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ABSTRACT OF THE THESIS

Improving Bayesian Optimization for Quantum Material Control

by

Malhar Manohar Thombare

Master of Science, Graduate Program in Computer Science
University of California, Riverside, March 2023

Christian R. Shelton, Chairperson

Using light one can desirably change the properties of materials. An electromagnetic (EM)

field signal can excite a material or chemical system into a higher eigenstate and, as a result,

change its properties. We develop an algorithm to find the right EM signal for a chemical

system simulated in NIC-CAGE (Novel Implementation of Constrained Calculations for

Automated Generation of Excitations). NIC-CAGE simulates the influence of an EM field

on a quantum system and provides the probability of desired transition as well as the

gradient of the probability as a function of the EM field. The simulation is calculated in

a system with one degree-of-freedom which still preserves most of the dynamics of a real

high degree-of-freedom systems. A single query on the simulator takes about a second to

calculate the probability and more time to find the gradient at the evaluation point. Given

the parameters of the quantum system, and the source and target eigenstates, the software

provides a theoretical frequency for a sinosoidal EM signal. The optimal frequency may lie

in a big region around it. Bayesian Optimization (BO) is suitable to this problem because

it minimizes the number of costly evaluations and avoids the need for costlier gradient
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calculation. However, typical BO methods expect uniform smoothness over all the search

space in the evaluation function to be optimized. For our problem, this is not true for the

frequency parameter which leads to slower performance. We found that frequencies with

high evaluation probability are present in very small regions and the rest of the space has

a uniformly low probability. We propose three methods to minimize the search over these

low-probability regions. The first method crops the part of the search space based on the

last best point and searches in it. The second method extends the previous method by

dynamically adjusting the size of cropped search space and searches over it. The third

method warps the search region such that the variance of probability is high and more

uniform over the search space. We demonstrate the improved performance of our methods

on a suite of quantum control problems.
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Chapter 1

Introduction

1.1 Problem statement

We want to solve the problem of manipulating the quantum state of the material

using a time-varying electromagnetic signal. NIC-CAGE [9], the software, calculates the

transition probability from a source to a target state, for a single-dimensional quantum

system under the influence of an EM signal. Our goal is to find the signal that maximizes

this transition probability. NIC-CAGE discretizes the spatial and temporal dimensions of

the system. The resulting simulator propogates the state of the system over time, requiring

significant computation. Since the development of the system is temporal in nature the cal-

culation over time steps can not be parallelized. Furthermore, the evaluation of the gradient

of the transition probability with respect to the EM signal needs even more calculations.

A single evaluation in NIC-CAGE takes about a second to complete. The simulation of a

more complete system with more degrees of freedom would need hours of calculation. We

want to use the minimum number of such evaluations while searching for the optimal signal.
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We chose to use Bayesian Optimization (BO) [2] because BO seeks to optimize

functions with the fewest number of evaluations and does not require gradient calculations.

Although the EM signal can take any arbitrary shape, we are restricting its search space

to sinusoidal EM waves parameterized with only a frequency ω and an amplitude a. f is

the evaluation function provided by NIC-CAGE based on system parameters, the source,

and the target states. f provides the transition probability, p, given ω and a. Our problem

hence can be stated as follows.

max
ω∈F ,a∈A

f(ω, a)

F and A are one-dimensional parameter spaces for frequency and amplitude respectively.

We denote NIC-CAGE’s provided theoretical potential frequency for the solution as ω0.

Ratio R defines the size of the search space for frequency, and R0 is the initial ratio for the

same. The parameter space for frequency is defined by the center of search space ωc and R

as follows.

F = {ω|(1−R)ωc ≤ ω ≤ (1 +R)ωc}

The amplitude space is constant for all the methods and it is as follows.

A = {a|0 ≤ a ≤ 0.15}

1.2 Bayesian Optimization (BO)

BO is a class of methods specially developed for solving the problems of format

max
x∈A

f(x).
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A is a hyper-rectangle of a form {x ∈ Rd : ai ≤ xi ≤ bi}, typically with d smaller than

20 and f is a continuous function [2]. In common applications of BO, f is a noisy and

expensive function; it does not have a known structure such as concavity or linearity; and

it does not provide any first-order or second-order derivative information.

1.2.1 Method Description

BO comprises two main components: the surrogate model that models the objec-

tive function f and an acquisition function to select the next point to evaluate. For this

work we are using a Gaussian Process [8] as the surrogate model parameterized by the mean

function and a covariance function. The mean function µ0 dictates the mean value of f at

any given x, and the kernel function Σ0 given two points, x and y, specifies the covariance

between f(x) and f(y). Kernel functions convey the notion that closer points influence each

other more than the farther points. To initially build the dataset, f is evaluated at a few,

n0 points mostly selected uniformly at random over the search space. The Gaussian process

posterior distribution conditioned on the evaluated points is iteratively used by the acqui-

sition function to acquire new points. Once evaluated the new point, x, and evaluation,

f(x), are added to the dataset, and iteration continues with the new dataset.

1.2.2 Model

Consider values of f sampled at points x1, x2, x3, ...xk ∈ Rd as [f(x1), f(x2), f(x3), ...f(xk)]

represented by x1:k and f(x1:k) respectively. The Gaussian process assumes a prior of a

multivariate Gaussian distribution over these values with a mean vector of size k and co-
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variance matrix of size k × k. The mean vector is the evaluation of a mean function µ0 at

x1:k and the covariance matrix is the evaluation of the covariance function or kernel Σ0 at

(xi, xj) where i, j ∈ 1...k. The kernel function is selected in such way that the resultant

covariance matrix is always positive semi-definite. It should show high correlation between

points closer in space. We can now write a distribution for surrogate f(x1:k) as follows.

f(x1:k) ∼ N (µ0(x1:k),Σ0(x1:k, x1:k)). (1.1)

Let n be the number of observations made in the past. Then using Bayes’ rule on Equation

1.1 we can obtain posterior distribution over the next observation as follows (see details in

Chapter 2.1 of [8]):

f(x)|f(x1:n) ∼ N (µn(xx), σ
2
n(x)) (1.2)

µn(x) = Σ0(x, x1:n)Σ0(x, x1:n)
−1(f(x1:n)− µ0(x1:n)) + µ0(x) (1.3)

σ2
n(x) = Σ0(x, x)− Σ0(x, x1:n)Σ(x1:n, x1:n)

−1Σ0(x1:n, x) (1.4)

Intuitively, the posterior mean µn(x) is a weighted average between the prior µ0(x) and the

estimate f(x1:n) where the weights depend on the kernel. The posterior variance, σ2
n(x), is

prior variance Σ0(x, x) minus an estimate based on the kernel.

1.2.3 Acquisition Functions

The acquisition function uses the posterior information from the surrogate model

to sample the next point. Each acquisition function uses a different method to define the

next best point. For any acquisition function, A, given n observations the next point xn+1

is evaluated as follows

xn+1 = argmax
x

A(x). (1.5)
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Below are three of the most common acquisition functions.

Upper Confidence Bound

The upper confidence bound (UCB) acquisition function is based on the upper

confidence bound bandit strategy [10]. The value of the point x is defined as

UCBn(x) = µn(x) + βσn(x) (1.6)

where µn(x) and σn(x) are the posterior of mean and standard deviation after n obser-

vations. β controls the influence of the standard deviation on the decision, lower value

corresponds to exploiting the mean and a higher value corresponds to exploration where

the variance is higher.

Probability of improvement

We define Improvement as

I(x) = max(0, f(x)− f∗
n)

where,

f∗
n =

n
max
i=0

f(xi)

Then the probability of improvement (PI) [1] with GP surrogate can be expressed by

PIn = P (I(X) > 0) = Φ(∆n(x)). (1.7)

where ∆n(x) = µn(x)−f∗
n

σn(x)
and Φ is a cumulative distribution function for a unit normal

distribution.
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Expected Improvement (EI)

EI is similar to PI but optimizes the expected improvement instead of the Proba-

bility of Improvement [1]. We can give EI as

EIn(x) = E[I(x)] (1.8)

With GP surrogate, EI in closed form [4] is

EIn(x) = [∆n(x)]
+ + σn(x)ϕ(

∆n(x)

σn(x)
)− |∆n(x)|Φ(

∆n(x)

σn(x)
) (1.9)

where ϕ is a probability density function and Φ is a cumulative distribution function for a

unit normal distribution.

1.3 BO for our problem

We have chosen Standard BO [2] with a Gaussian process (GP) surrogate and EI

as the acquisition function, as this is the most common BO configuration. We are using

a squared-exponential kernel as the covariance function of the GP. We have 40 thousand

different simulated systems and for each system we are testing three transitions 0 to 1, 1 to

2, and 0 to 2. We picked 600 systems from this set and tried to search for the best EF for

the mentioned transitions. We are using Emukit [7] to implement BO.

1.4 Room for improvement

Upon using Standard BO we found that the search space of frequency had high

probability values concentrated in a very small region. The Standard BO kept exploring
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the whole search space even after finding this small region. All the evaluations outside this

region gave a very small probability. The BO could have performed better if it had searched

more in that small region. Our proposed method increases the success rate of Standard BO

by maximizing the search in this region.
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Chapter 2

Chapter 2 Related Work

2.1 Search space expansion

Large search spaces are one of the main reasons for the slower performance of BO.

One popular solution for this problem is starting with a smaller search space and expanding

as required. [3] and [5] use information gained over a smaller search space to determine the

expansion policy. However, in our case, unless the evaluation is not made near the optimal

answer all the evaluations have similar values and do not provide any useful information.

This makes it difficult to effectively expand the search space. Our methods start with a

larger search space and then exploit the sub-region that gives a better outcome.

2.2 Using the bounds on evaluation functions

A few methods also exploit knowledge of bounds on the optimal value. In our

case, since f is a probability we know that the evaluation function has the upper bound of
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1 and the lower bound of 0. [6] suggests a technique where these bounds can be used to

model the surrogate more accurately. They propose a new acquisition function that uses

the upper bound to rectify the estimations where other acquisition functions overestimate

the optimal value by crossing this upper bound. In our case, BO almost never finds values

near the upper bound which does not create a need for rectification.

We want the standard BO to search in a specific area more often than others which are still

difficult with existing methods. Our proposed method exploits such an area as soon as it

finds it and brings a significant improvement in BO.
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Chapter 3

Our Methods

In Standard BO trials, we observed that there is a small region in the frequency’s

search space which yields a significantly higher probability than the rest. We also noticed

that searching more in this region gave far better results than searching the entire space.

We have created three methods that move the BO’s search to these better smaller regions.

3.1 Notations

The notations for nth evaluation are as follows:

pn = f(ωn, an)

p∗n = max(p0, p1, ..., pn)

(ω∗
n, a

∗
n) = argmax f(ω, a)|(ω, a) ∈ {(ω0, a0), ..., (ωn, an)}
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3.2 Crop

The first method starts with the complete search space and keeps moving the

center of the search space and cropping it as better values for the probability are found.

Let R0 be the initial ratio to define the size of the domain. Then we calculate the new ratio

Rn+1 for (n+ 1)th evaluation as follows:

Rn+1 = max(0.01, (1− p∗n)
2)×R0

The center of search for (n+ 1)th evaluation is

ωc
n+1 = ω∗

n

Then the frequency search space for (n+ 1)th evaluation becomes:

Fn+1 = {ω|(1−R)ω∗
n ≤ ω ≤ (1 +R)ω∗

n}.

This policy crops the search space by the squared difference between target probability 1

and p∗t . The chopping of R is bounded by 0.01 to protect the exploration in the good sub-

region. This particular formula and the particular value for the lower bound on chopping

worked better for us than the other choices.

The Crop algorithm quickly prunes the search space making BO perform intensive exploita-

tion in the selected region. This allows very fast optimization. Although effective, the Crop

method assumes that the initially selected sub-region is optimal. These assumptions fail the

cropping algorithm when other sub-regions are better than the one selected by it. Figure

3.1a gives a visualization of cropped search space as p reaches 0.81.
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(a) Crop (b) Crop and Expand (c) Warp

Figure 3.1: Visualization of proposed methods

3.3 Crop and Expand

We found that the Crop exploits too much and may miss even nearby optimal

sub-regions. To increase its exploration we added expansion in it. For every evaluation, if

the new evaluation is the best point, it will crop the search space (unchanged from Crop).

Otherwise, it will keep on expanding. If p∗n > pn the ratio for search space becomes

Rn+1 = min(R0 × (1− p∗n), Rn−1 × (1 + η(p∗n − pn))).

The maximum possible ratio for the search space at any point n is bounded by R0×(1−p∗n).

The bounding was necessary as without bounding the method was resuming to the Standard

BO. As the algorithm keeps finding better regions the upper bound keeps on contracting.

The expansion is controlled by expansion rate η. (p∗n−pn) which ensures that the expansion

is faster when the algorithm finds low probability points and is slower when it finds high

probability points. We found η = 0.2 to be optimal for our problems. The Crop and Expand

method gave better results than Crop but it needs another parameter η which is sensitive

to the performance. Furthermore, the Crop and Expand method still carries the risk of
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getting stuck in a local maxima due to the expansion upper bound. Figure 3.1b provides a

visual representation of Crop and Expand as p reaches 0.81.

3.4 Warp

Crop and Crop and Expand both increase exploitation but may get trapped into

a sub-optimal region. We need a method that can not only impose higher exploitation in

the favorable region but also allow global exploration. The Warp method warps the search

space into a new space where the favorable region has a larger area, thus encouraging further

exploration here while not precluding exploration elsewhere. In the beginning, no warping

is applied and it behaves like the Standard BO. As the algorithm starts finding better

and better points the warping increases, stretching the search space near ω∗
n. The warping

function maps each observation in the original parameter space to the new parameter space.

The observations in the new space are then fed to BO and a new sampling point is obtained.

This new sampling point is mapped back to the original space. The warping depends on the

highest probability found till now, p∗n. As p∗n increases the warping becomes more intense.

The frequency in original space ω is mapped to the frequency in the new space ω′ as follows:

ω′ = σ

(
σ−1(ω)− σ−1(ω∗

n)

1− p∗n
+ σ−1(ω∗

n)

)

Here sigma is the sigmoid function:

σ(z) =
1

1 + e−z
.

In the new mapping, the higher the p∗n the greater the stretch near ω∗
n. The transformed data

is then given to the Standard BO to generate a new sampling point. Since the space closer
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to ω∗
t which is the good sub-region is stretched, the probability of sampling in it is increased.

The new sampling point is again mapped in the original space and then evaluated. The

method does prioritize a particular region over others but does not completely discard the

rest which makes it a better explorer than the other two methods. Figure 3.1c represents

the Warp method visually as p reaches 0.81.
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Chapter 4

Chapter 4 Experiments and

Results

4.1 Experiment Design

We have a total of 40,000 one-dimensional simulations and each of them can be

used to perform transitions between eigenstates 0 to 1, 1 to 2, and 0 to 2. We picked

600 problems at random from these and tried to solve all three possible transitions. We are

evaluating the methods for their speed and their generalization across a variety of problems.

For speed, we are comparing the number of problems that achieved transition probabilities

of at least 0.1, 0.5, and 0.9 for a given number of iterations of the optimization algorithm.

For generality, we are comparing the distribution of the number of problems that achieved

a transition probability falling into one of the following bins: below 0.25, between 0.25 and

0.5, between 0.5 and 0.75, and above 0.75.
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(a) 0 to 1 transition (b) 1 to 2 transition (c) 0 to 2 transition

Figure 4.1: Generalization accross problems

4.2 Results

4.2.1 Generalization of optimization

As visible in figure 4.1 the Warp method generalizes best. Generally, the 0 to 1

transition is easiest, the 1 to 2 transition is moderately difficult and the 0 to 2 transition is

the most difficult. All three methods are able to surpass the Standard BO in 0 to 1. We

suspect that most of these problems can be solved by greedily exploiting the first good sub-

region found. This also explains why the performance of the Crop is good in this setting.

For 1 to 2, the performance of the Crop and Standard BO are comparable whereas the

performances of Crop and Expand and Warp are comparable and better than the other two.

The reason might be that the best sub-region is in close proximity to other good regions,

which is the ideal case for the Crop and Expand algorithm. For 0 to 2 transitions Warp

outperforms all the other three methods, and the Crop has the worst performance of all.

This type of transition is probably tricky because it may have the best sub-regions farther

away from sub-optimal but still reasonable sub-regions. Even Crop and Expand is under-

performing relative to Standard BO which reinforces this speculation. Since the Standard
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(a) 0 to 1 transition (b) 1 to 2 transition (c) 0 to 2 transition

Figure 4.2: Speed accross problems

BO is using the whole domain for its search, it is able to optimize this transition better

than Crop and Crop and Expand. Warp is also using the whole search space to optimize,

but it is imposing a softer exploitation in good sub-region while allowing exploration for

distant sub-regions.

4.2.2 Speed of optimization

Out of the four methods, Warp was the most consistently fast across variety of

problems. The problems that were difficult for generalization are slower for optimization.

Their performances are visible in figure 4.2. For Probability greater than 0.1 the speed
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for optimization is similar for the easier problems, 0 to 1 and 1 to 2, but the Standard

BO and Warp are faster for the 0 to 2 transition. Similar to the generalization, there

is a greater chance that the Crop and Crop & Expand get stuck into the local maxima

which slow down their optimization. Due to the slight ability to explore we can see that

Crop and Expand have faster optimization than Crop. For Probability greater than 0.5 the

Standard BO has slower performance for easier problems 0 to 1 and 1 to 2, but it surpasses

the Crop and Crop and Expand for 0 to 2. We believe that localizing search is useful in

simpler problems and that is why exploit-oriented methods show better performance in

them. But for 0 to 2, the Standard BO again surpasses the exploit-intense methods since

these problems need more exploration. The method Warp, however, is the fastest even for

this probability threshold which highlights its ability to better explore the search space. For

probability greater than 0.9, we can see a similar notion of success but the differences are

more significant here. Counterintuitively, The Crop is able to surpass the Standard BO for

the hard 0 to 2 transition. The reason for that could be the better ability of the Crop to

exploit relative to the standard BO. For those problems where Crop was able to reach the

favorable region correctly, it was able to optimize those problems faster. Overall we can see

that the Warp method is consistently fast.

18



Chapter 5

Conclusions

The search-space of the frequency of an EM signal for optimizing the quantum

simulation of a photo-excited chemical system has optimal solutions in small sub-regions.

Although Standard BO reaches these regions it still keeps exploring the rest of the space

which slows down the optimization. The Standard BO method does not have any direct way

to exploit the knowledge gained about good sub-regions in the space. The existing methods

either focus on gradually expanding based on the estimates made from the smaller region or

use the knowledge of bounds to better model the surrogate. In our case, evaluations of non-

optimal points are not as useful to estimate the direction of expansion. The knowledge of an

upper bound is also not helpful, as finding points near it is itself a challenge. Our methods

provide a way to increase the exploitation in Standard BO. We propose three methods

where each of which has a different exploitation and exploration policy. The method Crop

has the most narrow exploration policy. For Crop the search space keeps decreasing and the

exploration is provided by moving the center of the search space only. The method Crop
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and Expand has a better exploration policy than Crop. It provides local exploration with

both the bounded expansion of search space and the change of search space center. The

third method, Wrap, provides maximum exploration out of all of our proposed methods.

This technique stretches the potentially optimal region to encourage BO but not require

it to search there. This allows it to naturally increase BO’s sampling in the desired area

and hence increase the exploitation. Since it warps the search space instead of chopping,

it always keeps the possibility of exploring anywhere in the search space. We found that

the method Crop and Crop and Expand both exploit greedily. These methods are useful

where sub-optimal regions are poor. The method Warp is most useful in the case where

multiple sub-optimal regions are present and the algorithm needs to explore for a longer

time. Overall when the difficulty is not known, out of our three methods, Warp is most

likely to be successful.
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Javier González. Emulation of physical processes with emukit. In Second Workshop
on Machine Learning and the Physical Sciences, NeurIPS, 2019.

[8] Carl Edward Rasmussen and Christopher K. I. Williams. Gaussian processes for ma-
chine learning. Gaussian Processes for Machine Learning, 11 2005.

[9] Akber Raza, Chengkuan Hong, Xian Wang, Anshuman Kumar, Christian R Shelton,
and Bryan M Wong. NIC-CAGE: An open-source software package for predicting
optimal control fields in photo-excited chemical systems. 7 2020.

[10] Niranjan Srinivas, Andreas Krause, Sham M. Kakade, and Matthias Seeger. Gaussian
process optimization in the bandit setting: No regret and experimental design. IEEE
Transactions on Information Theory, 58:3250–3265, 12 2009.

21


