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ABSTRACT OF THE DISSERTATION

Towards Information-Economical Classification and Ragkin

by

Kin Fai Kan

Doctor of Philosophy, Graduate Program in Computer Science
University of California, Riverside, August 2008
Dr. Christian R. Shelton, Chairperson

The standard formulations of classification and ranking ratber strict in terms of
information usage and may incur high information costsn@ad classification assumes
that we need all the attributes to classify every test examflhis is neither cheap nor
necessary because the attributes can be expensive to abthguite often we can predict
the label of a test example by looking at a small subset oftthieates. A more economical
approach is to acquire the attributes of test examples s¢igilg and weigh the benefit
and cost of acquiring more attributes at every step. To dg tie need to learn a sequence
of decision rules that together minimizes the penalty cdsis to misclassification and
information acquisition costs. We focus on rejecting negagxamples as early as possible
and present the catenary support vector machine (catSVM).

Standard classification learns a prediction function frorset of labeled examples.



However, it is often expensive (and sometimes impossiblebtain labels of individual ex-
amples. One economical alternative is to learn from agdgedghel information which are
easily available and cheap to obtain. We propose an SVM rddthéearn classification
from group label proportions and provide a theoretical lwbon its generalization error.
The idea of learning from aggregate label information i® aiseful for ranking. Standard
ranking relies on the relative preferences between indaliéxamples for training which
can be expensive or difficult to obtain. We propose a prolsigilmodel for the relative

preferences among groups of individual examples and preseeral estimation methods.

Vi
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Chapter 1

Introduction

Classification is a fundamental problem in machine lear@aingd statistics. Given a train-
ing set consisting of a number of input objects together Widir output labels, the goal of
classification is to learn a model to predict the output Islo&Future input objects. Usually

input objects are represented by feature vectors of reabeusrand in binary classification,
output labels are either1 or —1 indicating positive or negative class. Classification has n
merous real-world applications. For example, a mortgagepany migth use classification
to predict whether a customer is likely to repay a loan baseller personal information.

Also, biologists use classification to predict the functadfmew proteins based on their
sequence structures. Tablel1l.1 shows some training anesiples for the task of clas-
sifying mortgage applicants. The input objects are morgagplicants who are described
by age, sex, marital status, and income. The output labdisate whether the applicants
repaid the loans. The widely used classifiers are decisea, k-nearest-neighbor classifier,

1



Age | Sex | Marital status| Income | Repay?
20 | M Single 10k No Age | Sex | Marital status| Income | Repay?
25 | M Married 60k Yes 27 | M Single 50k ?
36 F Single 200k Yes 55 F Married 110k ?
48 | M Divorced 90k No

(a) Training examples (b) Test examples

Table 1.1: An example of classification task: mortgage applicantsstfigstion

naive Bayes classifier, neural network, support vector nmagtand logistic regressionl[7].

Ranking is a relatively new problem compared to classifeati It has gained con-
siderable attention in the machine learning community cen¢ years. Given a training
set consisting of pairs of input objects together with tipeeference relations, the goal of
ranking is to learn a scoring function that assigns a higheresto a more preferred input
object. A scoring function induces an ordering over all floissinput objects. Ranking
has important applications in information retrieval. Festance, search engines rank web
pages depending on their relevance to a user’s query. lagoreble to assume that a web
page is more relevant than the others if a user clicks to thsit web page. Thus, we can
extract preference relations between web pages from qagsydnd use the extracted pref-
erence relations to learn the relevance function for a quBgnking is closely related to
classification. In fact, we can reduce ranking into binasasslfication by regarding a pair
of input objects as a single input object and the prefereeleion between a pair of input
objects as a binary label. A number of classification alpong have been adapted to solve
ranking, namely RankBoost [19], RankSVM_[27], and Ranki®}t [

Although information is everywhere, useful informationtedf comes with a price. The



standard formulations of classification and ranking arkeaastrict in terms of information
usage and hence not ideal in many scenarios. First, theytdak®the cost of information
collection into account during testing. Standard classiiicn assumes that we need all
input features to test every example. This is neither ecocalnmor necessary because
input attributes of a test example do not come for free andegoiten we can predict
the label of a test example by just looking at a small subsehmit features. A more
economical approach is to obtain input features sequéntiathe test phase and weigh
the benefit and the cost of acquiring more input features etyestep. In this way, we re-
formulate binary classification as sequential stoppindglenm. For instance, to diagnose
heart disease, a doctor conducts a number of tests on atpaikarly, there is no need
to perform all relevant tests for every patient. The commuacice is to conduct medical
tests sequentially. Based on the currently available &sstits, the test costs, as well as the
penalty costs for mis-diagnosis, a doctor decides whether¢ out the possibility of heart
disease completely or to perform additional tests to contirendiagnosis.

Second, standard classification and ranking rely on labeds ggeference relations
about individual examples which are often expensive (amdetimnes impossible) to ob-
tain. Semi-supervised learning_[11] provides one solutidhuses plenty of unlabeled
examples in addition to a small number of labeled examplésiio a classifier (or a rank-
ing function). Recently, some researchers have propodedto classification and ranking

from aggregate statistics [116,129, 36/ 4, 25]. In this sgitintraining set consists of groups



Age | Sex | Ethnicity | Income| For?
20 | M Latino 10k
25 | M Asu_’m 60k 3 Yes Age | Sex | Ethnicity | Income| For?
36 F White 200k | 1 No .

27 | M Latino 50k ?
48 | M Black 90k

55 F Black 110k ?
69 | M| Black | 30k 33 | F | whie | 300k | ?
71 F White 150k | 1Yes :
54 F White 500k | 3 No
87 | M White 0

(a) Training examples (b) Test examples

Table 1.2: An example of group statistics classification: voter clasaiion

of individual examples and each group is associated withesagyregate statistics about
individual labels. Different forms of aggregate statistitave been considered. Multiple
instance learning [16] relies on aggregate label that até& the presence of any positive
example in a group multiple examples. Group statisticssdiaation [29/36] relies on the
fraction of positive examples in each group. Multiple imsta ranking [[4]25] relies on
the knowledge of the group that contains the highest rankiample in a collection of
groups of individual examples. Since aggregate statistieoften cheap and easy to ob-
tain, learning from aggregate statistics is a promisingtsah to reduce the collection cost
of labeled information and has many potential applicatidies example, a political party
wants to find out who would vote for their presidential caradéed It may be difficult to
know exactly how individual people vote. It is straightf@m to find out how many votes
each candidate gets in different areas of the country. Tiegetith an existing database of
registered voters, a political party can learn a model taistehow individual people vote.
Table[12 illustrates what the training and test data mak lik®@. Table[T.P(a) shows two

groups of voters from two different areas of the country. Tt objects (i.e., the voters)



are described by age, sex, ethnicity, and income. The oldpets indicate whether the
voters vote for the candidate and they are unknown. But wevithat the candidate gets
3 votes out of 4 in the first group and he just gets one vote irséo®nd group. Another
possible application is to use multiple instance rankinig#on the relevance of sections or
paragraphs in web documents based on the relative pretsariaveb documents. Sup-
pose someone enters a search query “multiple instancenginkihis dissertation may be
returned as one search result because it contains a chapteultiple instance ranking.
It may be helpful if search engines do not only find this ditgen relevant but can also
identify the most relevant chapter. We can represent tisisadiiation by multiple document
frequency vectors, one for each chapter, and rank the afsdpdsed the relative preferences
at the document level (which can be extracted from query)logs

In this dissertation, we study sequential stopping problgraup statistics classifica-
tion, and multiple instance ranking. These new formulatiohclassification and ranking
pose significant challenges. The sequential stopping enolobquires learning a sequence
of decision rules to achieve a common goal. Group statistassification and multiple
instance ranking requires dealing with aggregate stesisthich are ambiguous in nature.

Our contributions are summarized as below.

1. We propose catenary support vector machine (catSVM)lte sequential stopping

problem and provide a generalization bound for catSVM.

2. We propose a SVM approach to learn to classify individuxaineples from group



statistics and provide a generalization bound for groufissiies classification.

3. We propose a probabilistic model for multiple instanagkrag and derive methods

to estimate the model.



Chapter 2

Background

In this chapter, we will review some fundamental conceptgstFwe will look at the
principle of empirical risk minimization and common loss@tions in classification and
regression. Then, we will review boosting, support vectachines, and some theory of
kernel functions. We will also discuss how to derive boagttgorithms and SVM from
the risk minimization principle. After that, we will see hdeminimize an important class

of nonconvex functions — the difference of convex functions

2.1 Empirical Risk Minimization

The task of classification (or regression) is to predict thigpat label of an example from
its input features. Left be the space of input attributes apdbe the space of output
label. We want to learn a functiofi : X — ) that predicts the output label of any test

example well. We posit that test examples are drawn indegrghdfrom an unknown but



fixed probability distributionP(z, y) (the i.i.d. assumption). Suppose we have a function
L(y, f(z)) that can quantify the loss of predictingz) when the true output label ig.

It makes sense to find a predictive functiffx) that minimizes the riskop[L(Y], f(X))].
Since P(z,y) is unknown, we approximate it using a set of labeled trairemgmples
{z;,y;}~,. Thus, we seek to find a predictive functigfiz) that minimizes the empirical

risk

Es[L(Y, f(X))] = % Z L(yi, f(:))

where P is a uniform distribution on the training examples. Under mild conditions on
L(y, f(z)), one can prove that the empirical risk converges to the igkeas the number
of training examples increases [50]. However, for a smathber of training examples, the
true risk of a predictive functiorfi(z) can be much greater than the empirical risk especially
if the class of predictive functions we consider has a higmglexity. This problem is
known as overfitting and can be avoided by adding a reguliizderm to encourage

simple f(X). We introduce a complexity terrR( /) and minimize the regularized risk
Ep[L(Y, f(X))] + AR(f),

where) is parameter that controls the tradeoff between the engbiiigk and the complex-

ity of the predictive function.



So far, we have not mentioned how to pick the loss funcfiolVe cannot overstate the

importance of picking theight loss function. There are two criteria to consider.
1. Does the loss function capture the actual loss well?
2. Is the loss function easy to optimize?

In binary classification, the output label of an example ciéimee be+1 or —1. The

natural loss function is the 0-1 loss.

1 ifyf(z) <0
Lo (y, f(z)) =

0 otherwise.

Here we assume thgi(z) is a real-valued function and an example is classified-as
if f(z) is positive and—1 otherwise. Therefore, we have a classification erray &nd
f(z) have opposite signs. The major drawback of the 0-1 loss tdttisa discontinuous
function and hence difficult to optimize. A number of alteima loss functions have been
proposed. AdaBooslt [20] uses exponential loss, logisgoassion (] uses logistic loss,

and support vector machines [51] use hinge loss.

LE:Bp(ya f(x)) = e vf(@)
LLogit(ya f(z)) =log(1+ e—yf(:v))

LHinge(y7 f('r)) = max<07 1— yf(x))



* === max(0,1-yf(x))

= Exponential loss .
e max(0,-yf(x
ar e Logistic loss 1 2r *e, (0.7ytx))
) . ——ramp loss
===Hinge loss g
3t —0-1loss
!,,,/%
2r ""'/”h
LI
2
1
N
—9 5 -1 -05 0.5 15 2 15 2
yf(x)
(a)

Figure 2.1: Classification loss functions: (a) convex loss functiob$ rémp loss

Figure[Z.1(a) depicts exponential loss, logistic lossghiloss, as well as the 0-1 loss as a
functiony f(z). Exponential loss and logistic loss are continuous aneifftiable while
hinge loss is continuous but not differentiableygi(x) = 1. Importantly, exponential
loss, logistic loss, and hinge loss are all convex {m). They have one unique minimum
and they can be optimized using efficient convex algorithri@wever, since they are
unbounded above for classification mistakes, they do nauoaphe 0-1 loss very well.
With an unbounded loss function, it may appear better off akenmany classification
mistakes than just classify one single example wrongly. l@ndther hand, Ramp-SVM
[13] andy-learning [40] use ramp loss which is always bounded above(ayso known as
truncated hinge loss). Ramp loss can be expressed as teddE of two convex functions

and hence is not convex.

Lramp(y7 f(!li')) = max(O, 1- yf(:L“)) - max(O, —yf(:L“))

10



Figure[Z1(b) shows ramp loss as a functiony 6fx).

For linear regression, the most popular loss function isstieared error

Lsp(y, f(z) = (y — f(x))*.

The squared error leads to an analytic solution, so the agdition is very efficient. It is

well-known that the squared error can be interpreted asiamiglassuming independent
Gaussian noise in output labels. However, the squared isrmoot appropriate if the as-
sumption of independent Gaussian noise does not hold. Qemative, used in support

vector regression |38], isinsensitive loss

ly—fl@)| —e ity —flz)| = e
Le(y, f(x)) =

0 otherwise.

Whene is chosen to be zeresinsensitive reduces to the absolute erreinsensitive loss is
convex inf(x), albeit it does not have an analytic solution. It is more apgate than the
squared error if the loss increases slowly with the predircgrror. Figurd 22 shows the

squared error anéinsensitive loss as a function gf— f(x).

11



=== Squared error loss
== =g—insensitive loss ||

7
0.5 1 15

D
79‘5 -1 -0.5

0
y=f(x)

Figure 2.2: Regression loss functions

2.2 Boosting

Boosting is a technique that combines a number of weak leating a strong learner.
Roughly speaking, a weak learner is simple and not very ateuibarely better than
random guess) while a strong learner is more sophisticatdccan attain high accuracy.
Boosting trains one weak classifier at a time on a weightedimerof the given training
set. Initially, every training example has equal weightteAfa weak classifier is trained,
the weights of the training examples that are wrongly (azityg classified are increased
(decreased). The intuition is to give more attention to tleeedifficult training examples
in the later iterations. In addition to updating the weigbtdraining examples, a weight
is computed for every weak classifier based on their accuradje weighted training ex-
amples. The final strong classifier is specified by the wetjlatding majority of the weak
classifiers.

There are many variants of boosting. Perhaps the most wellvk one is AdaBoost
proposed by Freund and Schapirel[20]. AdaBoost computesthigplicative update of

12



the weight of the-th training exampléz;, y;) using the following equation.

w; — wietYihe (@)
whereh; is the new weak classifier and is its weight. The multiplicative update is less

than 1 ify; = hy(x;) and is greater than 1 if; # h,(z;). The weighto, of h; is

11 ]-_Et
= — 1n
! 2 €t

wheree; is the error rate ofh; on the weighted training set. Mason et al.l[33] points
out that AdaBoost can be understood as performing gradiesteanht in a function space
to minimize the empirical exponential loss. This risk miigation perspective leads to
the AnyBoost framework [33]. Given a loss functidn the objective is to minimize the
empirical riskJ(F) = 13" | L(y;F(x;)). We start with/'(X) = 0 and add one step
af(X)to F(X) iteratively. The direction of the steff X) is chosen to match the negative

gradient of the empirical risk’.J(F"). The step sizev is chosen to minimize/(F') along

f(X). To matchf(X) with —V.J(F'), we minimize the inner product betwegiX) and

13



VJ(F)

min Z f(xi)yiL/(yiF(xi))
{f(xs) ?:1 i=1

n

(:){fair;lb:l - (—f(xs)yi) (=L (y; F(2:)))

n

= {f&%ﬁgl - I[f (zi) # il D(@)

whereD(i) = w andZ is the normalization term. Note théatis a valid probabil-
ity distribution becausé. is a loss function and should have a negative derivativereFhe
fore, every descent step is equivalent to finding the bessiflar f on the weighted training

examples.

2.3 Support Vector Machines

The support vector machine (SVM) is one of the most imporggorithms in machine
learning [38]. SVM is based on a simple intuition. A hyperm@ahat separates data of
different classes with a large margin is likely to genemahxell to future examples. The
bigger the margin, the better the classification rule gdizasto future examples. SVM
was originally designed for binary classification and it bagn extended to linear regres-
sion [17], one-class classification |37], multiclass difixsation [14], ordinal regression
[12], and ranking([2]7]. It has also inspired maximum-masgased algorithms for cluster-

ing [58], feature selection [23], distance metric learnjbf], kernel learning([30], matrix

14



factorization[[44], and structured predictidn [48].

2.3.1 Linear SVM

Let {(z;,y:)}7, be a training set withiz;, y;) € R x {—1,+1}. The SVM optimization

problem can be formulated as a quadratic program.

min &+ Awlf?
1

w,b,{&}y e
st yi(w-x; —b) >1-=¢, Vi<i<n
& >0, Vi<i<n

In this formulation,w is the normal vector of the hyperplane and the inverse ofarsmn

1
[[wl]

is chosen to be the size of the margin. The positive examplaslid be on the side of
the separating plane pointed to by the normal vector whéendgative examples should be
on the opposite side. Thus, the constraints imply that evespould be further away from
the separating hyperplane than the size of the margin. Ho& shriableg¢;}" , are used
to give SVMs some flexibility to allow some noisy examples atliers to fall within the
margin or even on the wrong side of the separating hyperpl&he objective function is
the sum of the slack variables and the squared norm of (thealaector of) the separating
hyperplane.)\ is a parameter used to control the tradeoff between the statibles and
the norm of the separating hyperplane. By solving the SVMdgatéc program, we obtain

a hyperplane that separates the examples with a large margin

15



Notice that the SVM quadratic program can be re-formulatedraunconstrained opti-

mization problem.

1 —_ . p— 2
min Zmax(o,l (w-x; — b)) + Al|w||

i=1

The first term is the empirical hinge loss. The second ternbearegarded as a regularizer
that prefers a separating hyperplane with a sifyatiorm. Therefore, we can also interpret
SVM as an example of regularized risk minimization. Thigk misinimization perspective
often provides a more convenient way to design new SVM algars for new problems

than the geometric perspective does.

2.3.2 Nonlinear SVM

The linear SVM is good for (almost) linearly separable d&w@ar. nonlinear separable data,
we can use kernel functions to implicitly map the originatadapace to a (possibly in-
finitely dimensional) feature space and find a separatingiptane in the feature space.
Let X be the space of input objects. A kernel functiifz, ') measures the similarity be-
tweenz, 2’ € X. K(x,2') is a positive semi-definite kernel if for any subget}”, C X,
>oimy 2y K(wi, w)cic; > 0 for any real numbers;;” . Every positive semi-definite ker-
nel function corresponds to the inner product in some feadpace. For instance, the poly-
nomial kernelK (z,2') = (x - 2/ + ¢)? corresponds to a mapping to éﬁjq)-dimensional

feature space, containing all monomials of the farg;, . . . x;, that are up to ordey.

16



Below is the dual formulation of SVM. It can be obtained bytisetthe derivative of

the Lagrangian of the primal SVM to zero with respect to thiengt variablesw, b, and

{&itimt

n
E 1 E T
mz&x oy — ﬁ aiajyiiji Ilfj
=1 1,

{ai}iy P

S.t. Zalyl =0

The key observation is that in the dual formulation the fragndata only appears in the
form of inner product. We can replace the inner products beréd function. In doing
so, we can find a separating hyperplane in a feature spacewigkplicitly calculating the
feature space representation of the training data. Theigeé is known as thkernel trick
[38]. The kernel trick does not only enable SVM to deal witmlioear separable data,
but also makes SVM applicable to data that are not repreddnytecal-valued vector (e.g.,
strings of letters).

Alternatively, we can obtain a similar result by resortimgthe theory of reproduc-
ing kernel Hilbert space (RKHS). Let us review some basiasutibeproducing kernel
Hilbert space. We regard the kernel function evaluated,ak’(-, z) as a function that
measures the similarity betweenand any object int'. Informally speaking, the repro-

ducing kernel Hilbert spacé( associated with kernel functioA (z, z’) is the space of

17



functions that are linear combination of kernel functioralexated at objects itX’. Let
f()=>" 0;K(- ;) andg(-) = EZI B K (-, x}) be two functions from the RKHS as-
sociated with kernel functio&’(z, 2"). The inner product betweef\(-) andg(-) is defined

as

< f.g>= ZZO‘Z@ (i, 25)

i=1 j=1
The corresponding RKHS norm jf ||« = /< f, f >. Intuitively, to make]| ||, small,
we requireq;’s to be small in magnitude.

Consider a general risk minimization problem.

min L(f, {2i, yiyiz) + Q1 f 1)

where{z;, y;}1_, are the training datd, is some function depending a#is and the values
of f at x;’s, and(2 is a monotonically increasing function. The Representeotém states

that every minimizer of the above problem admits a repregemt of the form

E al Z

The Representer theorem can be proved by the orthogonadityreent. For details of the
proof and a more formal treatment of reproducing kernel éfillspace, readers can refer
to [38]. Compared to the kernel trick, the Representer t@ois especially attractive
when the dual formulation of the optimization problem ididiilt to derive. Applying the

18



Representer theorem to the primal SVM, we obtain

mir}{g}n ; &+ A Z a0 K (2, x5)

ST (Zaj xjaxz )Zl_gh Vi<i<n

& >0, Vi<i<n

2.4 The Concave-Convex Procedure

So far we have focused on convex loss functions. However, vwghtnlike to consider
nonconvex loss functions. In general, it is difficult to nmmze a nonconvex function ef-
ficiently. However, some efficient algorithms have been tged for some special class
of nonconvex functions. We focus on the difference of con{2xC.) functions and the
Concave-Convex procedure. D.C. functions are nonconvexnaay have multiple local
minima. D.C. functions are very common and appear in kerrethods with missing data
[41], kernel selection 2], ramp-SVM_[13], sparse PCAI[4&hd semi-supervised learning
[L3].

The Concave-Convex procedure was first introduced by Yaitié Rangarajan [59] to
solve minimization problems whose objective functions barexpressed as the sum of a
convex part and a concave part. While Yuille and Rangaragausidered only linear con-

straints, Smola et al._[41] generalized the CCCP to handieage-convex constraints. The
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CCCP is an iterative procedure. In each iteration, it regddtbe concave parts of the objec-
tive function and the constraints by their first-order Taydpproximations. The resulting
problem is convex and can be solved using efficient convexmimation algorithms.

Consider the following optimization problem:

min  fo(x) — go(x)

st. fi(z) —gi(z) <¢ Vi

wheref; andg; are real-valued convex and differentiable function&%rior i € {0, ..., m},
andc; € Rfori € {1,...,m}. The CCCP computes’*! from z(*) by solving the fol-

lowing convex optimization problem.

min, fo(z) — (go(x(t)) + Vgo(z)T (z — x(t)))

st. filz) — (gi(x(t)) + Vgi(a®)T (z — x(t))) <¢ Vi

It can be shown that the CCCP converges to a local mininium [Wil¢ase of a non-
global minimum, one may restart the CCCP with a differefit. Notice that the CCCP
can be seen as a special case of D.C. programming. Tao arid6pstfdes that the D.C.

minimization algorithm (DCA) often converges to a globalgimn.
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Chapter 3

Caternary Support Vector Machine

Many problems require making sequential decisions. Fadlpeoblems, the benefit of ac-
quiring further information must be weighed against thesol this chapter, we describe
thecatenary support vector machifeatSVM), a margin-based method to solve sequential
stopping problems. We provide theoretical guaranteesdt$\¢M on future testing exam-
ples. We evaluated the performance of catSVM on UCI benckiata and also applied
it to the task of face detection. The experimental results\stihat catSVM can achieve a

better cost tradeoff than single-stage SVM and chainedtlmgps

3.1 Introduction

In many problems, information are obtained sequentialtytae benefit of further informa-
tion acquisition must be weighed against the costs at exepy $n product testing, parts

are inspected throughout the manufacturing process. Hsmaonomputers must decide
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whether to continue manufacturing or whether to stop (iredhg piece is not salvage-
able). In medical diagnosis, doctors, patients, and imsuneist decide whether the current
information is sufficient to make a decision or whether todimet the next of a bank of
tests.

In object detection in images, a similar problem is facedardng an image for an
object of interest takes processing time. If the image casch@ned more quickly or at a
lower resolution (reducing the number of pixels to be exad)nthe detection can be sped
up. In doing so, the speed of detection must be weighed aghmaccuracy of detection.

Most classification methods assume full information abestihg examples and are
thus not suitable for sequential decision making scenaResently, we proposed chained
boosting to solve sequential stopping problém [39]. We m&sthat the relative costs of
stopping at each stage are known and can be made explicien@e stopping costs for
each training example, the goal is to minimize the cost ofdbeision rules applied to
future examples. The difficulty of the problem lies in thetftltat the decisions in later
stages depend on what happens in early stages. Motivatée Isyitcess of support vector
machines (SVMs) in many classification problems, we pregertatenary support vector

machine(catSVM), a novel margin-based method to solve sequentippsng problems.
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3.2 Related work

We are interested in direct estimation of a sequence of idecisles. For this reason we
are not considering density estimation (like a hidden Markedel) followed by a cost
analysis to derive the decision rules. This rules out apgres like influence diagrams [24]
as we would like to skip the density estimation step.

Our formulation (see the next section) appears similar scade classification |52, 57,
43] in that there are stages of classification. For appbeatiike face detection, negative
examples are far more frequent than positive examples. cRegenegative examples as
quickly as possible is crucial to the speed of the classifingirocess. Viola and Jones [52]
propose an iterative approach to train the cascade. In eaelion, a new stage is added to
the cascade and a new stage classifier is trained to achievg bow false negative rate and
an approximately 50% false positive rate using a modifiedBatest algorithm. Stages are
added to the cascade until the number of false positivesliscexl below a small number
on a validation set. Bi et al_[5] propose to use 1-norm SVMhasdtage classifiers in the
cascade. Like Viola and Jones, their approach trains tlge sfassifiers sequentially from
the first stage to the last stage. In every stage, an 1-norm B\Mined to minimize the
sum of the weighted errors and the regularization term.

There are two major differences between our problem fortrariaand cascade classifi-

cation. First, although classification speed is importaretare mainly concerned about the
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costs of gathering information (i.e., the feature costslsoAwhile cascade classification
requires the user to choose the desired false negative mdtéakse positive rate at every
stage, we assume that the feature costs and the misclassificasts are explicitly speci-

fied by the user and our algorithm automatically determiheshest tradeoff between the
feature cost and the two types of errors.

Second, we optimize the stage classifiers as a group to meithe overall perfor-
mance of the processing pipeline. The problem formulatitowas the information avail-
able to change at each stage. Thus, false-positive andrfafgttive rates at each stage are
not sufficient. It mattersvhich positive examples are incorrectly rejected at a stage, not
justhow many In particular, examples for whom further processing waostitl result in
the incorrect classification should be rejected, while ¢hfws whom further information
would clarify their classification should be saved.

Cascade classification and catSVM are both “staged” clessithut they are more com-
plementary than competitive. The former attempts to speathe computation of a single
classification task (fixed information) by exploiting theyasmetric distribution of exam-
ples while the latter attempts to speed up a decision taskxploiing the correlation
between data sources gathered at different times. One emildmagine using cascade
classifiers at each stage within the framework shown here.

Recently, Dundar and Bi[18] consider the problem of joimghtimizing cascaded SVM

classifiers. However, they ignore the difference of rejegtin example at different stages.
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(b)

Figure 3.1: An example of a processing pipeline

They formulate a non-convex and non-linear objective fiomcand propose a cyclic opti-

mization algorithm to optimize it.

3.3 Sequential Stopping Problem

We make no assumptions about the structure of the costs.eRath assume that each
training example carries a cost vector indicating the co$tstopping after each stage.
These costs may increase, decrease, or have any otheagribdlationship with the stage
index. The costs might be function of a “label” or might befeliént for each example.

Let S be the number of stages in the processing pipeline. Denetéetiture vector
and the costs of an example byandc, respectively. Let:; be the components af that
are available at thg-th stage. Let; be the total cost of rejecting the example at ki
stage and:s,; be the total cost of accepting it (allowing it to “pass” at leatecision).
We assume that is drawn from a known sef. In the case of binary classificatiod,
might be of cardinality 2: one sequence of costs for posiix@mples, and one sequence
for negative examples. In generélcan be of any size. The only requirement is that the
maximum magnitude of the membersbe bounded. Figule3.1(a) shows an example of
a processing pipeline.
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Denote the classifier at theth stage byf; and the entire processing pipeline lfy
A positive value forf; indicates that processing should continue, while a negatue
indicates processing should stop. Denote the 0-1 indidatmtion by!|-]. The loss for an

example is therefore

S

L(f(x),c) =) (Cj] [fi(2;) < 0] 1:[[ (i) = 0]) +eson [T felae) = 0] . (3.1)

Jj=1 k=1 k=1

The goal is to findS classifiers, one for each stage, which together minirBizg f (z), c)].
Although we do not know the true distribution 6f, c), we can use the empirical loss as
a surrogate. We lef(X;,C,), ..., (Xn,Cn)} denote the training set and,; denote the
features ofX; that are available at theth stage. Analogously, we I€t;; denote the cost
associated withX; at thej-th stage.

In [39], we propose a chained boosting algorithm to traingefine of ensemble classi-
fiers. We construct an upper bound of the loss fundfioh 3.ZEplacing every 0-1 indicator

function by an exponential function.

S j-1 s
L(f(z),c) < Z (Cje—fj(xj) H 6fk(xk)> + Cg41 H C (3.2)
j=1

k=1 k=1

The training procedure is greedy. One weak classifier is@dal@ chosen stage at a time
such that the addition would decrease the upper bound ob#seflinction by the largest

amount. The upper bould 8.2 has the advantage of being coHesyever, it may be too
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loose to approximate the actual loss functiod 3.1 well. Wenalestrate evidence to this

effect in our experimental results.

3.4 Catenary Support Vector Machine

We choose to use linear threshold functions as stage ctassiind derive an optimization

procedure based on an upper bound of the empirical loss.

3.4.1 Loss bound

We start by re-writing the loss function (B.1) in terms ofr@mental costs.

—1

jHImumzm>@ﬂmwnzm+@mm%%wD

J
k=1

S
ummpm+z<

j=1

(3.3)

where forj =1,...,5,

p

min (mj+1,cj) |fj < S,
m; =

min (¢j+1,¢;)  ifj=5;

\

(

mii1 — MMy |fj<S,
Qy =

Cjt1 — My |f]:S,

\
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In words,m; is the minimal cost at staggeor later. o is the incremental increase in the
minimal cost by continuing processing afgis the incremental cost of stopping process-
ing. Note that eithery; or 3; is positive but not both. We denote the incremental costs
associated wittX; at thej-th stage bym,;, «;;, andg;;. Figure[3.J(b) shows a processing
pipeline with the incremental costs.

It is hard to minimize[(313) directly. We define a upper bouadX( f(z), ¢) and mini-

mize the upper bound instead.

A

L(f(x), ) = mu + Z s (U@ = vi@) + 5 (0@ -V @) G4
where

Us(z;) = max (1, M; (z))
V¥ (x;) = max (0, M} (z))
Mj (z) = max (= fi(z1), ..., —fi—1(zj-1), = fi(z;))

Mf(x) =max (—fi(x1),...,—fi—1(x;-1), fi(z;))

The wildcard “*' represents eithewr or 3. The key idea of deriving Equatio_(B.4) is
to use the difference of twmax functions to upper bound the conjunction of indicator
functions. Figuré-3]2(a) shows an example when the coripmcbnsists of two indicator

functions. Note that we simply bound the conjunction by ativaiiate ramp function. A
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Figure 3.2: Multivariate ramp loss: (&) [fi(xz) > 0] - I[fo(x) > 0] < Us'(z) — V5 (x),
(b) Uy andV" as a functionV/;

different multivariate ramp function has been used to axipnate the disjunction in[31].
Figurel3.2(b) show#’; andV}* as a functionV/}. Itillustrates an alternative to express the
one-dimensional ramp function as the difference of two aifgctions. The way used in
Figure[2.1 is not applicable here because the corresporitigg functions are not convex
in the arguments of/.

We formulate the following optimization problem.

manL +)‘Q(||f1||7’(177“f5||7’(s) (3.5)

where() is some monotonically increasing function. The first termaswres the empiri-
cal loss and the second term is the regularization term, unedsvith respect to a set of

reproducing kernel Hilbert spac¢3(; }.
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3.4.2 Catenary Support Vector Optimization

We begin with linear classifierg;(z;) = w; - z; + b; and an/, regularization term
QU fillrys - 1 fsllms) = Zle Jw,||3. Note thatUs andV;* are all convex functions
in {(wy,b1), ..., (ws, bs)}. But the difference of two convex functions; (z;) — V;*(z;),
is non-convex. Thus, Problef(B.5) is not a convex optinorgbroblem.

We re-formulate Probleni{3.5) as the following constrainptimization problem.

min 2, 35 (s + A5€)) + A w3
@ > —Wg - Xij — bk — V;a(XZ) \V/'l, ]{3 S ]

I

&> —wy - Xy — by = VI(X) ik < (3.6)
S.t.
> wi- Xy +b = V(X)) Vi,j

B ..
& 21 Vi, j

Note that we have dropped the constant teyaj, , m; ,, from the objective. In prin-
ciple, we can leavé&’" in the objective. But moving’;" to the constraints appears to give
better empirical results. Also, it is possible to have ddfa tradeoff parameters for each
classifier stage.

To solve Probleni(316), we resort to the Concave-Convexguioe (CCCP) (see Chap-
ter[d). Letw = (wy,...,wg) andb = (by,...,bs). In each iteration, we need to replace

V. in the constraints by its first-order Taylor expansion at¢bheent estimates ok and

30



b. Notice thatV;" are non-smooth functions. When we calculate its Taylor exjpm, we
use its subgradient. For the pointwise maximum functign) = max;<;<., h;(z), its sub-
differential atz, Oh(x), is the convex hull of the subdifferentials of the “activeihttions
atz, i.e.,0h(r) = Heonvex{Ohi(x)|h;(x) = h(z)}. Thus, by simple calculus, we obtain

that, forj =1,...,.5,

/

{0} if M*(x) <0,
{(—7’11’1, ceey TTj125-1,0T;24, 0)
OV (z; w,b) .
—w = ‘Tk >0, 7 < 1} it Mx(z) =0, (37
{(—7'1.1}1, ey _Tj—lxj—la O'Tjﬂ?j, O)
‘Tk >0, 5 m = 1} it M*(z) > 0;
where
if £ < 7 ande(x) 7’é —wy - T — by,
Tk — 0
orif k = jandM; (z) # o(wy. - vk + b)
-1 if*=q,
o=
+1 if*=4.

and0 denotes padding zeroes of appropriate length.

Similarly, we can obtaiw by replacingz;’s by 1's in Equation [[3J7). In the
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experiments, we pick the subgradient where

(

¢ If kisthe largestindex s.t.

eitherk < j andMJ’.k(:c) = —wy - T, — by,
Tk —

ork = j andM:(z) = o (wy, - 24 + by),

0 otherwise,

wherec = 5 if M (z) = Oorc = 1if M;(z) > 0, andp is the number of active
functions.

Since only one ofy;; or 3;; is nonzero, we need only consider the constraints assdciate
with one of¢?: or £. The number of constraints in Program {(3.6) is quadratibé@rumber
of stages. We can re-write it so that the number of conssalepends linearly on the

number of stages.

. N S a S
min S, 35 (065 + Bl + A w3

o> ni — VA(XG) Vi, j
& = g1 — Vi (X)) Vi, j
o & >w; - Xy +b, —VIX;) Vi,j (3.8)
a8 >1 Vi, j
n > —wj - Xij — b, Vi, j
Nij = Nij—1 Vi, j
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3.4.3 Extensions

One important advantage of SVM is that it can handle noralilyeseparable data with
an appropriate kernel function. Likewise, we can also Ke&reecatenary support vector
machine by the Representer theorém [38]. Denote the kerathnfor the j-th stage by
K; and itsi-th column byK;(-, 7). The only changes to Prograin{B.8) are (i) replacing the
regularization term in the objective bny w’ Kjw;, and (i) replacing the feature vector
X;; by K;(-,7). We are free to choose different kernels for different stageurthermore,
instead of using &, regularization term, we may ugg regularization term to promote
sparsity. In doing so, we need to solve a linear program austé a quadratic program in

every iteration of the CCCP.

3.4.4 An alternative loss bound

In the above derivation, we view the loss of an example asuhe & losses incurred in
each stage and then derive a upper bound using ramp funcfidrs is not the only way
to do it. Alternatively, we can view the loss of an examplelesitax of losses incurred in

each stage and obtain the following loss bound:

L(f(2),¢) = do +max ({d; (U7 () = V@)Y, ds1(Ud (@) = Vi () (3:9)
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whered, = min (cy, ..., cs+1) andd; = ¢; — do. Note thatL is no greater thar.. It is
not difficult to see that we can formulate a constrained opzétion problem withZ, and
employ the CCCP to solve it. Unfortunately, our preliminagperimental results showed
that the CCCP is not effective in optimizirlg We leave the problem of optimizink as

an open problem.

3.5 Performance bounds

We provide theoretical bounds on how well the catenary stp@etor machine will gen-

eralize to future test examples. We need the following dadins.

Definition 3.5.1. Letx be a probability distribution on a sét and suppose that, ..., X,
are independent samples selected according.thet F' be a class of functions mapping

from X to R. Define the random variable

n

sup 2 Z o f(Xi)

'le"'vXn] ’

whereoy, . .., 0, are independent uniforgit1}-valued random variables. THeademacher

complexityof F'is R,(F) = ER,(F). Similarly, define the random variable

. 2 —
GnF =E [sup|— i Xz X,...,Xn s
=8l |23 0] | 3 ]
whereg, ..., g, are independent Gaussian random variables with zero meahusauit
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variance. The&saussian complexityf F' is G,,(F') = EG,(F).

The Rademacher and Gaussian complexity measure the agpabiF in fitting ran-
dom values. The higher the complexity, the more prone tofittreg F' is. We can now
state the theorem, bounding the true risk by the empirisklaind the Gaussian complexity

of the classes of the stage classifiers:

Theorem 3.5.1.Let L and L be as in Equation§{3.1) anf{B.4). Lgt= max.cc(o; + 5))
andA = maxy(,) . L(f(z),c). LetFy, ..., Fs be the sequence of the classes of the stage
classifiers. Let{ X;, C;)Y , be independently selected according to some fixed probabili
measureP. Then, for any integeV and any0 < § < 1, with probability at leastl — §

over samples of siz&, every sequencf, ..., fsin [} x ... x Fg satisfies

S

S 2
E[L] <Ex[L]+r Y (237@) Gn(Fj) + A 8?;3

=j

for some constant.

Proof. Theorem 8 of([B] implies

81n(2/9)

EIL(/(X).C) =

IA
=,
:>
g
>
8
_I_
[\
=
=
~
O
=
+
+
-

and therefore we need only bound tRg (L o F) term to demonstrate our theorem. For
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our case, we have

The inequality comes from the fact that+ b| < |a| + |b| and the convex property of the
sup function.

Lemma 4 of [3] states that there exists &uch thatRy < xGy. Theorem 14 of the
same paper allows us to conclude that(U) — V') < 2 S _ Gn(F,). Taken together,

this proves our result. O

Note that the second term in the bound does not depend orgilareosts:;’s directly,
and it does not depend on, at all. Quite often, the incremental cosigs and3;'s are
smaller than the,’s. Additionally, for j < j’, the complexity oft; has a larger weight than
that of /. This may suggest that it is advantageous to use simple skasgfiers in early
stages and use complex stage classifiers in later stagesanarther bound the true risk
in terms of kernel functions of the stage classifiers. We rteedollowing lemma which

follows from McDiarmid’s inequality([34].
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Lemma 3.5.1.Let F' be a class of functions mapping|tel, 1|. For any integem,

2

P{|Gn(F) — Gu(F)| > e} < 2exp (—n47re ) .

Theoren3.511 and Lemnia—3.b.1, combined with Lemma 22 inl®@aend Mendel-

son [3], imply the following theorem.

Theorem 3.5.2.Let L and L as in Equations(311) and(3.4). Le} = max.cc(o; + 5;)

and A = maxf(x),cﬁ(f(x),c). Let Fi,..., Fs be the sequence of the classes of stage
classifiers. LetY; be the feature space in thyeth stage. Forj = 1,..., S, fix B;, and

let K; : &; x &; — R be a kernel withsup,,c, |K;(z, )| < co. LetX be the full
feature space, i.eY = Ule X,. Suppose thatX;, C;}Y | are selected at random and
independently according to some probability distributidon X’ xC. Then with probability

at leastl — 9, every function sequengg, . . ., fs of the form

N
fi(x) = iKj(wy, )
=1
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. 2 .
with Eh,ig ahaing(xihja xig,j) S B] satisfies

S S N
E[L] < EN@H% > <Z W) B; ZKj(xijyxij)

2(S+1)

1 8In 22
+ A + — YA . _ &
(ve ) 5
for some constant.

3.6 Experimental Results

We tested catSVM on UCI benchmark data and the MIT face databb&le compared the
performance of catSVM to chained boosur@d single-stage SVM. For chained boost-
ing, we used decision stumps as weak classifiers and set thieemwof rounds before the
algorithm stops to 2000. For single-stage SVM and catSVMused the RBF kernel and
set the kernel width to the median of the pairwise distandadéntraining set. We set the
regularization parameterto be 1 and did not adjust it. Furthermore, for catSVM, we ini-
tialized the SVM in every stage to be zero (i.e., joe 1,...,5, w; = 5andbj =0). We
used Mosek (www.mosek.com) to solve the quadratic proggensrated by catSVM.

The single-stage SVM and our catSVM algorithms run on theeslaypothesis space of
RBF kernels. We ran chained boosting on a different featpaee. It was not possible to

use the same feature space. The boosting algorithm cotssi&rlioear surface in the space

1The original chained boosting algorithm uses regular coats modified it to use incremental costs as
well, which improved its performance.
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of features that are decision stumps. That does not comelsfmany easily constructed
kernel. The feature space dimensions of the RBF kernel doeildefined as the set of all
kernel functions with one point as a training point. Howevtkose dimensions have real
values and the boosting algorithm is designed for threstbfdatures (or weak learners).
However, our experience with these datasets suggestsdbatihg decision stumps and
RBF kernels for SVMs have roughly the same performance aylesistage problems.

We did not compare to constructing three independent SVMgsdiars and then con-
necting them in a chain; this would have required selectirgfalse-positive and false-
negative costs for each classifier. One of the main purpdsasr@pproach is to automat-
ically adjust the classifier to achieve the desired costlt@suithout having to manually
search over such trade-off parameters.

We construct the vectors of stage costs as follows. We assigmstant feature cost to
each stage that is the same for all examples (as specifieé jprolem set up below). It
represents the cost of collecting the features, regardfgbe final outcome. If the example
is positive, we add an extra costdpfor i < s, representing an extra penalty if a positive
example is rejected at any stage. If the example is negatwedd an extra cost Q. 1,
that is we penalize the classifier if it allows the exampledasgthrough every stage (and

therefore wrongly accepts it as a positive example).

39



[ M9, fpi18 | fn:18,fp: 18 || fn:36,fp: 18 || fn: 72, fp: 18 |

o .% + 76| 0| 0|0|70]|0 0 61 3|0 0| 38 | 16 0 0| 60
g3 5 - 94| 0| 0|0} 94]|0 0 0]l 82| 8 4 0| 74 4| 16 0
8 @ + 430|013 ]O0 0 51 24| 2 0] 18 || 18 2 1] 23
° £ _lss|lo]o|ol 521 2 11| 45]|5 4 2 || 42 7 4 3
s .% + 70|00 6| 2 6 | 62 211 1| 72 0 0 2| 74
5) s - 941 0| 0|0} 68| 3| 19 41| 54| 8| 20| 12 || 25| 20| 34 | 15
S o o+ 4 10|00 910 51| 30 711 3] 33 7 0 4 | 33
°c £ 56 | 0| 0| 0| 491 5 6 || 35| 5 9 7 || 20 9| 19 8

Table 3.1: For four different cost settings for the heart dataset, tis¢ridutions of the
stages at which the examples were rejected (or accepteldedintal column) for boosting
and catSVM, for training and testing, and for positive andat&e examples.

3.6.1 UCI Data

We report the results on the heart disease dataset from thend¢hine learning repository.
We assigned the 13 attributes to three stages in descendiegaxcording to their correla-
tion with the predicted output: four attributes to each & finst two stages and five to the
last stage. The single-stage SVM was trained and tested thedl3 attributes. We set the
feature cost of each stage to the number of attributes assiggnthat stage and all the pre-
ceding stages. Early rejections are treated as “normal’t@dsean example that passes all
stages is treated as “disease.” Figure 3.3(a) shows theralgatives and false positives as
the misclassification penalties vary. The three methods ggry similar tradeoff between
the two types of errors. Figufe_B.3(b) shows the false negaind the average feature cost
as the misclassification penalties vary. The average fea&st is the average number of
features that must be examined before the classifier makesisiah. The feature cost of
single-stage SVM is fixed at 13. We observe that catSVM doestarjob in trading false

negative rate for feature cost than chained boosting.
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Figure 3.3: UCI heart tradeoffs: (a) False negative vs. False posiflweFalse negative
vs. Average feature cost

| [[ fn:150, fp: 250 | fn: 250, fp: 250 I fn: 500, fp: 250 I fn: 1000, fp: 250 |
= % + 224 00| O 224 0 0 0 220 0 0 4 33 0 0| 191
B s - 376 | 0| 0| O 376 0 0 0 375 1 0 0 342 34 0 0
S ‘g‘ + 341 | 0| 0| 1 341 0 0 1 342 4 0 36 143 32 1| 166
< 2 6541 1|13]|0 653 1 3 1 646 4 4 4 533 88 | 19 18
s % + 2241 0|00 35 8 0| 181 0 0 1| 223 0 0 0| 224
5 R 376 | 0| 0| O 278 86 | 10 2 104 | 233 | 36 3 96 | 240 | 37 3
F] ‘g‘ + 342 | 0| 0| O 42 16 6 | 278 1 10 7 | 324 1 10 7| 324
°c2 658 | 0| 0| O 457 | 143 | 28 30 170 | 392 | 63 33 152 | 410 | 62 34

Table 3.2: For four different cost settings for the face detection gdetathe distributions
of the stages at which the examples were rejected (or actémtehe final column) for
boosting and catSVM, for training and testing, and for pesiand negative examples.

Table[31 shows at which stage the examples are rejectedceptadl. The feature
costs are 4, 8, 13, and 13. ‘fn: 9, fp: 18 means the penaltefafse negative and false
positive are 9 and 18, respectively; therefore the costoreatould be[13, 17,22, 13] and
4,8, 13, 31] for positive and negative examples, respectively. Noté fitvaevery penalty
setting, the first three columns are the number of exampjestesl in the three stages and
the last column is the number of examples accepted. As thaltyeof false negative in-

creases, both chained boosting and catSVM try to accept amorenore positive examples.
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Figure 3.4: Face detection tradeoffs: (a) False negative vs. Falséymgb) False nega-
tive vs. Average feature cost

3.6.2 Face Detection

We also validated the catenary SVM by applying it to face cl&ta. We tested on the
MIT face databasé [35] which contains 19-by-19 gray-saalgges of faces and non-faces.
For face detection, the non-face is usually the majorityer€fore, our goal is to produce
a classifier that can identify non-face images by examing¢pa a resolution patch as
possible. We built a multi-stage detection system whereeamly rejection is labeled as a
non-face. The first stage looks at down-sampled versiongenimhages at a resolution of
3-by-3. The next stages do the same, at resolutions of 6-4nyd612-by-12. We did not
examine the full 19-by-19 resolution as it did not providgrsiicant improvement over the
12-by-12 resolution.

We assign a feature cost to each stage proportional to thé riatmber of pixels at
that stage and all the preceding stages. There are thregdreeneters in the problem
formulation: the per pixel cost, the penalty for an incotréace classification, and the
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penalty for an incorrect non-face classification. Changlregse quantities will control the
tradeoff between false negatives and false positives, ahslden classification error and
feature cost. In the experiments, we fix the per pixel costvamg the other two quantities.

We used 600 images as the training set and 1000 images asting tet. The single-
stage SVM was trained and tested on image patches at theshigdselution, 12-by-12.
Figure[3.4(a) shows the false negatives and false posaése misclassification penalties
vary. Note that catSVM can achieve a better tradeoff thaglsistage SVM and chained
boosting. The processing pipeline successfully improthesability of SVM to tradeoff
between the two types of errors. Figlrel3.4(b) shows the faégative and the average
feature cost as the misclassification penalties vary. Tawife cost of single-stage SVM
is fixed at 144. Chained boosting and catSVM give higher @yesfaature costs for lower
false negative rates. Note that catSVM requires a loweragesfeature cost than chained
boosting for most false negative rates. The advantage 8Mdtbecomes more obvious
when the false negative rate is small.

Table[3.2 shows at which stage the examples are rejectedepted. The feature costs
are 9, 45, 189, and 189. ‘fn: 150, fp: 250’ means the pendibiefalse negative and false
positive are 150 and 250, respectively. As the penalty cfefadegative increases, both
chained boosting and catSVM try to accept more and moreipeskamples. It is clear
that catSVM is more effective in pushing the positive exagsgbrward.

It is interesting to note that the performance of catSVM igesior to that of a single-
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stage SVM (which is a regular SVM trained on the full set oftéeas, varying the false-
positive and false-negative costs) in terms of testingreMde believe this is because the
hypothesis class of the earlier stages are simpler. Thexeftose decision rules have less
variance for a fixed number of samples. Our algorithm thenahaatural bias that helps
reduce the variance with few numbers of samples. Our garati@n bounds also point to

this advantage.

3.7 Conclusion

We believe that for some decision-making problems, it isangmnt to weigh the benefit
against the cost of acquiring more information. We preskatdatenary SVM to solve
one-sided early detection for binary classification. Wenrfolate the problem as a con-
strained concave-convex optimization problem and solusing CCCP. In addition, we
provide data-dependent theoretical guarantee for catSMiM.experimental results show
that catSVM can tradeoff misclassification error and featoost more effectively than

single-stage SVM and chained boosting.
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Chapter 4

Group Statistics Support Vector

Machine

Recently, Kiick and de Freites [29] formulated a new clasifin problem based on group
statistics. In this formulation, we are given groups of amstes along with the fraction of
positive instances per group. The task is to learn a claswfidassify individual instances.
In this chapter, we give a generalization error bound forugso statistics classification
and derive a novel SVM-based algorithm that seeks to mirarttie bound. Furthermore,
we show how to extend our algorithm to general multiclassirget The experimental

results show that our method is competitive with Kiick's dadrFreitas’s Bayesian sampling

approach. Our method has the advantage of having fewer pteesiio tune.
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4.1 Introduction

In group statistics classification, we are given a numberofigs of examples as the train-
ing set. We know the attributes of every training examplermittheir labels. The addi-
tional information we have is the class distribution of widual examples in each group.
The goal is to learn a classifier for any individual exampteirthe group statistics.

Group statistics classification can be very useful in manigetesearch. For example,
a company wants to increase its profit of sales by sendingisobdnt coupons. Ideally,
the company wants to send coupons exclusively to people whddnonly make a pur-
chase if they receive a coupon. The company does not knovdémity of those potential
customers. However, the company may estimate the pereepfggptential customers in
different regions reliably by comparing the sales numbehwaind without a promotional
campaign. Together with some existing information abodivilual people allows the
company to study the relationship between individual pasehdecision and individual
properties.

Other possible applications of group statistics clasdificainclude email and image
classification tasks. In email classification, it may bededifor each user to label every
single email in his/her inbox but a user may be able tell howmyremnails of various kinds
in one’s inbox. In image classification, we may be interegtaédentifying interesting seg-

ments in images. It is expensive to label each image segmerit imay be possible to
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estimate the percentage of interesting segments in eadeifmam its caption and anno-
tation keywords. In both cases, we may take advantage of sggregate information to
learn a classifier for individual examples.

Because of the ambiguity in the information, group statsstilassification is a chal-
lenging task. We do not know which instances in a group ardipesind pure (positive or
negative) groups are rare. The lack of pure negative graupties that multiple-instance
learning algorithms (see the next section) are not suitiblehis task. We provide a the-
oretical analysis for group statistics classification. rrthat, we derive a SVM-based

algorithm that seeks to minimize a generalization erromabu

4.2 Related work

Group statistics classification is related to multipletamee (MI) learning which was first
introduced by Dietterich et al._[16] for drug activity pretion. In Ml learning, the training
set is presented as bags of instances. Each bag is assoeitited(positive or negative)
label. A positive bag label means that there is at least os#ip®instance in the bag. A
negative bag label means that all the instances in the bageg&ive. MI learning has
attracted a lot of attention in the past ten years. A numbédldearning algorithms have
been proposed including Diverse Density (DD)![32], EM-CID]6Citation-kNN [54],

MI kernels [22], multiple-instance SVM§][1], Bayesian mbfis], MILBoost [53], and

convex-hull MIL Fisher’s discriminant]21].
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Several researchers have considered generalizations sfdhdard Ml learning formu-
lation. Weidmann et all [55] and Tao et &l. [47] generalizegihocess that combines labels
of instances to form a bag label. They assume that the lateebaly is decided by some
more general threshold function rather than a disjuncti@mositive bag label indicates
that the number of positive instances in the bag lies withgergain range.

Group statistics classification was formulated recentl\Kliigk and de Freitas [29]. It
can be seen as a more informative variant of multiple-irgdearning. Also, explicitly
specifying the fraction of positive instances in each grisugimilar in spirit to using more
general threshold functions to restrict the number of pasinstances in a positive bag
[55,[47]. However, the main difference is that in the grougtistics, we are not limited to
a single threshold for labeling every bag. This differenseg us the flexibility to handle
more general applications.

Kick and de Freitag [29] propose a Bayesian sampling approased on Markov chain
Monte Carlo (MCMC). However, MCMC algorithms are tricky tmplement, especially
with respect to convergence criteria. It is hard to assesgargence of the Markov chains.
It may take many state transitions before a Markov chain eqes to its stationary distri-
bution. And it is hard to determine how many samples are seffido capture the target
distribution. Thus there seems to be a genuine need to caraitgrnatives to MCMC al-
gorithms. Most recently, Qua et al. |36] proposed to use aitmmal exponential model

based on mean operator estimation. Their method seemsitadilsdor settings when the
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number of groups is larger than the number of classes.

4.3 Group statistics classification

In this section, we give the problem definition of group st&ts classification and provide

a theoretical analysis of group statistics classificatiothe binary setting.

4.3.1 Problem Definition

Let m be the number of groups and be the number of instances in tih group. Let
p; (p;) be the number of positive (negative) instances initfie group. Denote theé-th
group of instances by; and thej-th instance in the-th group by.X;;. Given a training

set{(X;,p;)}!",, the task is to learn to classify individual instances frdns information.

4.3.2 Theoretical Analysis

We prove a generalization bound for group statistics diassion. We make two simplify-
ing assumptions in our analysis. First, we assume that eetarice in the training set can
be regarded as an i.i.d. sample from the test distributitis implies the test distribution is
the same as the training distribution at the instance I&velcan interpret this assumption
as follows: we generate the training set by drawing i.i.dngles from the test distribution
and then dividing the samples into groups arbitrarily. $®ave assume that there is no
noise in the fraction of positive instances associated wébh group in the training set.

Wilog, we also assume that the numbers of instances in evenpgre the samege., n;
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fori =1,..., m. We now state our theorem.

Theorem 4.3.1.Let I’ be a class of +-1}-valued functions defined on a s&tand P be
a probability distribution ont’” x {£+1}. Suppose thatz,y) is chosen according t@.
Suppose tha§(X;, p;)} ¥, are chosen such thd{ X;;, Y;;)} are independent samples from
P andyp.s are correct. Then, there is an absolute constastich that for any integers:

andn, with probability at leastt — § over samples of size x n, everyf in I’ satisfies

Py # f(x)) < }:

i=1

}:J (z;) > 0] —

j=1

2 - . _ VCdim(F)
+ o 2 ) ey T

where VCdim(F) denotes the Vapnik-Chervonenkis dimemsiérandp; = n — p;.

Proof. Since(X,;,Y;;) are i.i.d. samples fron®, by Theorem 1 in Bartlett and Mendel-

son [3], we have with probability at least- ¢,

n

1 m
Ply# f(z) < —> > 1Yy # f(Xy

i=1 j=1

VCdim(F)

Notice that

n n

D Iy # F(Xi)] < D I1f (i) > 0] = pi

j=1 j=1

+ 2min(p;, p;) -

Taken together, this proves our result. O
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TheorenT 4311 says that the test error rate is no more thaavéirage of the absolute
errors in the predicted fraction of positive instances iohegroup in the training set, plus
twice the average of the fractions of the minority class inhegroup, and a complexity
term. The generalization bound is very intuitive. Consitiego extreme cases. If the
fractions of positive instances are either 0 or 1, the sedermd in the bound disappears
and we get back the generalization bound for standard bulasgification. If the fractions
of positive instances are all 0.5, the second term in the tddmecomes 1. This means even
if we can achieve zero empirical loss, the classifier we leam still perform arbitrarily

badly on future test examples.

4.4 Our Method

The above theoretical analysis suggests that a small dbsptadiction error implies a
small error rate for future test examples. As a result, weppse to find a classifief
such that for any group the number of instances it classifies as positive is clogg ito
the /; sense. In particular, we are interested in the class of liokeasifiersj.e., f(x) =
w - ¢(x) + b whereg(x) is the feature vector of instanee The total empirical loss is
defined as

LAY = 30D 117 (X) = 0~ )

i=1 |j=1

where! [] is the 0-1 indicator function.

However, it is difficult to minimize the empirical loss directly. We get around this
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Figure 4.1: Bounding the indicator functions by ramp functions

computational difficulty by minimizing a upper bound bf Consider the loss incurred by

the:-th group.

ZZ:I[f(Xm’) > 0] — p;| = max 2f[f(Xij) > 0] — pi, pi — ZZ:I[f(Xz'j) > 0])
= max il[f(ng) > 0] — pi, if[f(X”) < 0] _Pz‘>
< max | 3 (HF(£(X5)) — Hi (X)) i

=1

ZZ (Hy (f(Xy) — Hy (f(Xi5))) —m)

j=1

whereH (v) = max (0, s +v) andH; (v) = max (0, s — v).
In the last step, we upper bound every indicator function bgnap function which can
be expressed as the difference of two hinge functions (sped¢ff.1). We upper bound the

loss of each group to obtain a upper bound of the total engpitiss, denoted by.. We
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formulate the following optimization program.

min;  AL(f, {(Xi,p:)}0) + LI FIIZ, (4.1)

We introduce a regularization terd| f||3, in the objective function wherg - || is the re-
producing kernel Hilbert space norm with keri€(z;, x2) = ¢(x1) - ¢(x2). A is a tradeoff
parameter between the empirical loss and the regularizégion. Note that alternatively,
we can use afy regularizer to promote sparsity of the solution. We re-&/Rrogram([{4]1)
as a constrained optimization program.
Jmin - ASTE & gl I
S.t. & > Z;Ll (mj - HJ(f(Xz))) —Di
& > 20 (i — Ho (f(X4))) — 42)
ni; > 1+ f(Xij;)
7; > 1 — f(Xij)

Nij Tij = 0

Note that the first two constraints in Program{4.2) are nomer. H, and H, are con-
vex because the maximum of convex functions is convex. Hewdwe difference of two
convex functions is nonconvex. Therefore, Programl (4.2)asa convex optimization

problem. We employ the Concave-Convex procedure (CCCPbdlie gor (w, b) itera-
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tively. In every iteration, we replacH; andH; by their first-order Taylor approximations
at the currentw, b). The resulting program is a quadratic program and can besdolv
by any efficient quadratic program solver. Notice tii&t and H, are non-smooth func-
tions. We need to use their subgradients to compute thelirdiicer Taylor approxima-
tions. For the pointwise maximum functidr{z) = max;<;<,, hi(z), its subdifferential
at xz, Oh(x), is the convex hull of the subdifferentials of the “activeinttions at, i.e,
Oh(x) = Heonvex{Ohi(z)|hi(x) = h(z)}. By simple calculus, we obtain the subgradients

{6} if £(2X,;) < 0,
OHy (f(Xi)) =  {p- (6(Xi), D0 < p< 1} if £(Xyy) =0,
{(o(Xi), )} it f(Xi5) > 0;
{0} if £(X,;) >0,
OHy (f(Xi)) =4 {p- (8(X;;), D0 < p< 1} if f(Xi;) =0,

{(¢(Xz])> 1)} if f(XZ]) <0.

We pickp to be 0.5 in our experiments.
For a linear kernel, we can solve Progrdm14.2)(for b) directly. However, we cannot
do so for more powerful kernels because the correspondatgiie vector space can be in-

finite dimensional. Fortunately, by the Representer thedB#], we know that the optimal
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solution of Program[{4]2) has the form

f(x) = Z Zzain(x,Xij) ) (4.3)

i=1 j=1

We can substitute Equatidn (#.3) into Programl(4.2) andesioiif «v, b) instead. Denote the
kernel matrix byK. The only changes to Program{¥.2) are (i) changing the egaition
term in the objective tC%aTKa and (i) replacing the feature vectof;; by K (-, X;;). In
this way, we reduce the search spacg dfom an infinite-dimensional space of functions

to space of finite dimensiop_" | n; + 1.

4.5 Extension to multiclass setting

In many applications, we are interested in classifyinguialials into more than two classes.
For example, we might want to know which presidential caatidpeople vote for or
through which mode of advertisement people get to know a ceroial product. We show
how our algorithm can be extended naturally to handle maaa tivo classes.

Let m be the number of groups and be the number of instances in tixh group.
Denote thei-th group of instances by; and thej-th instance in the-th group by.X;.
Further, letp, be the class distribution of the instances in ti& group andp,, be the
number of instances in thegroup that belong to clasg. We are given a training set
{(Xi,pi)},. The task is to learn a functiofithat maps instances< X’ to discrete class

labelsy € Y from the given information.
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Figure 4.2: Two-dimensional ramp functions

We seek to compute a classifigisuch that for any group the predicted class distri-
bution is close tg;. More specifically, we consider classifiers that take thenfor

= - D(z,y).
f(z) = argmaxw - &(x, y)

We assume that(z, y) = w - ®(z, y) measures the correctness of the association between
instancer and class labej and the feature mapping functidnmaps(z, y) jointly into a
suitable feature space endowed with dot product. This ftatimn of multiclass SVMs is

very common (see e.gl, |14, 8]). Thus, the total empirica$lis defined as

m n;

L(fAXpty) =) ZI[Vy’%y,f(Xij,y) > [(Xij, )] = piy| -

i=1 ye) | j=1

The/; distance between two probability vectors is also known aw#riation distance. In
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other words, we use the variation distance weighted by tinebau of instances in a group

to quantify the loss. Consider a term in the (weighted) wemedistance for the-th group.

‘Zl][vyljf(XU, )>f( ij> Y )]—piy

o (iI[Vy’,f(XW D) > F(Xi1') - P
Zlvy f( X y) > [(Xij,y )])
— max (ZI[Vy’,f(Xm y) > [(Xi, ¥)] = Py,
Zfay F(X0) < F(Xi >]—piy>
< max <;§ (Fl(g(Xij,y)) - HJ(Q(%;@/))) — Diy
S (H (9(X04) — B (9(X5,1) - p)

J=1

WherEﬁiy = N;—DPiy, ﬁ(’U) = max(l, ’U), andg(XZ-j, y) = IaXy/=£y (f(XZW y/> — f(Xij7 y))
Figure[4.2 shows these upper bounds in the two-dimensiasal. c

Using the above upper bound, we can obtain a upper bound tdthleempirical loss
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and denote it by.. We formulate the following optimization program to optiraiL.

min )\ Z:il Zyey Siy + %Hf”%‘[
st &y = 3000 (Mg — Ho (9(Xi5,9))) — piy
Siy > Zghzl (Tijy - HJ(Q(XU,?/))) - piy
(4.4)
Nijy = (X, v') — F(Xij,v)
7-ijy Z 1 + f(Xij7y/) - f(XZ]7y)

Nijy = 1, 759 = 0

Program[{414) is nonconvex because the first two (group)leeastraints are nonconvex.

We employ CCCP again to solve far iteratively. In every iteration, we compute the

subgradient o (9(X;;, y)) w.r.t. w as follows.

p

{6} if g(Xi;,y) <0,

OHy (9(Xij,y)) = {Zy’EA Py 0 (X )| Xyeary < 1} if g(Xij,y) >0,

{Zy’E.A py’(S(I)(XZ]7y/)‘ Zy’E.A Py = 1} if g<XZj7y) > 07

\

where A = {y/|g(Xi;.y) = f(Xi;.y) — f(Xi5,9) 1 0 < py < 1, and6®(Xy;,¢) =
D(Xyj,y') — (X35, y)-

In our experiments, we picl, to be0.5/| A if g(X;;,y) = 0andl/| Al if g(X;;,y) >

To apply non-linear kernels, we resort to the Representeoiidm which says that the
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Figure 4.3: Circle and ring: (a) The six groups in training set, (b) Thatowr lines of the
learned classifier function and the test data

optimal solution of Prograni_{4.4) takes the form below.

m N

fly) =Y 3> ayyK((@,y), (Xi5,9). (4.5)

i=1 j=1y'€y

We can substitute Equati@n .5 into Progrdml(4.4) and salve fIn this way, we reduce

the search space gffrom infinite dimensions t¢Y| " | n; dimensions.

4.6 Experimental results

4.6.1 2D toy datasets

We tested our method on two 2D toy datasets. The main adwaofagsing 2D datasets
is that we can visualize the decision boundary. Neithersddtes linearly separable. We
chose to use a Gaussian kernel and set the kernel width ptatméhe median pairwise

distance in the training set. We set the tradeoff parametevden the empirical loss and
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Figure 4.4: Two Gaussian clouds: (a) The six groups in training set, @tGur lines of
the learned classifier function and the test data

the regularization term to be 1. We started the CCCP with &1e zlassifier (i.e.w = 0
andb = 0).

The first toy dataset is a (negative) circle surrounded byasif{pe) ring. The two
classes are uniformly distributed radially and sphencallhe training set consists of six
groups with ten instances each. Three groups contain siiygmstances and four neg-
ative instances. The other three groups contain four pesitistances and six negative
instances. Figure—4.3(a) shows the training set with it&ann each group denoted by
their group IDs. The positive instances are red and boldemiié negative instances are
blue and italic. Figur€4l3(b) shows the contour lines ofdlassifier function learned by
our method and the test data. The second dataset is overpPpiussian clouds, generated
from two isotropic Gaussian distributions. The training @@nsists of six groups with ten
instances each. The fraction of positive instances is Otffree groups and 0.3 in the other

three. Figuré_4l4(a) shows the training set and Figufe %sHbws the learned classifier.
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We observe that our method finds a decision boundary thabsedtb the ground truth.
For the circle and ring dataset, the training and test eatasron the first dataset are 0.067
and 0.012. The training and test error rates on the Gauskadsdataset are 0.183 and
0.245, respectively. Note that training error is a meanihgieasure as the training data

were not individually labeled.

4.6.2 USPS and 20newsgroups datasets

Next we tested our method on two benchmark datasets foriﬁxlmi@nl;l namely the USPS
handwritten digits and 20newsgroups dataset. We repauttsesn ‘3’ vs ‘8" and ‘1’ vs

‘7’ from the USPS data and comp vs sci and rec vs talk from thee@groups data.
These pairs are relatively difficult to differentiate. T@ate the training set, we randomly
partitioned the examples into groups of the same size. Askstonsisted of individual
examples. We use atest set of 500 and 1000 examples for the tdeg® and 20newsgroups
data, respectively. In every experiment, we generatechigependent training and test sets
and reported the average results.

We compare the performance of our method to that of Kiick anBrditas’s Bayesian
sampling approach [29]. We obtained the code for the Bagesaanpling approach from
Carbonetto’s websiﬁ.We chose to use a Gaussian kernel for both methods and set the
kernel width parameter to the median pairwise distancearrdining set. For our method,

we coarsely tuned the tradeoff parameter on a validatioarsgstarted the CCCP with the

http://www.cs.toronto.edw/roweis/data.html
2http://lwww.cs.ubc.capcarbo/objrecls/index.html
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zero classifier. For the Bayesian sampling approach, wehsgparameters according to
the suggestions of Carbonetto et Al.I[10]. Wewset 1 and seb to correspond to a feature
selection prior of approximately 10 active kernel cent¥ve. bestowed near uninformative
priors on the hyper-parameteys:= v = 0.01 andu, = v, = 0.01. We set the stabilization
term on the covariance prier= 0.01. We also coarsely tuned the confidence parameter
x on a validation set. We generated 10000 samples from thenmstistribution of the
probit classifier after a burn-in period of 10000 samples.

In our first experiment, we examined how the number of instann a group affects
the performance of the two methods when the total numberstdéintes is fixed. We used a
total of 120 instances for the USPS data and 240 instancésd@0newsgroups data. We
set the fraction of positive instances to 70% in one half efgloups and 30% in the other
half. Figurd4b anf416 depict the training and test errorglifferent number of instances
per group. The two methods have very close performance. Tdre mstances per group,
the more ambiguous the information is. However, we obsdraedoarse group statistics
may provide sufficient information to learn a good classifier

In our second experiment, we examined how the fraction oftipesinstances in a
group affects the performances. Half of the groups havetipesis the majority class and
the other half have negative as the majority class. We dserdee percentage of instances
from the majority class in a group from 100% to 60%. For the 83Rta, we fixed the

number of groups to 6 and the number of instances per group.tb@ the 20newsgroups
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data, we used 12 groups and 20 instances per group. Figlieed.Z.8 depict the training
and test errors using the two methods. The two methods havitasiperformance, As
expected, the error rates increase as the majority peigediacreases.

In our third experiment, we tested the robustness of the twthods by introducing
noise to the group statistics. We generated a training detlaw/s. For each group, we flip
an unbiased coin. If it is a head, we draw each of its instaffoesthe positive class (one
at a time) with a probability of 0.75. If it is a tail, we drawawaof its instances from the
positive class with a probability of 0.25. To add noise todghsup statistics, we flip another
unbiased coin for each group. If it is a head, we add a congtahe number of positive

instances. Otherwise, we subtract the same constant fremuiimber of positive instances.
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Figure 4.8: Effect of group homogeneity (20newsgroups data)

For the USPS data, we set the number of groups to 10 and theemwhinstances per
group to 20. For the 20newsgroups data, we set the numbeoopgito 20 and the number
of instances per group to 20. Figurel4.9 and#.10 show theitigiiand test errors as we
increase the magnitude of the noise from 0 to 4. The Bayesiapkng approach performs
better on the USPS data while our method has the edge on tlew&@roups data. We
observe that even when the noise magnitude is relativefye)ahe performance of both
methods does not degrade by much.

Lastly, we report some results using our method in multekettings. We chose the
joint kernel functionK ((z,v), (¢/,y')) = k(x,2')d(y,vy’) wherek(x,z’) is the Gaussian

kernel andi(y, ') is the Dirac kernel (i.e4(y,y’) = 1 if y = ¢’ and zero otherwise). For
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| | USPS | 20newsgroups

Training error (noiseless) 0.076 0.442
Test error (noiseless) 0.082 0.454
Training error (noisy) 0.102 0.484
Test error (noisy) 0.103 0.504

Table 4.1: Performance on multiclass classification
the USPS dataset, we focused on ‘3, ‘5, ‘6,” and ‘8. For t@newsgroups dataset, we
used all four classes. To create a training set, we parthi@d instances randomly into
50 groups of 10 instances. To introduce noise to the growgissts, for each class in a
group, we add or subtract 1 from the number of instances beigrto that class uniformly
at random. We normalize the resulting group statistics abttie total number of instances

in a group is consistent. Talle ¥.1 shows the errors usingnatinod.

4.7 Conclusion

We present a theoretical analysis for group statisticssdiaation. From that, we derive
a novel SVM-based method that seeks to minimize a genetializarror bound. We also
consider the problem in the more general multiclass se#timjgive the first solution. We
evaluated our method on 2D toy datasets and some benchntadetiafor classification.
The experimental results show that the SVM-based methogams competitively with
Kiick and de Freitas’s Bayesian sampling approach. The ®dbkéd method has fewer pa-
rameters to tune than the Bayesian sampling approach arzkoaewed as a deterministic

method.
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Chapter 5

Multiple Instance Ranking

In multiple instance ranking (MIRank), we are given a numtferollections of groups of
individual instances along with the identity of the grouptthontains the instance with the
highest rank in every collection. The goal is to learn ragkaver the set of possible indi-
vidual instances. We use the learned ranking function tdipréhe group containing the
highest ranking instance for any given collection. This MiiR problem has applications
in computational chemistry and information retrieval. histchapter, we describe a simple

and efficient approach to tackle MIRank problems.

5.1 Introduction

The problem of multiple instance ranking (MIRank) is to lear ranking function over
individual instances from the preference relations amaogygs of individual instances. In

this setting, we are given a number of collections of groupmdividual instances. We
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know for each collection, the group that contains the highesking instance but not the
exact identity of the instance with the highest rank. Thislhk problem was proposed
by Bergeron et al[]4] and it was studied independently by thl {25].

One important application of MIRank is the hydrogen abstoacproblem in computa-
tional chemistry. We follow the description in [4]. The gaato build a model that predicts,
for each molecule, the site of abstraction of a hydrogen atonmg metabolism. In order to
accomplish this, individual hydrogen atoms are first graljmgether according to molec-
ular equivalence: hydrogens are placed within the samepgf@nd only if the abstraction
of any hydrogen from within the group would result in the sametabolised molecule. In
this way, groups are equivalent representations of patksites of metabolism. Note that
experimental data do not show which individual hydrogerbstieacted during metabolism,
but rather only to which group the hydrogen atom belongsarBlewe can view the hydro-
gen abstraction problem as a multiple instance rankinglpnbWe can view molecules
as collections, a group of hydrogen atoms as a group of iddaliinstances, and the ab-
stracted hydrogen as the highest ranking instance.

Another application of MIRank is information retrieval. [dapse we want to rank im-
ages according to their relevance to a particular topic. @ect pairs of images and the
preference relation between each pair (e.g., image A is madegant to image B). Since
an image can contain more than one thing, we represent evaige as a set of segments.

Furthermore, we may want to identify the most relevant segnmean image as well. We
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can learn a ranking function in the MIRank setting. We camwé¥ery image pair as a
collection and every image as a group of individual instance

Like multiple-instance classification and group statsttassification, the challenge of
the MIRank problem comes from the ambiguity in the label infation in the training
data. We propose a probabilistic model for the MIRank probl@he probabilistic model
is based on a generalized Bradley-Terry model [26]. We shmaw @ptimizing the prob-
abilistic model is equivalent to approximate empiricakriminimization. The resulting
optimization problem is unconstrained and can be solvedfimyent numerical algorithms
(e.g., quasi-newton and scaled conjugate gradiént [6])aMéeexplore boosting in the M-
Rank setting. Furthermore, we extend the relevance vecashime to the MIRank setting

for automatic feature selection.

5.2 Related work

Multiple-instance (MI) learning is a popular research topimachine learning (see Chap-
ter[4 for a more detail discussion). Most previous MI workeufe on classification. Re-
cently, Bergeron et all.[4] and Hu et dl._ [25] independentigsidered extending Ml learn-
ing to ranking. Bergeron et al. propose to solve MIRank peois using successively linear
programming. On the other hand, Hu et al. consider threantgiof MIRank, namely us-
ing the average, theax, and the approximate softmax of the instances to represetht e

group. The first case be solved as a standard quadratic pnodgrae second case can be
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solved as a sequence of quadratic programs using the Co@mawex procedure (CCCP)
(see Chaptdi2). The third case also involves solving a seguef quadratic program but
it is not clear if it has any convergence guarantee. AlthoBglgeron et al. and Hu et al.
report some success in their experiments, their methodb&anmputationally expensive.
A more scalable and efficient method is highly desirable. thapdrawback of their meth-
ods is the lack of a probabilistic meaning (i.e., what is thabpbility that a group is the

one containing the highest ranking instance in a colle@jon

5.3 Problem Definition

We need some notation to formally state the MIRank problem.

the space of feature vectors representing individual ntsa
*) | collectionk

( group: in collectionk

*) | feature vector of instancgin groups in collectionk

]
®) | the identity of the group that contains the highest
ranking instance in collectioh

Table 5.1: Notation for MIRank

Given a training sef (X®),Y()}, the goal of MIRank is to learn a ranking function
f : X — R. The learned ranking functiofi is later used to predict which group contains

the highest ranking instance for any test collection.
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5.4 A Probabilistic Model

The Bradley-Terry model[15] is a popular model for pairedngarisons:

P(individuali beats individua) = T

(5.1)

7Ti+7Tj

wherer; is the (positive) skill of the-th individual. Huang et all [26] extend it for paired

team comparisons:

P(teamA beats teanB3) = 5= %ai“g — . (5.2)
acA ta beB 'b

For the MIRank problem, we say that a groyps the favorite group if it contains the

highest ranking instance in a collection and we assume

Zi;&g Z] ef(XZJ)

P(groupy is labeled as the favorite group- (5.3)

Note that unlikel[15] and [26], we consider the “skill” of ardividual instance as a function
of its feature vector. This difference allows us to rank amstes outside the training set as
well. The ranking functiornf can be found by maximum likelihood estimation (MLE) or

maximum a posterior (MAP) estimation (if a prior distriboniis assumed ovefi).
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Approximate empirical risk minimization interpretation

Interestingly, we can also motivate the generalized BsadlErry model from the risk min-

imization perspective. We define the loss incurred by a ctiba (X, Y = g) as
max max f(Xi;) — max f(Xy;) . (5.4)
7 7 J

If group g contains the instance with the highest skill, the loss is z&therwise, the loss is
the difference between the highest skill in the collectiod that in groupy. Theso ftmax

function is asoftversion of thenaz function.
softmax(zy,...,2,) = log(z e . (5.5)
Replacingnax by so ftmaz in Equatiorf 5.4, we obtain

log (Z Z ef(X“)> — log (Z 6f(ng)> (5.6)

which is the negative log-likelihood using Equationl 5.3 efiéfore, minimizing the approx-
imate loss function is equivalent to maximizing the likeldd in the generalized Bradley-

Terry model.
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5.5 Estimation methods

5.5.1 Linear model

The first method seeks to learn a linear ranking functfgn) = w - . We assume a

isotropic Gaussian prior om. The posterior distribution o is

Pwl{(X"W,Y®O)}) o [T PP XD, w) P(w)

X H —Zj ‘ ~® em2ww (5.7)

The maximum a posterior (MAP) estimate«ofis obtained by solving

wx%®) A
rrti}n Lyrap = Z (log (Z Z 6w'X§;)> — log (Z e XY(k)j)) + Fuwew (5.8)
k (] J

Since log-sum-exp is convex, the objective function is tifilednce of two convex func-
tions. Equation[{5]8) is a nonconvex unconstrained opttion problem. We can solve for
a local optimum ofv using the CCCP or directly using numerical algorithms siecuasi-
Newton and scaled conjugate gradient [6]. Denote the dbgefiinction in Equation[{5]8)

by L£,4p. The corresponding gradient and Hessian matrix are

0Ly ap
ow

= (—m+ &)+ (5.9)
k
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O*Lrrap

D (zkz,f _Z -5+ Z}) + AL
k

wherel denotes the identity matrix and

w-X®)

(k) v (k)
_ Zje Y JXY(k)J
2k = ’LU'X(k()k)
MOy
Zje J
(k) k
DY) V.
k= *)
w- X
Zi Zje Y
(k)
wX 0 (k) O
vk vy
- > 3 X0, X vk
k= ~®
WAL (k)
Zje Y
55, e x 0 x0T
Zk ZJ 1j

E.Z,ew X(k)
? J

5.5.2 Ensemble model

(5.10)

(5.11)

(5.12)

(5.13)

(5.14)

The second method seeks to learn an ensemble nfédel= >, o, h,(x) whereh,’s are

some weak classifiers. We choose the negative log-liketihoo

Larp = Z (log <ZZ€ (*5) ) log (Ze (x Y“b>>> (5.15)
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as the loss function and minimizes it using the AnyBoost frvork [33] (see sectidnd.?2).

The functional gradient of the negative log-likelihood is

J(xE) :
oL s 5 SO fuz Y,
ML i2ge Y
O __ . ) (5.16)
8f (Xuv ) ef(X“” ) ZigéY(k) e N if =Y ®
f(X.(K)) o (K) Mu= '
> Zje Y . ef<XY(k)J'>

Therefore, in every iteration, we set the label and weigtstanceX*, assign ( OLyL )

af(Xk,)
abs( 6LMkL >
and s (xh) , respectively. We find the weak classifigfx) that minimizes
PO abs< BCM.L
¢ af(xzk.)

the weight error on the training set and then use line sear@ind its weighto; that mini-

mizesL .

5.6 Automatic Feature Selection

In many applications, model interpretation is just as intg@airas prediction accuracy and
a sparse model is highly desirable. Also, it is troublesomtibe the parameter in the
MAP estimation method manually. We apply a feature seladgchnique originally pro-
posed for the relevance vector machine (RVM)! [49] in MIRaikstead of assuming an
isotropic Gaussian prior om, we assume that different components.omay have differ-

ent variances, i.esp ~ N(0, A~') whereA = diag(ay, ..., a4). The type-ll maximum
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likelihood method is to findd that maximizes the marginal likelihood
P{YWIH{X®}. A) = / [P ®X®, w)Pw; A)dw . (5.17)
k

However, the integral is intractable for the generalizedddey-Terry model. Denote the
logarithm of the integrand by (w). We approximateV (w) using the second-order Taylor

expansion at the current MAP estimaité’ 47

U(w) =~ ¥(Wpap) + %(w — Wpap) V2 (w)(w — Wprap) (5.18)

whereV2U (w) = £2) The resulting integral is easy to compute.

P({y(k)H{X(k)}; A) _ /6‘11(1U)dw (519)
~ orar) / o3 (WM APYT VU () (w b aP) gy (5.20)
=TT POOIX®, g ar) Pl aps A)(2m) 2| — V20 ()|

k

(5.21)
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The logarithm of the approximate marginal likelihood is

log P({Y ®}{x®}; 4)

. 1. . 1 1
k

(5.22)
The derivative can be approximated as
dlog P{Y®Y{X "1, A 1. ) 1, 1__
g P aj‘{ KA) -5 MAPw@AP+§A 1—§v 20 (w) (5.23)

whereV—2¥ (w) is the matrix inverse o¥/?¥ (w). Taking into account that is a diagonal

matrix, we have

Olog P{YWI{X®W}: 4) 1, 1

Da; ~ 5WMap; + %,

- %Vz\lf(w) (5.24)

where V=2U(w);; is the (i,7)-element of V=2 (w). Setting the derivative to zero, we

obtain the following update rule.

1
e = 5.25
i Wigaps + V72U (w)i (5.29)

The final algorithm is described as Algorittin 1. We fixo find the MAP estimaté,; 4 p

and then updatd using Equation{5.25). We repeat the two steps uhtibnverges. After
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Algorithm 1 MIRank-RVM
initialize w = 0 and A as identity matrix
repeat
find w that maximizesl(w), the log of the integrand in Equatidn{5117),
by numerical optimization methods
update the diagonal elementsAfusing Equation{5.25)
until A does not change

a number of iterations, some’s become very large and we can remove those irrelevant
features from further consideration. Often times, thisgeature results in a sparse model

that is good for model interpretation and generalization.

5.7 Experiments

Following 4], we tested our methods on the CYP3A4 substdatasﬁ and two versions
of a census dataset (census-16h and census-16l) from taddddvaluating Learning in
Valid Experiments (DELVE) repositoﬂy The CYP3A4 substrate dataset is made up of
227 small drug-like compounds. A series of 36 descriptorgéh hydrogen atom for all
molecules are calculated. For each molecule, the goal ieettigit which group a hydrogen
atom is abstracted, and it is not known exactly which hydnagebstracted.

The census dataset consists of 22784 towns spread amon@ #tatés of the United
States of America. This study only considered the 3054 tavimsore than 10000 inhab-
itants. Each town is assigned a 5-digit Federal InformaRoocessing Standard (FIPS)

place code (not a zip code). Typically, this dataset is usedregression setting to model

http://reccr.chem.rpi.edu/MIRank/
2http://lwww.cs.toronto.edw/delve/
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Dataset successive LP [4] MAP MAP+RVM Boosting
CYP3A4 substrate  70.9% + 6.9 69.9% +5.9 T722% +55 T1.9% +£6.7
Census-16H 60.3% + 15.1 58.1% +£14.5 62.2% £ 14.3 55.6% £ 16.8
Census-16L 57.5% +16.0  62.5% +15.2 64.7% +13.4 47.8% +16.0

Table 5.2: Rank-2 prediction accuracies

the response — which is the town’s median housing unit pfibe. census-16h and census-
16| datasets differ in their features: each consists of Héufes drawn from the 1990
census. These datasets are fitted into the multiple instamééng framework as follows.
States are collections, divisions of towns are groups amhgaare individual instances.
For each state, towns whose place codes begin with the sghardi assigned to the same
division. As no place code starts with ‘0’, there are up to\@gdons per state. The task is to
predict, for each state, the division that contains the tauth the highest median housing
unit price.

The experimental design is as follows. Each dataset wasnalydsplit into training,
validation and testing subsets consisting of 60%, 20% afd @0lthe collections, respec-
tively. The parameters of the algorithms for the linear model method and the number
of weak learnerd’ for the ensemble model method) are tuned on the validatibnTde
experiment was repeated 32 times for each dataset. Thegavaczuracy is reported in
Table[5.2, along with the standard deviation. Note that dipti®n is considered as correct
if the top two guesses contain the most preferred group icaliection. The same metric
is employed in[[4]. We can see that the MAP estimation of aadinaodel has a simi-

lar performance to successive linear programming. The MA®ar model has a slightly
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lower accuracy than successive linear programming on the32»3 substrate dataset and
census-16H dataset but is more accurate on census-16letdaths MAP estimation com-
bined with automatic feature selection gives the best aoyuon all three datasets. Our
boosting approach used decision stumps [7] as the weakelesarit achieved the second
best accuracy on the CYP3A4 substrate dataset, but it diderédarm well on the two cen-
sus datasets because of overfitting. Although the perfocmahthe boosting approach is
somewhat disappointing, we believe that it can be a gooccehehen the optimal ranking

function is nonlineatr.

5.8 Conclusion

We propose a probabilistic model for multiple instance ragkand present methods to
learn the model. Our first method learns a linear ranking iondoy MAP estimation while
our second method learns an ensemble ranking function by Method. Both methods
involve solving an unconstrained optimization problemjekhs nonconvex but belongs to
the class of the difference of convex functions. Furtheemnase extend the feature selection
technique used in the relevance vector machine to the MIRattkng. Our experimental
results show that the MAP linear model has a similar perforeato successive linear
programming. The MAP estimation with automatic featureesgbn produced the best
prediction accuracy. Our boosting method seems suscepthldverfitting and did not do

well.
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Chapter 6

Conclusion

We argue that standard classification and ranking suffen fnggh information acquisition
costs at both the test stage and the training stage. To redadaformation acquisition
cost during testing, we can obtain information about teah@xes sequentially. Based on
the currently available information, we decide whetherdject the example or to obtain
further information. This sequential stopping framewalespecially suitable for product
testing in manufacturing where a good product item need $s paery test and a product
item is flagged as faulty immediately if it fails a test. We jpoge catenary support vector
machine (catSVM) to the sequential stopping problem ané gi\generalization bound
for it. We demonstrate the advantage of catSVM over sintiges SVM and its closest
competitor, chained boosting, on the UCI heart dataset araiface detection task.
Labels of training examples are often expensive to obtamre@iuce the label collec-
tion cost, we can perform learning from aggregate statistitle propose a SVM method
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to learn to classify individual examples from group labegortions. We provide a simple
theoretical analysis for group statistics classificationr experiments show that our SVM
method has comparable performance as a Bayesian sampfinggafp. Also, we propose
several methods to learn to rank individual examples froefigrence relations at the group
level. Our experimental results show that the MAP estinmatiba linear model with au-
tomatic feature selection produces the best accuracy Wwbibsting seems susceptible to
overfitting. Learning from aggregate statistics opens nppootunities for data users and
can benefit many applications. But it also raises privacyceams because people may be
able to infer private individual actions or preferencesyrpublic aggregate statistics.

There are a number of directions for future work. The seqgaéstopping framework
we consider can only reject test examples early but it caaocpt any examples until the
last stage. In some applications, there are many easyysskamples that can be accepted
by looking at the first few features. Extending catSVM to tsided early detection is an
useful next step. Another direction is improve the scaigbdf catSVM. The size of the
catSVM optimization problem depends on the product of thalmer of training examples
and the number of stages in the processing pipeline. Clyreve use a generic interior-
point solver to solve the quadratic program in each iteratibthe CCCP. But the interior-
point solver quickly runs out of memory as the problem sizgeases. It may be possible
to make catSVM optimization more scalable using cuttingaplmethods.

Moreover, it would be interesting to tighten the generdi@abound for group statistics
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classification. The assumptions in our analysis are addtytt@ther strong. It would be
desirable to relax some of the assumptions. Especiallypitidvbe very useful to consider
the case when the group label proportions are noisy. It waldd be interesting to extend
the theoretical analysis to multiclass setting. In additmur solution for multiclass group
statistics classification involves solving quadratic pergs with the number of constraints
guadratic in the number of classes. A generic interior-psatver does not scale to a large
number of classes. Again, cutting-plane methods and bundtaods([4R] may be of help.
Finally, extending our methods to other variants of muijistance ranking (e.g., allowing
multiple individual instances in different groups to tie fine top spot) is an interesting

topic.
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