularization term.

There are two major differences between our problem formulation and cascade classifi-

cation. First, although classification speed is important,we are mainly concerned about the
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costs of gathering information (i.e., the feature costs). Also, while cascade classification

requires the user to choose the desired false negative rate and false positive rate at every

stage, we assume that the feature costs and the misclassification costs are explicitly speci-

fied by the user and our algorithm automatically determines the best tradeoff between the

feature cost and the two types of errors.

Second, we optimize the stage classifiers as a group to maximize the overall perfor-

mance of the processing pipeline. The problem formulation allows the information avail-

able to change at each stage. Thus, false-positive and false-negative rates at each stage are

not sufficient. It matterswhich positive examples are incorrectly rejected at a stage, not

just how many. In particular, examples for whom further processing wouldstill result in

the incorrect classification should be rejected, while those for whom further information

would clarify their classification should be saved.

Cascade classification and catSVM are both “staged” classifiers, but they are more com-

plementary than competitive. The former attempts to speed up the computation of a single

classification task (fixed information) by exploiting the asymmetric distribution of exam-

ples while the latter attempts to speed up a decision task by exploiting the correlation

between data sources gathered at different times. One couldwell imagine using cascade

classifiers at each stage within the framework shown here.

Recently, Dundar and Bi [18] consider the problem of jointlyoptimizing cascaded SVM

classifiers. However, they ignore the difference of rejecting an example at different stages.
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Figure 3.1: An example of a processing pipeline

They formulate a non-convex and non-linear objective function and propose a cyclic opti-

mization algorithm to optimize it.

3.3 Sequential Stopping Problem

We make no assumptions about the structure of the costs. Rather, we assume that each

training example carries a cost vector indicating the costsof stopping after each stage.

These costs may increase, decrease, or have any other arbitrary relationship with the stage

index. The costs might be function of a “label” or might be different for each example.

Let S be the number of stages in the processing pipeline. Denote the feature vector

and the costs of an example byx andc, respectively. Letxj be the components ofx that

are available at thej-th stage. Letcj be the total cost of rejecting the example at thej-th

stage andcS+1 be the total cost of accepting it (allowing it to “pass” at each decision).

We assume thatc is drawn from a known setC. In the case of binary classification,C

might be of cardinality 2: one sequence of costs for positiveexamples, and one sequence

for negative examples. In general,C can be of any size. The only requirement is that the

maximum magnitude of the members ofC be bounded. Figure 3.1(a) shows an example of

a processing pipeline.
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Denote the classifier at thej-th stage byfj and the entire processing pipeline byf .

A positive value forfj indicates that processing should continue, while a negative value

indicates processing should stop. Denote the 0-1 indicatorfunction byI[·]. The loss for an

example is therefore

L(f(x), c) =

S∑

j=1

(
cjI [fj(xj) < 0]

j−1∏

k=1

I [fk(xk) ≥ 0]

)
+cS+1

S∏

k=1

I [fk(xk) ≥ 0] . (3.1)

The goal is to findS classifiers, one for each stage, which together minimizeE[L(f(x), c)].

Although we do not know the true distribution of(x, c), we can use the empirical loss as

a surrogate. We let{(X1, C1), . . . , (XN , CN)} denote the training set andXij denote the

features ofXi that are available at thej-th stage. Analogously, we letCij denote the cost

associated withXi at thej-th stage.

In [39], we propose a chained boosting algorithm to train a pipeline of ensemble classi-

fiers. We construct an upper bound of the loss function 3.1 by replacing every 0-1 indicator

function by an exponential function.

L(f(x), c) ≤
S∑

j=1

(
cje

−fj(xj)

j−1∏

k=1

efk(xk)

)
+ cS+1

S∏

k=1

efk(xk) . (3.2)

The training procedure is greedy. One weak classifier is added to a chosen stage at a time

such that the addition would decrease the upper bound of the loss function by the largest

amount. The upper bound 3.2 has the advantage of being convex. However, it may be too
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loose to approximate the actual loss function 3.1 well. We demonstrate evidence to this

effect in our experimental results.

3.4 Catenary Support Vector Machine

We choose to use linear threshold functions as stage classifiers and derive an optimization

procedure based on an upper bound of the empirical loss.

3.4.1 Loss bound

We start by re-writing the loss function (3.1) in terms of incremental costs.

L(f(x), c) = m1 +
S∑

j=1

(
j−1∏

k=1

I [fk(xk) ≥ 0]

)(
αjI [fj(xj) ≥ 0] + βjI [fj(xj) < 0]

)

(3.3)

where forj = 1, . . . , S,

mj =





min (mj+1, cj) if j < S,

min (cj+1, cj) if j = S;

αj =





mj+1 −mj if j < S,

cj+1 −mj if j = S;

βj = cj −mj .
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In words,mj is the minimal cost at stagej or later. αj is the incremental increase in the

minimal cost by continuing processing andβj is the incremental cost of stopping process-

ing. Note that eitherαj or βj is positive but not both. We denote the incremental costs

associated withXi at thej-th stage bymij , αij, andβij . Figure 3.1(b) shows a processing

pipeline with the incremental costs.

It is hard to minimize (3.3) directly. We define a upper bound for L(f(x), c) and mini-

mize the upper bound instead.

L̂(f(x), c) = m1 +
S∑

j=1

[
αj

(
Uα

j (x)− V α
j (x)

)
+ βj

(
Uβ

j (x)− V β
j (x)

)]
(3.4)

where

U∗
j (xj) = max

(
1,M∗

j (x)
)

V ∗
j (xj) = max

(
0,M∗

j (x)
)

Mα
j (x) = max (−f1(x1), . . . ,−fj−1(xj−1),−fj(xj))

Mβ
j (x) = max (−f1(x1), . . . ,−fj−1(xj−1), fj(xj)) .

The wildcard ‘*’ represents eitherα or β. The key idea of deriving Equation (3.4) is

to use the difference of twomax functions to upper bound the conjunction of indicator

functions. Figure 3.2(a) shows an example when the conjunction consists of two indicator

functions. Note that we simply bound the conjunction by a multivariate ramp function. A
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Figure 3.2: Multivariate ramp loss: (a)I[f1(x) ≥ 0] · I[f2(x) ≥ 0] ≤ Uα
2 (x) − V α

2 (x),
(b)U∗

j andV ∗
j as a functionM∗

j

different multivariate ramp function has been used to approximate the disjunction in [31].

Figure 3.2(b) showsU∗
j andV ∗

j as a functionM∗
j . It illustrates an alternative to express the

one-dimensional ramp function as the difference of two hinge functions. The way used in

Figure 2.1 is not applicable here because the correspondinghinge functions are not convex

in the arguments ofM∗
j .

We formulate the following optimization problem.

min

N∑

i=1

L̂(f(Xi), Ci) + λΩ(‖f1‖H1 , . . . , ‖fS‖HS
) (3.5)

whereΩ is some monotonically increasing function. The first term measures the empiri-

cal loss and the second term is the regularization term, measured with respect to a set of

reproducing kernel Hilbert spaces{Hj}.
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3.4.2 Catenary Support Vector Optimization

We begin with linear classifiersfj(xj) = wj · xj + bj and anℓ2 regularization term

Ω(‖f1‖H1, . . . , ‖fS‖HS
) =

∑S
j=1 ‖wj‖22. Note thatU∗

j andV ∗
j are all convex functions

in {(w1, b1), . . . , (wS, bS)}. But the difference of two convex functions,U∗
j (xj)− V ∗

j (xj),

is non-convex. Thus, Problem (3.5) is not a convex optimization problem.

We re-formulate Problem (3.5) as the following constrainedoptimization problem.

min
∑N

i=1

∑S
j=1

(
αijξ

α
ij + βijξ

β
ij

)
+ λ

∑S
j=1 ‖wj‖22

s.t.

ξα
ij ≥ −wk ·Xij − bk − V α

j (Xi) ∀i, k ≤ j

ξβ
ij ≥ −wk ·Xij − bk − V β

j (Xi) ∀i, k < j

ξβ
ij ≥ wj ·Xij + bj − V β

j (Xi) ∀i, j

ξα
ij, ξ

β
ij ≥ 1 ∀i, j

(3.6)

Note that we have dropped the constant term,
∑N

i=1mi,1, from the objective. In prin-

ciple, we can leaveV ∗
j in the objective. But movingV ∗

j to the constraints appears to give

better empirical results. Also, it is possible to have different tradeoff parameters for each

classifier stage.

To solve Problem (3.6), we resort to the Concave-Convex procedure (CCCP) (see Chap-

ter 2). Letw = (w1, . . . , wS) andb = (b1, . . . , bS). In each iteration, we need to replace

V ∗
j in the constraints by its first-order Taylor expansion at thecurrent estimates ofw and
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b. Notice thatV ∗
j are non-smooth functions. When we calculate its Taylor expansion, we

use its subgradient. For the pointwise maximum functionh(x) = max1≤i≤m hi(x), its sub-

differential atx, ∂h(x), is the convex hull of the subdifferentials of the “active” functions

at x, i.e.,∂h(x) = HConvex{∂hi(x)|hi(x) = h(x)}. Thus, by simple calculus, we obtain

that, forj = 1, . . . , S,

∂V ∗
j (x;w,b)

∂w
=





{~0} if M∗
j (x) < 0,

{
(−τ1x1, . . . ,−τj−1xj−1, στjxj , 0)

∣∣∣τk ≥ 0,
∑j

k=1 τk ≤ 1
}

if M∗
j (x) = 0,

{
(−τ1x1, . . . ,−τj−1xj−1, στjxj , 0)

∣∣∣τk ≥ 0,
∑j

k=1 τk = 1
}

if M∗
j (x) > 0;

(3.7)

where

τk = 0
if k < j andM∗

j (x) 6= −wk · xk − bk

or if k = j andM∗
j (x) 6= σ(wk · xk + bk)

σ =





−1 if * = α,

+1 if * = β.

and0 denotes padding zeroes of appropriate length.

Similarly, we can obtain∂Vj∗(x;w,b)

∂b
by replacingxk’s by 1’s in Equation (3.7). In the

31



experiments, we pick the subgradient where

τk =






c if k is the largest index s.t.

eitherk < j andM∗
j (x) = −wk · xk − bk,

or k = j andM∗
j (x) = σ(wk · xk + bk),

0 otherwise,

wherec = ρ
ρ+1

if M∗
j (x) = 0 or c = 1 if M∗

j (x) > 0, andρ is the number of active

functions.

Since only one ofαij orβij is nonzero, we need only consider the constraints associated

with one ofξα
ij or ξβ

ij. The number of constraints in Program (3.6) is quadratic in the number

of stages. We can re-write it so that the number of constraints depends linearly on the

number of stages.

min
∑N

i=1

∑S
j=1

(
αijξ

α
ij + βijξ

β
ij

)
+ λ

∑S
j=1 ‖wj‖22

s.t.

ξα
ij ≥ ηij − V α

j (Xi) ∀i, j

ξβ
ij ≥ ηi,j−1 − V β

j (Xi) ∀i, j

ξβ
ij ≥ wj ·Xij + bj − V β

j (Xi) ∀i, j

ξα
ij, ξ

β
ij ≥ 1 ∀i, j

ηij ≥ −wj ·Xij − bj ∀i, j

ηij ≥ ηi,j−1 ∀i, j

(3.8)
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3.4.3 Extensions

One important advantage of SVM is that it can handle non-linearly separable data with

an appropriate kernel function. Likewise, we can also kernelize catenary support vector

machine by the Representer theorem [38]. Denote the kernel matrix for thej-th stage by

Kj and itsi-th column byKj(·, i). The only changes to Program (3.8) are (i) replacing the

regularization term in the objective byλ
∑S

j w
′
jKjwj , and (ii) replacing the feature vector

Xij byKj(·, i). We are free to choose different kernels for different stages. Furthermore,

instead of using aℓ2 regularization term, we may useℓ1 regularization term to promote

sparsity. In doing so, we need to solve a linear program instead of a quadratic program in

every iteration of the CCCP.

3.4.4 An alternative loss bound

In the above derivation, we view the loss of an example as the sum of losses incurred in

each stage and then derive a upper bound using ramp functions. This is not the only way

to do it. Alternatively, we can view the loss of an example as themax of losses incurred in

each stage and obtain the following loss bound:

L̃(f(x), c) = d0 + max
({
dj(U

α
j (x)− V α

j (x))
}S

j=1
, dS+1(U

β
S+1(x)− V β

S+1(x))
)

(3.9)
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whered0 = min (c1, . . . , cS+1) anddj = cj − d0. Note thatL̃ is no greater than̂L. It is

not difficult to see that we can formulate a constrained optimization problem withL̂ and

employ the CCCP to solve it. Unfortunately, our preliminaryexperimental results showed

that the CCCP is not effective in optimizing̃L. We leave the problem of optimizing̃L as

an open problem.

3.5 Performance bounds

We provide theoretical bounds on how well the catenary support vector machine will gen-

eralize to future test examples. We need the following definitions.

Definition 3.5.1.Letµ be a probability distribution on a setX and suppose thatX1, . . . , Xn

are independent samples selected according toµ. LetF be a class of functions mapping

fromX toℜ. Define the random variable

R̂n(F ) = E

[
sup
f∈F

∣∣∣
2

n

n∑

1

σif(Xi)
∣∣∣
∣∣∣∣ X1, . . . , Xn

]
,

whereσ1, . . . , σn are independent uniform{±1}-valued random variables. TheRademacher

complexityofF isRn(F ) = ER̂n(F ). Similarly, define the random variable

Ĝn(F ) = E

[
sup
f∈F

∣∣∣
2

n

n∑

1

gif(Xi)
∣∣∣
∣∣∣∣ X1, . . . , Xn

]
,

whereg1, . . . , gn are independent Gaussian random variables with zero mean and unit
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variance. TheGaussian complexityof F isGn(F ) = EĜn(F ).

The Rademacher and Gaussian complexity measure the capability of F in fitting ran-

dom values. The higher the complexity, the more prone to overfitting F is. We can now

state the theorem, bounding the true risk by the empirical risk and the Gaussian complexity

of the classes of the stage classifiers:

Theorem 3.5.1.LetL andL̂ be as in Equations (3.1) and (3.4). Letγj = maxc∈C(αj +βj)

andΛ = maxf(x),c L̂(f(x), c). LetF1, . . . , FS be the sequence of the classes of the stage

classifiers. Let(Xi, Ci)
N
i=1 be independently selected according to some fixed probability

measureP . Then, for any integerN and any0 < δ < 1, with probability at least1 − δ

over samples of sizeN , every sequencef1, . . . , fS in F1 × . . .× FS satisfies

E[L] ≤ ÊN [L̂] + κ

S∑

j=1

(
S∑

ℓ=j

γℓ

)
GN(Fj) + Λ

√
8 ln 2

δ

N

for some constantκ.

Proof. Theorem 8 of [3] implies

E[L(f(X), C)] ≤ ÊN [L̂(f(X), C)] + 2RN(L̂ ◦ F ) + +Λ

√
8 ln(2/δ)

N

and therefore we need only bound theRN(L̂ ◦ F ) term to demonstrate our theorem. For
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our case, we have

RN (L̂ ◦ F ) = E sup
f∈F

1

N

∣∣∣
N∑

i=1

σiL̂(f(Xi), Ci)
∣∣∣

= E sup
f∈F

1

N

∣∣∣
N∑

i=1

S∑

j=1

γij

(
Uγ

j (Xi)− V γ
j (Xi)

) ∣∣∣

≤
S∑

j=1

E sup
f∈F

1

N

∣∣∣
N∑

i=1

σiγij

(
Uγ

j (Xi)− V γ
j (Xi)

) ∣∣∣

=
S∑

j=1

γjRN(Uγ
j − V γ

j )

The inequality comes from the fact that|a + b| ≤ |a| + |b| and the convex property of the

sup function.

Lemma 4 of [3] states that there exists aκ such thatRN ≤ κGN . Theorem 14 of the

same paper allows us to conclude thatGN(Uγ
j − V γ

j ) ≤ 2
∑j

ℓ=1GN (Fℓ). Taken together,

this proves our result.

Note that the second term in the bound does not depend on the regular costscj ’s directly,

and it does not depend onm1 at all. Quite often, the incremental costsαj ’s andβj ’s are

smaller than thecj ’s. Additionally, forj < j′, the complexity ofFj has a larger weight than

that ofFj′. This may suggest that it is advantageous to use simple stageclassifiers in early

stages and use complex stage classifiers in later stages. We can further bound the true risk

in terms of kernel functions of the stage classifiers. We needthe following lemma which

follows from McDiarmid’s inequality [34].
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Lemma 3.5.1.LetF be a class of functions mapping to[−1, 1]. For any integern,

P
{
|Gn(F )− Ĝn(F )| ≥ ǫ

}
≤ 2 exp

(−nπǫ2
4

)
.

Theorem 3.5.1 and Lemma 3.5.1, combined with Lemma 22 in Bartlett and Mendel-

son [3], imply the following theorem.

Theorem 3.5.2.LetL and L̂ as in Equations (3.1) and (3.4). Letγj = maxc∈C(αj + βj)

and Λ = maxf(x),c L̂(f(x), c). Let F1, . . . , FS be the sequence of the classes of stage

classifiers. LetXj be the feature space in thej-th stage. Forj = 1, . . . , S, fix Bj, and

let Kj : Xj × Xj → ℜ be a kernel withsupx∈Xj
|Kj(x, x)| < ∞. Let X be the full

feature space, i.e.,X =
⋃S

j=1Xj . Suppose that{Xi, Ci}Ni=1 are selected at random and

independently according to some probability distributionP onX×C. Then with probability

at least1− δ, every function sequencef1, . . . , fS of the form

fj(x) =

N∑

i=1

αiKj(xij , x)
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with
∑

i1,i2
αi1αi2Kj(xi1,j , xi2,j) ≤ B2

j satisfies

E[L] ≤ ÊN [L̂]+
κ

N

S∑

j=1

(
S∑

ℓ=j

γℓ

)
Bj

√√√√
N∑

i=1

Kj(xij , xij)

+

(
Λ +

1√
2π

S∑

j=1

jγj

)√
8 ln 2(S+1)

δ

N

for some constantκ.

3.6 Experimental Results

We tested catSVM on UCI benchmark data and the MIT face database. We compared the

performance of catSVM to chained boosting1 and single-stage SVM. For chained boost-

ing, we used decision stumps as weak classifiers and set the number of rounds before the

algorithm stops to 2000. For single-stage SVM and catSVM, weused the RBF kernel and

set the kernel width to the median of the pairwise distance inthe training set. We set the

regularization parameterλ to be 1 and did not adjust it. Furthermore, for catSVM, we ini-

tialized the SVM in every stage to be zero (i.e., forj = 1, . . . , S, wj = ~0 andbj = 0). We

used Mosek (www.mosek.com) to solve the quadratic programsgenerated by catSVM.

The single-stage SVM and our catSVM algorithms run on the same hypothesis space of

RBF kernels. We ran chained boosting on a different feature space. It was not possible to

use the same feature space. The boosting algorithm constructs a linear surface in the space

1The original chained boosting algorithm uses regular costs. We modified it to use incremental costs as
well, which improved its performance.
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of features that are decision stumps. That does not correspond to any easily constructed

kernel. The feature space dimensions of the RBF kernel couldbe defined as the set of all

kernel functions with one point as a training point. However, those dimensions have real

values and the boosting algorithm is designed for thresholded features (or weak learners).

However, our experience with these datasets suggests that boosting decision stumps and

RBF kernels for SVMs have roughly the same performance on single-stage problems.

We did not compare to constructing three independent SVM classifiers and then con-

necting them in a chain; this would have required selecting the false-positive and false-

negative costs for each classifier. One of the main purposes of our approach is to automat-

ically adjust the classifier to achieve the desired cost results without having to manually

search over such trade-off parameters.

We construct the vectors of stage costs as follows. We assigna constant feature cost to

each stage that is the same for all examples (as specified in the problem set up below). It

represents the cost of collecting the features, regardlessof the final outcome. If the example

is positive, we add an extra cost toci for i ≤ s, representing an extra penalty if a positive

example is rejected at any stage. If the example is negative,we add an extra cost tocs+1,

that is we penalize the classifier if it allows the example to pass through every stage (and

therefore wrongly accepts it as a positive example).
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fn: 9, fp: 18 fn: 18, fp: 18 fn: 36, fp: 18 fn: 72, fp: 18

bo
os

tin
g

tr
ai

n + 76 0 0 0 70 0 0 6 38 0 0 38 16 0 0 60
– 94 0 0 0 94 0 0 0 82 8 4 0 74 4 16 0

te
st + 43 0 0 1 39 0 0 5 24 2 0 18 18 2 1 23

– 56 0 0 0 52 1 2 1 45 5 4 2 42 7 4 3
ca

tS
V

M

tr
ai

n + 76 0 0 0 6 2 6 62 2 1 1 72 0 0 2 74
– 94 0 0 0 68 3 19 4 54 8 20 12 25 20 34 15

te
st + 44 0 0 0 9 0 5 30 7 1 3 33 7 0 4 33

– 56 0 0 0 49 1 5 6 35 5 9 7 20 9 19 8

Table 3.1: For four different cost settings for the heart dataset, the distributions of the
stages at which the examples were rejected (or accepted for the final column) for boosting
and catSVM, for training and testing, and for positive and negative examples.

3.6.1 UCI Data

We report the results on the heart disease dataset from the UCI machine learning repository.

We assigned the 13 attributes to three stages in descending order according to their correla-

tion with the predicted output: four attributes to each of the first two stages and five to the

last stage. The single-stage SVM was trained and tested on all the 13 attributes. We set the

feature cost of each stage to the number of attributes assigned to that stage and all the pre-

ceding stages. Early rejections are treated as “normal” whereas an example that passes all

stages is treated as “disease.” Figure 3.3(a) shows the false negatives and false positives as

the misclassification penalties vary. The three methods give very similar tradeoff between

the two types of errors. Figure 3.3(b) shows the false negative and the average feature cost

as the misclassification penalties vary. The average feature cost is the average number of

features that must be examined before the classifier makes a decision. The feature cost of

single-stage SVM is fixed at 13. We observe that catSVM does a better job in trading false

negative rate for feature cost than chained boosting.

40



0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

False negative rate

F
al

se
 p

os
iti

ve
 r

at
e

 

 

catSVM
Single−stage SVM
Chained Boosting

0 0.2 0.4 0.6 0.8 1
4

6

8

10

12

14

False negative rate

A
ve

ra
ge

 fe
at

ur
e 

co
st

 

 

catSVM
Single−stage SVM
Chained Boosting

(a) (b)

Figure 3.3: UCI heart tradeoffs: (a) False negative vs. False positive,(b) False negative
vs. Average feature cost

fn: 150, fp: 250 fn: 250, fp: 250 fn: 500, fp: 250 fn: 1000, fp: 250

bo
os

tin
g

tr
ai

n + 224 0 0 0 224 0 0 0 220 0 0 4 33 0 0 191
– 376 0 0 0 376 0 0 0 375 1 0 0 342 34 0 0

te
st + 341 0 0 1 341 0 0 1 342 4 0 36 143 32 1 166

– 654 1 3 0 653 1 3 1 646 4 4 4 533 88 19 18

ca
tS

V
M

tr
ai

n + 224 0 0 0 35 8 0 181 0 0 1 223 0 0 0 224
– 376 0 0 0 278 86 10 2 104 233 36 3 96 240 37 3

te
st + 342 0 0 0 42 16 6 278 1 10 7 324 1 10 7 324

– 658 0 0 0 457 143 28 30 170 392 63 33 152 410 62 34

Table 3.2: For four different cost settings for the face detection dataset, the distributions
of the stages at which the examples were rejected (or accepted for the final column) for
boosting and catSVM, for training and testing, and for positive and negative examples.

Table 3.1 shows at which stage the examples are rejected or accepted. The feature

costs are 4, 8, 13, and 13. ‘fn: 9, fp: 18’ means the penalties for false negative and false

positive are 9 and 18, respectively; therefore the cost vectors would be[13, 17, 22, 13] and

[4, 8, 13, 31] for positive and negative examples, respectively. Note that for every penalty

setting, the first three columns are the number of examples rejected in the three stages and

the last column is the number of examples accepted. As the penalty of false negative in-

creases, both chained boosting and catSVM try to accept moreand more positive examples.
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Figure 3.4: Face detection tradeoffs: (a) False negative vs. False positive, (b) False nega-
tive vs. Average feature cost

3.6.2 Face Detection

We also validated the catenary SVM by applying it to face detection. We tested on the

MIT face database [35] which contains 19-by-19 gray-scale images of faces and non-faces.

For face detection, the non-face is usually the majority. Therefore, our goal is to produce

a classifier that can identify non-face images by examining as low a resolution patch as

possible. We built a multi-stage detection system where anyearly rejection is labeled as a

non-face. The first stage looks at down-sampled versions of the images at a resolution of

3-by-3. The next stages do the same, at resolutions of 6-by-6and 12-by-12. We did not

examine the full 19-by-19 resolution as it did not provide significant improvement over the

12-by-12 resolution.

We assign a feature cost to each stage proportional to the total number of pixels at

that stage and all the preceding stages. There are three freeparameters in the problem

formulation: the per pixel cost, the penalty for an incorrect face classification, and the
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penalty for an incorrect non-face classification. Changingthese quantities will control the

tradeoff between false negatives and false positives, and between classification error and

feature cost. In the experiments, we fix the per pixel cost andvary the other two quantities.

We used 600 images as the training set and 1000 images as the testing set. The single-

stage SVM was trained and tested on image patches at the highest resolution, 12-by-12.

Figure 3.4(a) shows the false negatives and false positivesas the misclassification penalties

vary. Note that catSVM can achieve a better tradeoff than single-stage SVM and chained

boosting. The processing pipeline successfully improves the ability of SVM to tradeoff

between the two types of errors. Figure 3.4(b) shows the false negative and the average

feature cost as the misclassification penalties vary. The feature cost of single-stage SVM

is fixed at 144. Chained boosting and catSVM give higher average feature costs for lower

false negative rates. Note that catSVM requires a lower average feature cost than chained

boosting for most false negative rates. The advantage of catSVM becomes more obvious

when the false negative rate is small.

Table 3.2 shows at which stage the examples are rejected or accepted. The feature costs

are 9, 45, 189, and 189. ‘fn: 150, fp: 250’ means the penaltiesfor false negative and false

positive are 150 and 250, respectively. As the penalty of false negative increases, both

chained boosting and catSVM try to accept more and more positive examples. It is clear

that catSVM is more effective in pushing the positive examples forward.

It is interesting to note that the performance of catSVM is superior to that of a single-
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stage SVM (which is a regular SVM trained on the full set of features, varying the false-

positive and false-negative costs) in terms of testing error. We believe this is because the

hypothesis class of the earlier stages are simpler. Therefore, those decision rules have less

variance for a fixed number of samples. Our algorithm then hasa natural bias that helps

reduce the variance with few numbers of samples. Our generalization bounds also point to

this advantage.

3.7 Conclusion

We believe that for some decision-making problems, it is important to weigh the benefit

against the cost of acquiring more information. We present the catenary SVM to solve

one-sided early detection for binary classification. We formulate the problem as a con-

strained concave-convex optimization problem and solve itusing CCCP. In addition, we

provide data-dependent theoretical guarantee for catSVM.The experimental results show

that catSVM can tradeoff misclassification error and feature cost more effectively than

single-stage SVM and chained boosting.
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Chapter 4

Group Statistics Support Vector

Machine

Recently, Kück and de Freitas [29] formulated a new classification problem based on group

statistics. In this formulation, we are given groups of instances along with the fraction of

positive instances per group. The task is to learn a classifier to classify individual instances.

In this chapter, we give a generalization error bound for groups statistics classification

and derive a novel SVM-based algorithm that seeks to minimize the bound. Furthermore,

we show how to extend our algorithm to general multiclass setting. The experimental

results show that our method is competitive with Kück’s andde Freitas’s Bayesian sampling

approach. Our method has the advantage of having fewer parameters to tune.
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4.1 Introduction

In group statistics classification, we are given a number of groups of examples as the train-

ing set. We know the attributes of every training example butnot their labels. The addi-

tional information we have is the class distribution of individual examples in each group.

The goal is to learn a classifier for any individual example from the group statistics.

Group statistics classification can be very useful in marketing research. For example,

a company wants to increase its profit of sales by sending out discount coupons. Ideally,

the company wants to send coupons exclusively to people who would only make a pur-

chase if they receive a coupon. The company does not know the identity of those potential

customers. However, the company may estimate the percentage of potential customers in

different regions reliably by comparing the sales number with and without a promotional

campaign. Together with some existing information about individual people allows the

company to study the relationship between individual purchase decision and individual

properties.

Other possible applications of group statistics classification include email and image

classification tasks. In email classification, it may be tedious for each user to label every

single email in his/her inbox but a user may be able tell how many emails of various kinds

in one’s inbox. In image classification, we may be interestedin identifying interesting seg-

ments in images. It is expensive to label each image segment but it may be possible to

46



estimate the percentage of interesting segments in each image from its caption and anno-

tation keywords. In both cases, we may take advantage of someaggregate information to

learn a classifier for individual examples.

Because of the ambiguity in the information, group statistics classification is a chal-

lenging task. We do not know which instances in a group are positive and pure (positive or

negative) groups are rare. The lack of pure negative groups implies that multiple-instance

learning algorithms (see the next section) are not suitablefor this task. We provide a the-

oretical analysis for group statistics classification. From that, we derive a SVM-based

algorithm that seeks to minimize a generalization error bound.

4.2 Related work

Group statistics classification is related to multiple-instance (MI) learning which was first

introduced by Dietterich et al. [16] for drug activity prediction. In MI learning, the training

set is presented as bags of instances. Each bag is associatedwith a (positive or negative)

label. A positive bag label means that there is at least one positive instance in the bag. A

negative bag label means that all the instances in the bag arenegative. MI learning has

attracted a lot of attention in the past ten years. A number ofMI learning algorithms have

been proposed including Diverse Density (DD) [32], EM-DD [60], Citation-kNN [54],

MI kernels [22], multiple-instance SVMs [1], Bayesian model [28], MILBoost [53], and

convex-hull MIL Fisher’s discriminant [21].
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Several researchers have considered generalizations of the standard MI learning formu-

lation. Weidmann et al. [55] and Tao et al. [47] generalize the process that combines labels

of instances to form a bag label. They assume that the label ofa bag is decided by some

more general threshold function rather than a disjunction.A positive bag label indicates

that the number of positive instances in the bag lies within acertain range.

Group statistics classification was formulated recently byKück and de Freitas [29]. It

can be seen as a more informative variant of multiple-instance learning. Also, explicitly

specifying the fraction of positive instances in each groupis similar in spirit to using more

general threshold functions to restrict the number of positive instances in a positive bag

[55, 47]. However, the main difference is that in the group statistics, we are not limited to

a single threshold for labeling every bag. This difference gives us the flexibility to handle

more general applications.

Kück and de Freitas [29] propose a Bayesian sampling approach based on Markov chain

Monte Carlo (MCMC). However, MCMC algorithms are tricky to implement, especially

with respect to convergence criteria. It is hard to assess convergence of the Markov chains.

It may take many state transitions before a Markov chain converges to its stationary distri-

bution. And it is hard to determine how many samples are sufficient to capture the target

distribution. Thus there seems to be a genuine need to consider alternatives to MCMC al-

gorithms. Most recently, Qua et al. [36] proposed to use a conditional exponential model

based on mean operator estimation. Their method seems not suitable for settings when the

48



number of groups is larger than the number of classes.

4.3 Group statistics classification

In this section, we give the problem definition of group statistics classification and provide

a theoretical analysis of group statistics classification in the binary setting.

4.3.1 Problem Definition

Let m be the number of groups andni be the number of instances in thei-th group. Let

pi (p̄i) be the number of positive (negative) instances in thei-th group. Denote thei-th

group of instances byXi and thej-th instance in thei-th group byXij. Given a training

set{(Xi, pi)}mi=1, the task is to learn to classify individual instances from this information.

4.3.2 Theoretical Analysis

We prove a generalization bound for group statistics classification. We make two simplify-

ing assumptions in our analysis. First, we assume that each instance in the training set can

be regarded as an i.i.d. sample from the test distribution. This implies the test distribution is

the same as the training distribution at the instance level.We can interpret this assumption

as follows: we generate the training set by drawing i.i.d. samples from the test distribution

and then dividing the samples into groups arbitrarily. Second, we assume that there is no

noise in the fraction of positive instances associated witheach group in the training set.

Wlog, we also assume that the numbers of instances in every group are the same,i.e., ni
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for i = 1, . . . , m. We now state our theorem.

Theorem 4.3.1.Let F be a class of{±1}-valued functions defined on a setX andP be

a probability distribution onX × {±1}. Suppose that(x, y) is chosen according toP .

Suppose that{(Xi, pi)}Ni=1 are chosen such that{(Xij , Yij)} are independent samples from

P andp′is are correct. Then, there is an absolute constantc such that for any integersm

andn, with probability at least1− δ over samples of sizem× n, everyf in F satisfies

P (y 6= f(x)) ≤ 1

mn

m∑

i=1

∣∣∣∣∣

n∑

j=1

I[f(xij) ≥ 0]− pi

∣∣∣∣∣

+
2

mn

m∑

i=1

min(pi, p̄i) + c

√
V Cdim(F )

mn
,

where VCdim(F) denotes the Vapnik-Chervonenkis dimensionofF and p̄i = n− pi.

Proof. Since(Xij, Yij) are i.i.d. samples fromP , by Theorem 1 in Bartlett and Mendel-

son [3], we have with probability at least1− δ,

P (y 6= f(x)) ≤ 1

mn

m∑

i=1

n∑

j=1

I[Yij 6= f(Xij] + c

√
V Cdim(F )

mn
.

Notice that

n∑

j=1

I[Yij 6=f(Xij)] ≤
∣∣∣∣∣

n∑

j=1

I[f(xij) ≥ 0]− pi

∣∣∣∣∣+ 2 min(pi, p̄i) .

Taken together, this proves our result.
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Theorem 4.3.1 says that the test error rate is no more than theaverage of the absolute

errors in the predicted fraction of positive instances in each group in the training set, plus

twice the average of the fractions of the minority class in each group, and a complexity

term. The generalization bound is very intuitive. Considertwo extreme cases. If the

fractions of positive instances are either 0 or 1, the secondterm in the bound disappears

and we get back the generalization bound for standard binaryclassification. If the fractions

of positive instances are all 0.5, the second term in the bound becomes 1. This means even

if we can achieve zero empirical loss, the classifier we learncan still perform arbitrarily

badly on future test examples.

4.4 Our Method

The above theoretical analysis suggests that a small absolute prediction error implies a

small error rate for future test examples. As a result, we propose to find a classifierf

such that for any groupi, the number of instances it classifies as positive is close topi in

the ℓ1 sense. In particular, we are interested in the class of linear classifiers,i.e., f(x) =

w · φ(x) + b whereφ(x) is the feature vector of instancex. The total empirical loss is

defined as

L(f, {(Xi, pi)}mi=1) =

m∑

i=1

∣∣∣∣∣

ni∑

j=1

I [f(Xij) ≥ 0]− pi

∣∣∣∣∣

whereI [·] is the 0-1 indicator function.

However, it is difficult to minimize the empirical lossL directly. We get around this
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Figure 4.1: Bounding the indicator functions by ramp functions

computational difficulty by minimizing a upper bound ofL. Consider the loss incurred by

thei-th group.

∣∣∣∣∣

ni∑

j=1

I[f(Xij) ≥ 0]− pi

∣∣∣∣∣ = max

(
ni∑

j=1

I[f(Xij) ≥ 0]− pi, pi −
ni∑

j=1

I[f(Xij) ≥ 0]

)

= max

(
ni∑

j=1

I[f(Xij) ≥ 0]− pi,

ni∑

j=1

I[f(Xij) < 0]− p̄i

)

≤ max

(
ni∑

j=1

(
H+

1 (f(Xij))−H+
0 (f(Xij))

)
− pi,

ni∑

j=1

(
H−

1 (f(Xij))−H−
0 (f(Xij))

)
− p̄i

)

whereH+
s (v) = max (0, s+ v) andH−

s (v) = max (0, s− v).

In the last step, we upper bound every indicator function by aramp function which can

be expressed as the difference of two hinge functions (see Figure 4.1). We upper bound the

loss of each group to obtain a upper bound of the total empirical loss, denoted bŷL. We
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formulate the following optimization program.

minf λL̂(f, {(Xi, pi)}mi=1) + 1
2
‖f‖2H (4.1)

We introduce a regularization term1
2
‖f‖2H in the objective function where‖ · ‖H is the re-

producing kernel Hilbert space norm with kernelK(x1, x2) = φ(x1) ·φ(x2). λ is a tradeoff

parameter between the empirical loss and the regularization term. Note that alternatively,

we can use anℓ1 regularizer to promote sparsity of the solution. We re-write Program (4.1)

as a constrained optimization program.

min
w,b,ξ,η,τ

λ
∑m

i=1 ξi + 1
2
‖f‖2H

s.t. ξi ≥
∑ni

j=1

(
ηij −H+

0 (f(Xij))
)
− pi

ξi ≥
∑ni

j=1

(
τij −H−

0 (f(Xij))
)
− ni

ηij ≥ 1 + f(Xij)

τij ≥ 1− f(Xij)

ηij , τij ≥ 0

(4.2)

Note that the first two constraints in Program (4.2) are nonconvex. H+
0 andH−

0 are con-

vex because the maximum of convex functions is convex. However, the difference of two

convex functions is nonconvex. Therefore, Program (4.2) isnot a convex optimization

problem. We employ the Concave-Convex procedure (CCCP) to solve for (w, b) itera-
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tively. In every iteration, we replaceH+
0 andH−

0 by their first-order Taylor approximations

at the current(w, b). The resulting program is a quadratic program and can be solved

by any efficient quadratic program solver. Notice thatH+
0 andH−

0 are non-smooth func-

tions. We need to use their subgradients to compute their first-order Taylor approxima-

tions. For the pointwise maximum functionh(x) = max1≤i≤m hi(x), its subdifferential

at x, ∂h(x), is the convex hull of the subdifferentials of the “active” functions atx, i.e.,

∂h(x) = HConvex{∂hi(x)|hi(x) = h(x)}. By simple calculus, we obtain the subgradients

of H+
0 (Xij) andH−

0 (Xij) w.r.t. (w, b):

∂H+
0 (f(Xij)) =





{
~0
}

if f(Xij) < 0,

{
ρ · (φ(Xij), 1)

∣∣0 ≤ ρ ≤ 1
}

if f(Xij) = 0,

{(φ(Xij), 1)} if f(Xij) > 0;

∂H−
0 (f(Xij)) =





{
~0
}

if f(Xij) > 0,

{
ρ · (φ(Xij), 1)

∣∣0 ≤ ρ ≤ 1
}

if f(Xij) = 0,

{(φ(Xij), 1)} if f(Xij) < 0 .

We pickρ to be 0.5 in our experiments.

For a linear kernel, we can solve Program (4.2) for(w, b) directly. However, we cannot

do so for more powerful kernels because the corresponding feature vector space can be in-

finite dimensional. Fortunately, by the Representer theorem [38], we know that the optimal
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solution of Program (4.2) has the form

f(x) =
m∑

i=1

ni∑

j=1

αijK(x,Xij) . (4.3)

We can substitute Equation (4.3) into Program (4.2) and solve for(α, b) instead. Denote the

kernel matrix byK. The only changes to Program (4.2) are (i) changing the regularization

term in the objective to1
2
αTKα and (ii) replacing the feature vectorXij byK(·, Xij). In

this way, we reduce the search space off from an infinite-dimensional space of functions

to space of finite dimension
∑m

i=1 ni + 1.

4.5 Extension to multiclass setting

In many applications, we are interested in classifying individuals into more than two classes.

For example, we might want to know which presidential candidate people vote for or

through which mode of advertisement people get to know a commercial product. We show

how our algorithm can be extended naturally to handle more than two classes.

Let m be the number of groups andni be the number of instances in thei-th group.

Denote thei-th group of instances byXi and thej-th instance in thei-th group byXij.

Further, letpi be the class distribution of the instances in thei-th group andpiy be the

number of instances in thei-group that belong to classy. We are given a training set

{(Xi, pi)}mi=1. The task is to learn a functionf that maps instancesx ∈ X to discrete class

labelsy ∈ Y from the given information.
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Figure 4.2: Two-dimensional ramp functions

We seek to compute a classifierf such that for any groupi, the predicted class distri-

bution is close topi. More specifically, we consider classifiers that take the form

f(x) = arg max
y∈Y

w · Φ(x, y).

We assume thatf(x, y) = w · Φ(x, y) measures the correctness of the association between

instancex and class labely and the feature mapping functionΦ maps(x, y) jointly into a

suitable feature space endowed with dot product. This formulation of multiclass SVMs is

very common (see e.g., [14, 8]). Thus, the total empirical loss is defined as

L (f, {(Xi, pi}mi=1) =

m∑

i=1

∑

y∈Y

∣∣∣∣∣

ni∑

j=1

I[∀y′6=y, f(Xij, y) > f(Xij , y
′)]− piy

∣∣∣∣∣ .

Theℓ1 distance between two probability vectors is also known as the variation distance. In
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other words, we use the variation distance weighted by the number of instances in a group

to quantify the loss. Consider a term in the (weighted) variation distance for thei-th group.

∣∣∣∣∣

ni∑

j=1

I[∀y′, f(Xij, y) > f(Xij, y
′)]− piy

∣∣∣∣∣

= max

(
ni∑

j=1

I[∀y′, f(Xij, y) > f(Xij, y
′)]− piy,

piy −
ni∑

j=1

I[∀y′, f(Xij, y) > f(Xij , y
′)]

)

= max

(
ni∑

j=1

I[∀y′, f(Xij, y) > f(Xij, y
′)]− piy,

ni∑

j=1

I[∃y′, f(Xij, y) < f(Xij, y
′)]− p̄iy

)

≤ max

(
ni∑

j=1

(
H̃(g(Xij, y))−H+

0 (g(Xij, y))
)
− piy

ni∑

j=1

(
H+

1 (g(Xij, y))−H+
0 (g(Xij, y))

)
− p̄iy

)

wherep̄iy = ni−piy, H̃(v) = max(1, v), andg(Xij, y) = maxy′ 6=y (f(Xij, y
′)− f(Xij, y)).

Figure 4.2 shows these upper bounds in the two-dimensional case.

Using the above upper bound, we can obtain a upper bound of thetotal empirical loss
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and denote it bŷL. We formulate the following optimization program to optimizeL̂.

min λ
∑m

i=1

∑
y∈Y ξiy + 1

2
‖f‖2H

s.t. ξiy ≥
∑ni

j=1

(
ηijy −H+

0 (g(Xij, y))
)
− piy

ξiy ≥
∑ni

j=1

(
τijy −H+

0 (g(Xij, y))
)
− p̄iy

ηijy ≥ f(Xij , y
′)− f(Xij, y)

τijy ≥ 1 + f(Xij, y
′)− f(Xij , y)

ηijy ≥ 1, τijy ≥ 0

(4.4)

Program (4.4) is nonconvex because the first two (group-level) constraints are nonconvex.

We employ CCCP again to solve forw iteratively. In every iteration, we compute the

subgradient ofH+
0 (g(Xij, y)) w.r.t. w as follows.

∂H+
0 (g(Xij, y)) =





{
~0
}

if g(Xij, y) < 0,

{∑
y′∈A ρy′δΦ(Xij , y

′)
∣∣∑

y′∈A ρy′ ≤ 1
}

if g(Xij, y) > 0,

{∑
y′∈A ρy′δΦ(Xij , y

′)
∣∣∑

y′∈A ρy′ = 1
}

if g(Xij, y) > 0,

whereA =
{
y′
∣∣g(Xij, y) = f(Xij, y

′)− f(Xij, y)
}

, 0 ≤ ρy′ ≤ 1, andδΦ(Xij , y
′) =

Φ(Xij , y
′)− Φ(Xij , y).

In our experiments, we pickρy′ to be0.5/|A| if g(Xij, y) = 0 and1/|A| if g(Xij, y) >

0.

To apply non-linear kernels, we resort to the Representer Theorem which says that the
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Figure 4.3: Circle and ring: (a) The six groups in training set, (b) The contour lines of the
learned classifier function and the test data

optimal solution of Program (4.4) takes the form below.

f(x, y) =
m∑

i=1

ni∑

j=1

∑

y′∈Y

αijy′K((x, y), (Xij, y
′)). (4.5)

We can substitute Equation 4.5 into Program (4.4) and solve for α. In this way, we reduce

the search space off from infinite dimensions to|Y|
∑m

i=1 ni dimensions.

4.6 Experimental results

4.6.1 2D toy datasets

We tested our method on two 2D toy datasets. The main advantage of using 2D datasets

is that we can visualize the decision boundary. Neither dataset is linearly separable. We

chose to use a Gaussian kernel and set the kernel width parameter to the median pairwise

distance in the training set. We set the tradeoff parameter between the empirical loss and
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Figure 4.4: Two Gaussian clouds: (a) The six groups in training set, (b) Contour lines of
the learned classifier function and the test data

the regularization term to be 1. We started the CCCP with the zero classifier (i.e.,w = ~0

andb = 0).

The first toy dataset is a (negative) circle surrounded by a (positive) ring. The two

classes are uniformly distributed radially and spherically. The training set consists of six

groups with ten instances each. Three groups contain six positive instances and four neg-

ative instances. The other three groups contain four positive instances and six negative

instances. Figure 4.3(a) shows the training set with instances in each group denoted by

their group IDs. The positive instances are red and bold while the negative instances are

blue and italic. Figure 4.3(b) shows the contour lines of theclassifier function learned by

our method and the test data. The second dataset is overlapping Gaussian clouds, generated

from two isotropic Gaussian distributions. The training set consists of six groups with ten

instances each. The fraction of positive instances is 0.7 inthree groups and 0.3 in the other

three. Figure 4.4(a) shows the training set and Figure 4.4(b) shows the learned classifier.
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We observe that our method finds a decision boundary that is close to the ground truth.

For the circle and ring dataset, the training and test error rates on the first dataset are 0.067

and 0.012. The training and test error rates on the Gaussian clouds dataset are 0.183 and

0.245, respectively. Note that training error is a meaningful measure as the training data

were not individually labeled.

4.6.2 USPS and 20newsgroups datasets

Next we tested our method on two benchmark datasets for classification,1 namely the USPS

handwritten digits and 20newsgroups dataset. We report results on ‘3’ vs ‘8’ and ‘1’ vs

‘7’ from the USPS data and comp vs sci and rec vs talk from the 20newsgroups data.

These pairs are relatively difficult to differentiate. To create the training set, we randomly

partitioned the examples into groups of the same size. A testset consisted of individual

examples. We use a test set of 500 and 1000 examples for the USPS data and 20newsgroups

data, respectively. In every experiment, we generated ten independent training and test sets

and reported the average results.

We compare the performance of our method to that of Kück and de Freitas’s Bayesian

sampling approach [29]. We obtained the code for the Bayesian sampling approach from

Carbonetto’s website.2 We chose to use a Gaussian kernel for both methods and set the

kernel width parameter to the median pairwise distance in the training set. For our method,

we coarsely tuned the tradeoff parameter on a validation setand started the CCCP with the

1http://www.cs.toronto.edu/∼roweis/data.html
2http://www.cs.ubc.ca/∼pcarbo/objrecls/index.html
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zero classifier. For the Bayesian sampling approach, we set the parameters according to

the suggestions of Carbonetto et al. [10]. We seta = 1 and setb to correspond to a feature

selection prior of approximately 10 active kernel centers.We bestowed near uninformative

priors on the hyper-parameters:µ = ν = 0.01 andµα = να = 0.01. We set the stabilization

term on the covariance priorǫ = 0.01. We also coarsely tuned the confidence parameter

χ on a validation set. We generated 10000 samples from the posterior distribution of the

probit classifier after a burn-in period of 10000 samples.

In our first experiment, we examined how the number of instances in a group affects

the performance of the two methods when the total number of instances is fixed. We used a

total of 120 instances for the USPS data and 240 instances forthe 20newsgroups data. We

set the fraction of positive instances to 70% in one half of the groups and 30% in the other

half. Figure 4.5 and 4.6 depict the training and test errors for different number of instances

per group. The two methods have very close performance. The more instances per group,

the more ambiguous the information is. However, we observe that coarse group statistics

may provide sufficient information to learn a good classifier.

In our second experiment, we examined how the fraction of positive instances in a

group affects the performances. Half of the groups have positive as the majority class and

the other half have negative as the majority class. We decrease the percentage of instances

from the majority class in a group from 100% to 60%. For the USPS data, we fixed the

number of groups to 6 and the number of instances per group to 20. For the 20newsgroups
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Figure 4.5: Effect of number of instances per group (USPS data)
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Figure 4.6: Effect of number of instances per group (20newsgroups data)
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Figure 4.7: Effect of group homogeneity (USPS data)

data, we used 12 groups and 20 instances per group. Figure 4.7and 4.8 depict the training

and test errors using the two methods. The two methods have similar performance, As

expected, the error rates increase as the majority percentage decreases.

In our third experiment, we tested the robustness of the two methods by introducing

noise to the group statistics. We generated a training set asfollows. For each group, we flip

an unbiased coin. If it is a head, we draw each of its instancesfrom the positive class (one

at a time) with a probability of 0.75. If it is a tail, we draw each of its instances from the

positive class with a probability of 0.25. To add noise to thegroup statistics, we flip another

unbiased coin for each group. If it is a head, we add a constantto the number of positive

instances. Otherwise, we subtract the same constant from the number of positive instances.
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Figure 4.8: Effect of group homogeneity (20newsgroups data)

For the USPS data, we set the number of groups to 10 and the number of instances per

group to 20. For the 20newsgroups data, we set the number of groups to 20 and the number

of instances per group to 20. Figure 4.9 and 4.10 show the training and test errors as we

increase the magnitude of the noise from 0 to 4. The Bayesian sampling approach performs

better on the USPS data while our method has the edge on the 20newsgroups data. We

observe that even when the noise magnitude is relatively large, the performance of both

methods does not degrade by much.

Lastly, we report some results using our method in multiclass settings. We chose the

joint kernel functionK((x, y), (x′, y′)) = k(x, x′)δ(y, y′) wherek(x, x′) is the Gaussian

kernel andδ(y, y′) is the Dirac kernel (i.e.,δ(y, y′) = 1 if y = y′ and zero otherwise). For
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Figure 4.9: Effect of noise in group statistics (USPS data)
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Figure 4.10: Effect of noise in group statistics (20newsgroups data)
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USPS 20newsgroups

Training error (noiseless) 0.076 0.442

Test error (noiseless) 0.082 0.454

Training error (noisy) 0.102 0.484

Test error (noisy) 0.103 0.504

Table 4.1: Performance on multiclass classification

the USPS dataset, we focused on ‘3,’ ‘5,’ ‘6,’ and ‘8.’ For the20newsgroups dataset, we

used all four classes. To create a training set, we partition500 instances randomly into

50 groups of 10 instances. To introduce noise to the groups statistics, for each class in a

group, we add or subtract 1 from the number of instances belonging to that class uniformly

at random. We normalize the resulting group statistics so that the total number of instances

in a group is consistent. Table 4.1 shows the errors using ourmethod.

4.7 Conclusion

We present a theoretical analysis for group statistics classification. From that, we derive

a novel SVM-based method that seeks to minimize a generalization error bound. We also

consider the problem in the more general multiclass settingand give the first solution. We

evaluated our method on 2D toy datasets and some benchmark datasets for classification.

The experimental results show that the SVM-based method compares competitively with

Kück and de Freitas’s Bayesian sampling approach. The SVM-based method has fewer pa-

rameters to tune than the Bayesian sampling approach and canbe viewed as a deterministic

method.
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Chapter 5

Multiple Instance Ranking

In multiple instance ranking (MIRank), we are given a numberof collections of groups of

individual instances along with the identity of the group that contains the instance with the

highest rank in every collection. The goal is to learn ranking over the set of possible indi-

vidual instances. We use the learned ranking function to predict the group containing the

highest ranking instance for any given collection. This MIRank problem has applications

in computational chemistry and information retrieval. In this chapter, we describe a simple

and efficient approach to tackle MIRank problems.

5.1 Introduction

The problem of multiple instance ranking (MIRank) is to learn a ranking function over

individual instances from the preference relations among groups of individual instances. In

this setting, we are given a number of collections of groups of individual instances. We
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know for each collection, the group that contains the highest ranking instance but not the

exact identity of the instance with the highest rank. This MIRank problem was proposed

by Bergeron et al. [4] and it was studied independently by Hu et al [25].

One important application of MIRank is the hydrogen abstraction problem in computa-

tional chemistry. We follow the description in [4]. The goalis to build a model that predicts,

for each molecule, the site of abstraction of a hydrogen atomduring metabolism. In order to

accomplish this, individual hydrogen atoms are first grouped together according to molec-

ular equivalence: hydrogens are placed within the same group if and only if the abstraction

of any hydrogen from within the group would result in the samemetabolised molecule. In

this way, groups are equivalent representations of potential sites of metabolism. Note that

experimental data do not show which individual hydrogen is abstracted during metabolism,

but rather only to which group the hydrogen atom belongs. Clearly, we can view the hydro-

gen abstraction problem as a multiple instance ranking problem. We can view molecules

as collections, a group of hydrogen atoms as a group of individual instances, and the ab-

stracted hydrogen as the highest ranking instance.

Another application of MIRank is information retrieval. Suppose we want to rank im-

ages according to their relevance to a particular topic. We collect pairs of images and the

preference relation between each pair (e.g., image A is morerelevant to image B). Since

an image can contain more than one thing, we represent every image as a set of segments.

Furthermore, we may want to identify the most relevant segment in an image as well. We
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can learn a ranking function in the MIRank setting. We can view every image pair as a

collection and every image as a group of individual instances.

Like multiple-instance classification and group statistics classification, the challenge of

the MIRank problem comes from the ambiguity in the label information in the training

data. We propose a probabilistic model for the MIRank problem. The probabilistic model

is based on a generalized Bradley-Terry model [26]. We show that optimizing the prob-

abilistic model is equivalent to approximate empirical risk minimization. The resulting

optimization problem is unconstrained and can be solved by efficient numerical algorithms

(e.g., quasi-newton and scaled conjugate gradient [6]). Wealso explore boosting in the MI-

Rank setting. Furthermore, we extend the relevance vector machine to the MIRank setting

for automatic feature selection.

5.2 Related work

Multiple-instance (MI) learning is a popular research topic in machine learning (see Chap-

ter 4 for a more detail discussion). Most previous MI works focus on classification. Re-

cently, Bergeron et al. [4] and Hu et al. [25] independently considered extending MI learn-

ing to ranking. Bergeron et al. propose to solve MIRank problems using successively linear

programming. On the other hand, Hu et al. consider three variants of MIRank, namely us-

ing the average, themax, and the approximate softmax of the instances to represent each

group. The first case be solved as a standard quadratic program. The second case can be
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solved as a sequence of quadratic programs using the Concave-Convex procedure (CCCP)

(see Chapter 2). The third case also involves solving a sequence of quadratic program but

it is not clear if it has any convergence guarantee. AlthoughBergeron et al. and Hu et al.

report some success in their experiments, their methods canbe computationally expensive.

A more scalable and efficient method is highly desirable. Another drawback of their meth-

ods is the lack of a probabilistic meaning (i.e., what is the probability that a group is the

one containing the highest ranking instance in a collection?).

5.3 Problem Definition

We need some notation to formally state the MIRank problem.

X the space of feature vectors representing individual instances
X(k) collectionk

X
(k)
i groupi in collectionk

X
(k)
ij feature vector of instancej in groupi in collectionk

Y (k) the identity of the group that contains the highest
ranking instance in collectionk

Table 5.1: Notation for MIRank

Given a training set{
(
X(k), Y (k)

)
}, the goal of MIRank is to learn a ranking function

f : X → ℜ. The learned ranking functionf is later used to predict which group contains

the highest ranking instance for any test collection.
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5.4 A Probabilistic Model

The Bradley-Terry model [15] is a popular model for paired comparisons:

P (individual i beats individualj) =
πi

πi + πj
(5.1)

whereπi is the (positive) skill of thei-th individual. Huang et al. [26] extend it for paired

team comparisons:

P (teamA beats teamB) =

∑
a∈A πa∑

a∈A πa +
∑

b∈B πb
. (5.2)

For the MIRank problem, we say that a groupg is the favorite group if it contains the

highest ranking instance in a collection and we assume

P (groupg is labeled as the favorite group) =

∑
j e

f(Xgj )

∑
i6=g

∑
j e

f(Xij )
. (5.3)

Note that unlike [15] and [26], we consider the “skill” of an individual instance as a function

of its feature vector. This difference allows us to rank instances outside the training set as

well. The ranking functionf can be found by maximum likelihood estimation (MLE) or

maximum a posterior (MAP) estimation (if a prior distribution is assumed overf ).
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Approximate empirical risk minimization interpretation

Interestingly, we can also motivate the generalized Bradley-Terry model from the risk min-

imization perspective. We define the loss incurred by a collection (X, Y = g) as

max
i

max
j
f(Xij)−max

j
f(Xgj) . (5.4)

If groupg contains the instance with the highest skill, the loss is zero. Otherwise, the loss is

the difference between the highest skill in the collection and that in groupg. Thesoftmax

function is asoftversion of themax function.

softmax(z1, . . . , zn) = log(
n∑

i=1

ezi) . (5.5)

Replacingmax by softmax in Equation 5.4, we obtain

log

(
∑

i

∑

j

ef(Xij )

)
− log

(
∑

j

ef(Xgj )

)
(5.6)

which is the negative log-likelihood using Equation 5.3. Therefore, minimizing the approx-

imate loss function is equivalent to maximizing the likelihood in the generalized Bradley-

Terry model.
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5.5 Estimation methods

5.5.1 Linear model

The first method seeks to learn a linear ranking functionf(x) = w · x. We assume a

isotropic Gaussian prior onw. The posterior distribution ofw is

P (w|{(X(k), Y (k))}) ∝
∏

k

P (Y (k)|X(k), w)P (w)

∝
∏

k

∑
j e

w·X
(k)

Y (k)j

∑
i

∑
j e

w·X
(k)
ij

· e−λ
2
w·w . (5.7)

The maximum a posterior (MAP) estimate ofw is obtained by solving

min
w
LMAP =

∑

k

(
log

(
∑

i

∑

j

ew·X
(k)
ij

)
− log

(
∑

j

e
w·X

(k)

Y (k)j

))
+
λ

2
w · w . (5.8)

Since log-sum-exp is convex, the objective function is the difference of two convex func-

tions. Equation (5.8) is a nonconvex unconstrained optimization problem. We can solve for

a local optimum ofw using the CCCP or directly using numerical algorithms such as quasi-

Newton and scaled conjugate gradient [6]. Denote the objective function in Equation (5.8)

byLMAP . The corresponding gradient and Hessian matrix are

∂LMAP

∂w
=
∑

k

(−zk + z̃k) + λw (5.9)
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∂2LMAP

∂w2
=
∑

k

(
zkz

T
k −Zk − z̃k z̃

T
k + Z̃k

)
+ λI (5.10)

whereI denotes the identity matrix and

zk =

∑
j e

w·X
(k)

Y (k)jX
(k)

Y (k)j

∑
j e

w·X
(k)

Y (k)j

(5.11)

z̃k =

∑
i

∑
j e

w·X
(k)
ij X

(k)
ij

∑
i

∑
j e

w·X
(k)
ij

(5.12)

Zk =

∑
j e

w·X
(k)

Y (k)jX
(k)

Y (k)j
X

(k)

Y kj

T

∑
j e

w·X
(k)

Y (k)j

(5.13)

Z̃k =

∑
i

∑
j e

w·X
(k)
ij X

(k)
ij X

(k)
ij

T

∑
i

∑
j e

w·X
(k)
ij

(5.14)

5.5.2 Ensemble model

The second method seeks to learn an ensemble modelf(x) =
∑

t αtht(x) whereht’s are

some weak classifiers. We choose the negative log-likelihood

LML =
∑

k

(
log

(
∑

i

∑

j

e
f
“

X
(k)
ij

”

)
− log

(
∑

j

e
f

„

X
(k)

Y (k)j

«))
(5.15)
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as the loss function and minimizes it using the AnyBoost framework [33] (see section 2.2).

The functional gradient of the negative log-likelihood is

∂LML

∂f
(
X

(k)
uv

) =





e
f(X

(K)
uv )

P

i

P

j e
f(X

(K)
ij )

if u 6= Y (k);

e
f(X

(K)
uv )

P

i

P

j e
f(X

(K)
ij )



−
P

i6=Y (k)

P

j e
f(X

(K)
ij )

P

j e
f

 

X
(K)

Y (k)j

!



 if u = Y (k) .

(5.16)

Therefore, in every iteration, we set the label and weight ofinstanceXk
uv assign

(
∂LML

∂f(Xk
uv)

)

and
abs

 

∂LML

∂f(Xk
uv)

!

P

k

P

i

P

j abs

 

∂LML

∂f(Xk
ij)

! , respectively. We find the weak classifierht(x) that minimizes

the weight error on the training set and then use line search to find its weightαt that mini-

mizesLML.

5.6 Automatic Feature Selection

In many applications, model interpretation is just as important as prediction accuracy and

a sparse model is highly desirable. Also, it is troublesome to tune the parameterλ in the

MAP estimation method manually. We apply a feature selection technique originally pro-

posed for the relevance vector machine (RVM) [49] in MIRank.Instead of assuming an

isotropic Gaussian prior onw, we assume that different components ofw may have differ-

ent variances, i.e.,w ∼ N(~0, A−1) whereA = diag(α1, . . . , αd). The type-II maximum
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likelihood method is to findA that maximizes the marginal likelihood

P ({Y (k)}|{X(k)};A) =

∫ ∏

k

P (Y (k)|X(k), w)P (w;A)dw . (5.17)

However, the integral is intractable for the generalized Bradley-Terry model. Denote the

logarithm of the integrand byΨ(w). We approximateΨ(w) using the second-order Taylor

expansion at the current MAP estimateŵMAP .

Ψ(w) ≈ Ψ(ŵMAP ) +
1

2
(w − ŵMAP )T∇2Ψ(w)(w − ŵMAP ) (5.18)

where∇2Ψ(w) = ∂2Ψ(w)
∂w2 . The resulting integral is easy to compute.

P ({Y (k)}|{X(k)};A) =

∫
eΨ(w)dw (5.19)

≈ eΨ(ŵMAP )

∫
e

1
2
(w−ŵMAP )T ∇2Ψ(w)(w−ŵMAP )dw (5.20)

=
∏

k

P (Y (k)|X(k), ŵMAP )P (ŵMAP ;A)(2π)d/2
∣∣−∇2Ψ(w)

∣∣−1/2

(5.21)
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The logarithm of the approximate marginal likelihood is

logP ({Y (k)}|{X(k)};A)

≈
∑

k

logP (Y (k)|X(k), ŵMAP )− 1

2
ŵT

MAPAŵMAP +
1

2
log |A| − 1

2
log
∣∣−∇2Ψ(w)

∣∣.

(5.22)

The derivative can be approximated as

∂ logP ({Y (k)}|{X(k)};A)

∂A
≈ −1

2
ŵMAP ŵ

T
MAP +

1

2
A−1 − 1

2
∇−2Ψ(w) (5.23)

where∇−2Ψ(w) is the matrix inverse of∇2Ψ(w). Taking into account thatA is a diagonal

matrix, we have

∂ logP ({Y (k)}|{X(k)};A)

∂αi
≈ 1

2
ŵ2

MAP,i +
1

2αi
− 1

2
∇2Ψ(w) (5.24)

where∇−2Ψ(w)ii is the (i, i)-element of∇−2Ψ(w). Setting the derivative to zero, we

obtain the following update rule.

αnew
i =

1

ŵ2
MAP,i +∇−2Ψ(w)ii

(5.25)

The final algorithm is described as Algorithm 1. We fixA to find the MAP estimatêwMAP

and then updateA using Equation (5.25). We repeat the two steps untilA converges. After
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Algorithm 1 MIRank-RVM

initializew = ~0 andA as identity matrix
repeat

findw that maximizesΨ(w), the log of the integrand in Equation (5.17),
by numerical optimization methods
update the diagonal elements ofA using Equation (5.25)

until A does not change

a number of iterations, someαi’s become very large and we can remove those irrelevant

features from further consideration. Often times, this procedure results in a sparse model

that is good for model interpretation and generalization.

5.7 Experiments

Following [4], we tested our methods on the CYP3A4 substratedataset1 and two versions

of a census dataset (census-16h and census-16l) from the Data for Evaluating Learning in

Valid Experiments (DELVE) repository2. The CYP3A4 substrate dataset is made up of

227 small drug-like compounds. A series of 36 descriptors for each hydrogen atom for all

molecules are calculated. For each molecule, the goal is to predict which group a hydrogen

atom is abstracted, and it is not known exactly which hydrogen is abstracted.

The census dataset consists of 22784 towns spread among the 50 states of the United

States of America. This study only considered the 3054 townsof more than 10000 inhab-

itants. Each town is assigned a 5-digit Federal InformationProcessing Standard (FIPS)

place code (not a zip code). Typically, this dataset is used in a regression setting to model

1http://reccr.chem.rpi.edu/MIRank/
2http://www.cs.toronto.edu/∼delve/
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Dataset successive LP [4] MAP MAP+RVM Boosting
CYP3A4 substrate 70.9%± 6.9 69.9%± 5.9 72.2%± 5.5 71.9%± 6.7
Census-16H 60.3%± 15.1 58.1%± 14.5 62.2%± 14.3 55.6%± 16.8
Census-16L 57.5%± 16.0 62.5%± 15.2 64.7%± 13.4 47.8%± 16.0

Table 5.2: Rank-2 prediction accuracies

the response – which is the town’s median housing unit price.The census-16h and census-

16l datasets differ in their features: each consists of 16 features drawn from the 1990

census. These datasets are fitted into the multiple instanceranking framework as follows.

States are collections, divisions of towns are groups and towns are individual instances.

For each state, towns whose place codes begin with the same digit are assigned to the same

division. As no place code starts with ‘0’, there are up to 9 divisions per state. The task is to

predict, for each state, the division that contains the townwith the highest median housing

unit price.

The experimental design is as follows. Each dataset was randomly split into training,

validation and testing subsets consisting of 60%, 20% and 20% of the collections, respec-

tively. The parameters of the algorithms (λ for the linear model method and the number

of weak learnersT for the ensemble model method) are tuned on the validation set. The

experiment was repeated 32 times for each dataset. The average accuracy is reported in

Table 5.2, along with the standard deviation. Note that a prediction is considered as correct

if the top two guesses contain the most preferred group in thecollection. The same metric

is employed in [4]. We can see that the MAP estimation of a linear model has a simi-

lar performance to successive linear programming. The MAP linear model has a slightly
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lower accuracy than successive linear programming on the CYP3A3 substrate dataset and

census-16H dataset but is more accurate on census-16L dataset. The MAP estimation com-

bined with automatic feature selection gives the best accuracy on all three datasets. Our

boosting approach used decision stumps [7] as the weak learners. It achieved the second

best accuracy on the CYP3A4 substrate dataset, but it did notperform well on the two cen-

sus datasets because of overfitting. Although the performance of the boosting approach is

somewhat disappointing, we believe that it can be a good choice when the optimal ranking

function is nonlinear.

5.8 Conclusion

We propose a probabilistic model for multiple instance ranking and present methods to

learn the model. Our first method learns a linear ranking function by MAP estimation while

our second method learns an ensemble ranking function by MLEmethod. Both methods

involve solving an unconstrained optimization problem, which is nonconvex but belongs to

the class of the difference of convex functions. Furthermore, we extend the feature selection

technique used in the relevance vector machine to the MIRanksetting. Our experimental

results show that the MAP linear model has a similar performance to successive linear

programming. The MAP estimation with automatic feature selection produced the best

prediction accuracy. Our boosting method seems susceptible to overfitting and did not do

well.
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Chapter 6

Conclusion

We argue that standard classification and ranking suffer from high information acquisition

costs at both the test stage and the training stage. To reducethe information acquisition

cost during testing, we can obtain information about test examples sequentially. Based on

the currently available information, we decide whether to reject the example or to obtain

further information. This sequential stopping framework is especially suitable for product

testing in manufacturing where a good product item need to pass every test and a product

item is flagged as faulty immediately if it fails a test. We propose catenary support vector

machine (catSVM) to the sequential stopping problem and give a generalization bound

for it. We demonstrate the advantage of catSVM over single-stage SVM and its closest

competitor, chained boosting, on the UCI heart dataset and on a face detection task.

Labels of training examples are often expensive to obtain. To reduce the label collec-

tion cost, we can perform learning from aggregate statistics. We propose a SVM method
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to learn to classify individual examples from group label proportions. We provide a simple

theoretical analysis for group statistics classification.Our experiments show that our SVM

method has comparable performance as a Bayesian sampling approach. Also, we propose

several methods to learn to rank individual examples from preference relations at the group

level. Our experimental results show that the MAP estimation of a linear model with au-

tomatic feature selection produces the best accuracy whileboosting seems susceptible to

overfitting. Learning from aggregate statistics opens new opportunities for data users and

can benefit many applications. But it also raises privacy concerns because people may be

able to infer private individual actions or preferences from public aggregate statistics.

There are a number of directions for future work. The sequential stopping framework

we consider can only reject test examples early but it cannotaccept any examples until the

last stage. In some applications, there are many easy positive examples that can be accepted

by looking at the first few features. Extending catSVM to two-sided early detection is an

useful next step. Another direction is improve the scalability of catSVM. The size of the

catSVM optimization problem depends on the product of the number of training examples

and the number of stages in the processing pipeline. Currently, we use a generic interior-

point solver to solve the quadratic program in each iteration of the CCCP. But the interior-

point solver quickly runs out of memory as the problem size increases. It may be possible

to make catSVM optimization more scalable using cutting-plane methods.

Moreover, it would be interesting to tighten the generalization bound for group statistics
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classification. The assumptions in our analysis are admittedly rather strong. It would be

desirable to relax some of the assumptions. Especially, it would be very useful to consider

the case when the group label proportions are noisy. It wouldalso be interesting to extend

the theoretical analysis to multiclass setting. In addition, our solution for multiclass group

statistics classification involves solving quadratic programs with the number of constraints

quadratic in the number of classes. A generic interior-point solver does not scale to a large

number of classes. Again, cutting-plane methods and bundlemethods [42] may be of help.

Finally, extending our methods to other variants of multiple instance ranking (e.g., allowing

multiple individual instances in different groups to tie for the top spot) is an interesting

topic.
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