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Abstract
We describe a deterministic anytime method for
calculating filtered and smoothed distributions
in large variable-based continuous time Markov
processes. Prior non-random algorithms do not
converge to the true distribution in the limit of
infinite computation time. Sampling algorithms
give different results each time run, which can
lead to instability when used inside expectation-
maximization or other algorithms. Our method
combines the anytime convergent properties of
sampling with the non-random nature of varia-
tional approaches. It is built upon a sum of time-
ordered products, an expansion of the matrix ex-
ponential. We demonstrate that our method per-
forms as well as or better than the current best
sampling approaches on benchmark problems.

1. Continuous-time stochastic systems
Continuous-time discrete-state stochastic models describe
systems in which event times are not synchronized with a
global clock. Examples include web searches (Gunawar-
dana et al., 2012), computer networks (Xu & Shelton,
2010), social networks (Fan & Shelton, 2009), robotics
(Ng et al., 2005), system verification (Baier et al., 2003),
and phylogenetic trees (Cohn et al., 2009), among others.
Discretizing time can be computationally expensive. The
“time-slice” width must be much smaller than the short-
est time between events. This can lead to inefficient com-
putations during times in which events or expected events
are less frequent. Much as the abstraction of real-valued
numbers (and their implementation in floating-point rather
than fixed-point representations) is helpful in the develop-
ment of numeric algorithms, continuous-time is useful for
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stochastic dynamics systems.

This paper focuses on Markovian models. In a discrete-
time Markov process, given a row-stochastic matrix M
and a distribution v (as a row-vector), the computation
of vn = vMn propagates v forward n time steps. In a
continuous-time Markov process (CTMP), given a rate (in-
tensity) matrix Q, vt = veQt propagates v forward t time
units in the same fashion. This is the critical computation
step in filtering, smoothing, and parameter estimation. We
focus on how to compute this matrix exponential when the
size of v is very large and both v and Q have structure (al-
lowing their efficient representation).

Except for the most trivial of cases, vt has no internal struc-
ture. In particular, assume that the state space is factored,
that is composed of joint assignments to state variables.
Even if v is completely independent, vt no longer has any
structure (unless Q also represents a completely indepen-
dent system). This is the same problem that arises in dy-
namic Bayesian networks (DBNs) in which forward propa-
gation causes all variables in the system to be coupled. We
assume that a full distribution over the state space is too
large to be stored, and therefore seek an approximation.

1.1. Previous work

This problem has received attention in the verification lit-
erature for decision-diagram-based representations of the
intensity matrix Q. However, the assumption behind this
literature is that while Q may have structure to keep it rep-
resentable, an exact answer is desired and therefore vt is
represented as a full vector. The shuffle algorithm is one
such example (Fernandes et al., 1998).

By contrast, we assume that representing vt explicitly is
not possible. We would like to calculate expectations with
respect to the distribution vt. In our approach, we con-
centrate on continuous-time Bayesian networks (Nodelman
et al., 2002) (CTBNs), but the method is general to any Q
that is the sum of Kronecker products. Even the simplest
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expectations (like marginals) are NP-hard to compute (the
proof is a straightforward extension of the proof for general
Bayesian networks), so we focus on approximations. In the
literature on CTBNs, there are a number of such methods
that fall roughly into two groups. The first are variational
approaches such as expectation propagation (El-Hay et al.,
2010) and mean field (Cohn et al., 2009). These methods
are deterministic. However, they do not converge to the
true value as computation time increases and generally can
only compute marginals or similar expectations. The sec-
ond group are sampling approaches including importance
sampling (Fan et al., 2010) and Gibbs sampling (Rao &
Teh, 2011). These approaches converge to the true value
and can estimate any expectation of vt. However, they are
random and this can cause problems when used inside other
algorithms (like expectation-maximization).

1.2. Our approach

Our proposed method is deterministic and converges in the
limit of infinite computational time. It can be viewed as a
bridge between sampling and deterministic methods. We
decompose the system into two pieces: a system (A) of
completely independent components, and a correction (B).
We reason exactly about the system A and add increasing
number of correction terms derived from B. We generate a
computation tree and traverse it using a priority queue, to
select the larger correction terms earlier.

We first present our approach assuming that Q and proba-
bility vectors can be stored exactly. Then, we demonstrate
how the calculations can be carried out efficiently when Q
is structured. In section 2.4, we present a simple example
to ground the derivation. Finally we demonstrate results
comparing the computational efficiency of our method to
other anytime convergent methods.

2. Matrix exponential calculation
Consider a CTMP with discrete states which is described
by an initial state distribution row-vector v of size n and a
rate matrix Q of size n-by-n. The rate matrix represents
the rates by which the system transitions between states.
The rate of transitioning from state i to j is qij ≥ 0 and the
rate of transitioning out of state i is qi =

∑
j 6=i qij . The

diagonal elements of the rate matrix are the negative row
sums: qii = −qi.

As stated above, the distribution at time t, for t ≥ 0, is
calculated by vt = veQt where eQt is the matrix expo-
nential with Taylor expansion eQt =

∑∞
k=0

1
k! (Qt)

k. The
matrix exponential calculation is very widely used in ap-
plied mathematics and there are many numerical methods
to solve it (Moler & Loan, 2003).

If the state-space is structured as joint assignments to m

variables, its size, n, grows exponentially with the number
of variables, m. This makes the eQt calculation intractable
for large systems. Using the structure of Q for this calcula-
tion is not straightforward because it is not preserved by the
matrix exponential. Additionally, the commutative prop-
erty does not hold for matrix exponential in general: For
any same-sized matrices A and B, e(A+B)t 6= eAteBt 6=
eBteAt, unless the commutator [A,B] = AB − BA van-
ishes. One possible decomposition comes from the Kro-
necker sum property: e(A⊕B) = eA ⊗ eB . Yet, Kronecker
sums alone can only describe rate matrices for systems in
which all variables are independent.

For the general case, e(A+B)t can be seen as a perturbation
of eAt in the direction of Bt (Najfeld & Havel, 1995) and
can be represented as

e(A+B)t = eAt +

∫ t

0

eAsBeA(t−s) ds (1)

+

∫ t

0

(∫ s

0

eArBeA(s−r) dr

)
BeA(t−s) ds+ . . .

which is a sum of recursive functions. This series, was
first explored in quantum field theory (Dyson, 1949) and
is called a series of time-ordered products (TOP), or some-
times a path-ordered exponential. In stochastic processes,
Mjolsness & Yosiphon (2006) called it a time-ordered
product expansion and used it to guide a sampling algo-
rithm. We will employ the expansion to derive our deter-
ministic method, Tree of Time-Ordered Products (TTOP).

2.1. TOP computation tree

We make two assumptions: Q can be split intoQ = A+B,
where veAt is relatively simple to compute, and B is bro-
ken into J manageable termsB =

∑J
j=1Bj . We will show

how to realize these assumptions in the following sections.
We use the TOP expansion of Equation 1 and apply the dis-
tributive property of matrix multiplication to move the sum
outside the integral:

ve(A+
∑J

j=1 Bj)t = veAt +

J∑
j=1

∫ t

0

veAsBje
A(t−s) ds (2)

+

J∑
j=1

J∑
j′=1

∫ t

0

(∫ s

0

veArBje
A(s−r) dr

)
Bj′e

A(t−s) ds+ . . .

Let F l(t) represent the lth term of the expansion. Then the
equation can be rewritten as

veQt =

∞∑
l=0

F l(t) (3)
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where

F 0(t) = veAt

F l(t) =

J∑
j=1

∫ t

0

F (l−1)(s)Bje
−As ds eAt. (4)

By construction, the first term, veAt, is simple to solve (as
will be explained in Section 2.2).

2.1.1. INTEGRAL EXPANSION

We calculate each integral with the following expansion
in which we treat a polynomial portion exactly and use
adaptive quadrature to estimate the non-polynomial por-
tion. Let g(t) be a general function of time, g0 be a con-
stant, and q(t) be a piece-wise polynomial. Further denote
q̄(t) =

∫ t

0
q(s) ds and q[r1,r2](t) = I[r1 ≤ t < r2]q(t)

(both also piece-wise polynomials), where I[·] is the indi-
cator function. Then we can write an integral of the form
h(t; q, g, g0) =

∫ t

0
q(s)(g(s)− g0)ds as

h(t; q, g, g0) = q̄(t)(g(s0)− g0)

+

∫ t

0

q[a,s0](s) (g(s)− g(s0)) ds

+

∫ t

0

q[s0,b](s) (g(s)− g(s0)) ds

= q̄(t)(g(s0)− g0)

+h(t;q[a,s0], g, g(s0)) + h(t; q[s0,b], g, g(s0)) (5)

for any chosen g0, approximating g as the constant g(s0)
and adding 2 correction terms (of the same form) for sub-
parts of the interval. Here, [a, b] is the support range of q,
and s0 = a+b

2 . For convenience, we divide this range into
two: [a, a+b

2 ] and [a+b
2 , b]. We use two subdivision in the

following sections as well, but generalization to more than
two sub-intervals is straightforward.

Recursive expansion Equation 5 will generate infinitely
many terms in the form of q̄(t)(g(s0)− g0):

h(t; q, g, g0) =

∞∑
k=1

qk(t)uk (6)

where qk(t) is q̄(t) for a particular q, and uk is (g(s0)−g0)
for a particular g and g0.

2.1.2. COMPLETE COMPUTATION TREE

Assume level l of Equation 3 can be expressed as

F l(t) =

∞∑
k=1

qlk(t)ulke
At (7)

q(t)weAt

N(q, u, u0, j)

w = ueAs0Bje
−As0

N(q̄, w − u0, 0, j
′)

N(q[a,s0], u, w, j)

N(q[s0,B], u, w, j)

level l level l + 1

s0 = (a+ b)/2
[a, b] = q’s support

∀j′:

contribution
node’s name

calculations

Figure 1. General form of the expansion.

(as is certainly true for l = 0: q0
1(t) = 1, u0

1 = v). We then
show how to construct level l + 1 similarly:

F l+1(t) =

J∑
j=1

∫ t

0

F l(s)Bje
−As ds eAt

=

J∑
j=1

∫ t

0

∞∑
k′=1

qlk′(s)ulk′eAsBje
−As ds eAt

=

∞∑
k′=1

J∑
j=1

∫ t

0

qlk′(s)ulk′eAsBje
−As ds eAt

=

∞∑
k′=1

J∑
j=1

h(t; qlk′ , ulk′eAtBje
−At, 0) eAt

=

∞∑
k′=1

J∑
j=1

∞∑
k=1

qlk′,k,j(t)u
l
k′,k,je

At. (8)

In last two lines, we have replaced the integral with
the expansion of Equation 6. In particular, the inte-
gration of interest is h(t; qlk′ , ulk′eAtBje

−At, 0). We let
the set {qk, uk}k generated for this h be denoted as{
qlk′,k,j , u

l
k′,k,j

}
k
.

In Equation 8, k′ represents a node at level l in the compu-
tation tree. So, for every k′, we generate J nodes in level
l + 1, each of which are the roots of trees for expansion
of corresponding integrals. The result is an expansion for
F l+1 of the same form as Equation 7.

We denote a term in this expansion as a compute node
N(q, u, u0, j). It and its descendants in the same level
l represent h(t; q, ueAtBje

−At, u0). Its children in level
l + 1 represent new terms in F l+1. Node N(q, u, u0, j)
contributes the term

q(t)weAt, where w = ueAs0Bje
−As0 , (9)

to the total sum. Its two children on the same level are
N(q[a,s0], u, w, j) and N(q[s0,b], u, w, j) where s0 = a+b

2 .
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Algorithm 1 TTOP Filter
Initialize priority queue PQ with N(1, v, 0, 0)
while PQ not empty and compute time left do

Let N(q, u, u0, j)← Pop(PQ)
Set (a, b) be the support range of q
Set s0 = a+b

2 , and w = ueAs0Bje
−As0

Add q(t)weAt to the running sum (see Equation 9)
{Next line can be generalized to more than 2 splits}
Add N(q[a,s0], u, w, j) and N(q[s0,b], u, w, j) to PQ
for j′ = 1 to J do

for i = 1 to m do
Add N(q̄, di(w, u0), 0, j′) to PQ

On the next level, it generates a node N(q̄, w − u0, 0, j
′),

for all 1 ≤ j′ ≤ J . Figure 1 shows this expansion.

For reasons that will be clear in the next section, we can-
not form w − u0 (even though we can form each individu-
ally). Thus, node N(q̄, w− u0, 0, j

′) could be described by
two nodes: N(q̄, w, 0, j′) and N(q̄,−u0, 0, j

′). However,
the second node will essentially “undo” calculations done
elsewhere. We address this in the next section.

These recursively generated nodes represent an infinite tree
whose sum is veQt. Nodes have a single value, plus “same-
level” children who represent finer approximations of the
integral, and “next-level” children who represent one com-
ponent of F l for the next level l. The sum of all nodes
at level l describes a system that evolves according to A
(instead of Q), but for which at l time points (positioned
anywhere), the correction B = Q−A is applied. If A = 0,
then each level is one term in the Taylor expansion of Q.
The traditional 1

i! coefficients in such an expansion are cap-
tured by our piece-wise polynomial integrations.

If we explore the tree such that every node will be visited
in the limit of infinite computational time, then we can add
each node’s evaluation at time t to a running sum and com-
pute veQt. Algorithm 1 outlines this method using a pri-
ority queue to concentrate computation on portions of the
tree with large contributions.

2.2. Structured TOP calculations

For the scenarios of interest, the vector v and matrix Q are
too large to explicitly represent because the state space con-
sists of one state for every assignment to a set of m vari-
ables, X1 through Xm. We will assume that v is an inde-
pendent distribution (although we can extend this work to
dependencies in v, but this eases the exposition). In Kro-
necker algebra this means v =

⊗m
i=1 vi, where each vi is a

small row-vector of the marginal distribution over Xi.

We now show how to keep each quantity in the computa-
tion tree representable exactly as a similarly factored dis-

tribution: a Kronecker product with one term for each vari-
able. If A =

⊕m
i=1Ai, then eAt =

⊗m
i=1 e

Ait. We assume
that each Ai (which is only over the state space of Xi) is
small enough so that calculation of eAit can be performed
efficiently. If we also require that each Bj =

⊗m
i=1Bj,i,

then all vectors and matrices to be multiplied in the com-
putation tree are such Kronecker products. In particular, at
node N(q, u, u0, j), we need to compute w (Equation 9) for
its contribution to the sum. Because u, Bj , and eAs0 are all
Kronecker products and (A⊗B)(C⊗D) = (AC)⊗(BD),
all of the matrix products can be performed efficiently by
just operating on the subspaces over each variable indepen-
dently. Thus w (and by extension the node’s contribution
to the sum) is a completely factored vector represented as a
Kronecker product (that is, a distribution in which all vari-
ables are independent).

The generation of new nodes does not require any other
operations, except for manipulation of one-dimensional
piece-wise polynomials. Thus, our answer is a weighted
sum of independent distributions (Kronecker products). It
is not representable as a Kronecker product because it is a
full distribution. However, any expectation of this distribu-
tion can be computed by summing up the contribution of
each of these independent terms.

As we mentioned earlier, N(q̄, w−u0, 0, j
′) has the expres-

sion w− u0 which is not a Kronecker product (despite that
both w and u0 are). To handle this, we note that

m⊗
i=1

xi −
m⊗
i=1

yi =

m∑
i′=1

di′(x, y) (10)

where

di′(x, y) =

(⊗
i<i′

yi

)
⊗ (xi′ − yi′)⊗

(⊗
i>i′

xi

)
(11)

Because of how we select Bj (see below), xi′ − yi′ is only
non-zero for a few i′ (the family of variable j). Further-
more, this allows us to split up the nodes by how much the
deviation (w − u0) contributes by variable, which concen-
trates computation on those variables whose approxima-
tions are most difficult. Thus, we use this decomposition
and divide the node N(q̄, w − u0, 0, j

′) (see Figure 1) into
nodes N(q̄, di′(w, u0), 0, j′) for all i′ for which wi′ 6= u0i′ .

The necessary form for Q =
⊕m

i=1Ai +
∑J

j=1

⊗m
i=1Bj,i

is always possible, although it might result in one Bj for
each element of Q (which would in general be exponen-
tial in the number of state variables). Binary decision
diagrams are often used to encode Q. In stochastic logic
applications a disjunctive partitioning leads very naturally
to this structure (Burch et al., 1991; Ciardo & Yu, 2005).
However, they are encoded in a form where A = 0. Tech-
niques similar to those we describe next can be applied to
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Q1 =

[
−1 1

3 −3

]

Q2|0 =

[
−2 2

4 −4

]

Q2|1 =

[
−4 4

3 −3

]

X1

X2

A1 =

[
−1 1

3 −3

]

A2 =

[
−2 2

3 −3

] B1 =

[
1 0
0 0

]
︸ ︷︷ ︸

∆1,1

⊗
[

0 0
1 −1

]
︸ ︷︷ ︸

Q2|1−A2=B(2|1),2

=


0 0 0 0
1 −1 0 0
0 0 0 0
0 0 0 0



B2 =

[
0 0
0 1

]
︸ ︷︷ ︸

∆2,2

⊗
[
−2 2

0 0

]
︸ ︷︷ ︸

Q2|2−A2=B(2|2),2

=


0 0 0 0
0 0 0 0
0 0 −2 2
0 0 0 0



Q =


−3 2 1 0

4 −5 0 1
3 0 −7 4
0 3 3 −6

 A = A1 ⊕A2 =


−3 2 1 0

3 −4 0 1
3 0 −5 2
0 3 3 −6

 B = B1 +B2

Figure 2. Two-node CTBN and decomposition. The large matrices (4-by-4) are implicit. Q is broken into an independent A and two
correction matrices, B1 and B2.

pull intensity from the Bj matrices into A, but we will fo-
cus on a different representation.

2.3. Continuous time Bayesian networks

A continuous time Bayesian network (CTBN) (Nodelman
et al., 2002) is a graphical model which provides a struc-
tured representation of a CTMP. The initial distribution is
described by a Bayesian network which we assume has no
edges (but this work can be extended to dependencies in
the initial distribution). The transition model is specified as
a directed and possibly cyclic graph, in which the nodes in
the model represent variables of the Markov process, and
the dynamics of each node depend on the state of its par-
ents in the graph. Each node Xi, for i = 1, . . . ,m, has a
set of parents Ui. The rate matrix Q is factored into condi-
tional rate matrices, Qi|ui

for every assignment of ui to Ui.
Each conditional intensity matrix gives the rates at which
variable Xi transitions at instants when Ui = ui. No two
variables can transition at exactly the same instant so any
element in the global Q matrix describing a change of mul-
tiple variables is 0.

The global Q matrix for a CTBN can be represented with
Kronecker algebra. Let Ri|ui

=
⊗

i′ R(i|ui),i′ be a Kro-
necker product of one matrix for each variable where

R(i|ui),i′ =


Qi|ui

if i′ = i

∆k,k if i′ ∈ Pa(Xi) & k is val. of i′ in ui
I otherwise .

(12)
where ∆k,k is a matrix of all zeros except a single one at
location k, k. In this way,Ri|ui

distributes the rates inQi|ui

to the proper locations in Q. The full Q for the CTBN is

therefore

Q =

M∑
i=1

∑
ui

(
M⊗

i′=1

R(i|ui),i′

)
. (13)

This corresponds to our TOP representation of Q where A
is 0 and there is one Bj for each variable and instantiation
of its parents. We can pull intensity into the A matrix by
defining

B(i|ui),i′ =


Qi|ui
−Ai if i′ = i

∆k,k if i′ ∈ Pa(Xi) & k is val. of i′ in ui
I otherwise .

(14)
Then

Q =
⊕
i

Ai +

M∑
i=1

∑
ui

(
M⊗

i′=1

B(i|ui),i′

)
. (15)

The algebra is long, but straight-forward. It holds because
Ai is constant with respect to ui and the sum over ui rep-
resents each possible instantiation exactly once. The result
is that Ai represents an independent, approximate process
for Xi. A is the joint process of each of these independent
approximations. The differences between the independent
process and the CTBN are given by oneBi|ui

for each vari-
able and its parents’ instantiation. Note that ∆(i|ui),i′ = I
if i′ is not a parent of i. Thus, most of the components
of any Bj are the identity and computing ueAsBe−As for
these components is trivial (they are the same as u). Thus,
the calculations for N(q, u, u0, j) are local to the variable j
and its parents.
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4×
wa,1e

A14

⊗
wa,2e

A24

a : N(t, v1 ⊗ v2, 0⊗ 0, 1)

wa,1 = v1e
A12∆1,1e

−A12

wa,2 = v2e
A22B(2|1),2e

−A22

id: node parameters

valueinternal calculations

v1e
A14

⊗
v2e

A24

root for veQ4

4×
wb,1e

A14

⊗
wb,2e

A24

b : N(t, v1 ⊗ v2, 0⊗ 0, 2)

wb,1 = v1e
A12∆2,2e

−A12

wb,2 = v2e
A22B(2|2),2e

−A22

8×
wd,1e

A14

⊗
wd,2e

A24

d : N(t2/2, wa,1 ⊗ wa,2, 0⊗ 0, 1)

wd,1 = wa,1e
A12∆1,1e

−A12

wd,2 = wa,2e
A22B(2|1),2e

−A22

8×
we,1e

A14

⊗
we,2e

A24

e : N(t2/2, wa,1 ⊗ wa,2, 0⊗ 0, 2)

we,1 = wa,1e
A12∆2,2e

−A12

we,2 = wa,2e
A22B(2|2),2e

−A22

2×
wc,1e

A14

⊗
wc,2e

A24
− 2×

wb,1e
A14

⊗
wb,2e

A24

c : N(I[t < 2]× t, v1 ⊗ v2, wb,1 ⊗ wb,2, 2)

wc,1 = v1e
A11∆2,2e

−A11

wc,2 = v2e
A21B(2|2),2e

−A21

Figure 3. Portion of computation tree for example in Figure 2 for t = 4. Each box is one node in the computation tree (see Figure 1).
Nodes a and b are the children of the root. Nodes d and e are examples of their children at the next level (l = 2). Node c is an example
of a refinement (of node b). Equation 11 dictates how the children of c for l = 2 are computed because u0 6= 0 for this node.

2.4. CTBN example

Figure 2 shows a simple 2-variable CTBN and one possible
decomposition into A and B. Here the local Ai matrices
are chosen to be the minimal rates. Because X1 has no
parents,A1 is exact and there are noB terms. X2 generates
2 B terms. If we let v = v1 ⊗ v2 (that is, v1 and v2 are the
independent marginals ofX1 andX2), then Figure 3 shows
a small portion of the computation tree.

This method essentially computes the effect of A exactly
and incorporates the effects of B as a Taylor expansion,
adding increasing numbers of terms. Note that in Figure 2,
A1 and A2 are proper intensity matrices (their rows sum
to 0). This means that B2|0 and B2|1 have negative diag-
onal elements. This results in a computation that corre-
sponds to a Taylor expansion with alternating signs. This
can cause computational problems. One alternative is to
arrange for B to have no negative elements. For instance

A2 =

[
−4 2

3 −4

]
, resulting in B2|0 =

[
2 0
1 0

]
and

B2|1 =

[
0 2
0 1

]
. The disadvantage is that v2e

A2t sums

to less than 1. The non-root nodes add probability to the
answer (instead of moving it within the answer).

Finally, for a CTBN, multiplication by a Bj is particularly
simple. The j value indexes a variable (Xi) and an instan-
tiation to its parents (ui). To multiply a factored vector by
Bj , multiply the Xi component by Qi|ui

− Ai. For each
component associated with a parent, zero out all elements
of the vector except for the one consistent with ui. Vectors
for non-parent nodes are unchanged.

2.5. Smoothing and computational considerations

The discussion so far has focused on filtering. We would
also like to perform smoothing. We will limit ourselves
to the case in which the initial distribution at time 0, v, is
known and there is evidence at a later time T for which
the vector vT represents the probability of the evidence for
each possible state of the system. We assume that both
vectors factor as previously discussed.

The goal is to compute (an expectation of) the distribu-
tion at time t conditioned on the evidence at time T . This
consists of computing the Hadamard (point-wise) product
of veQt and vT e

Q>(T−t) (and then normalizing the re-
sult). First, consider computing each exponential sepa-
rately. Let the result of the “forward” direction be

∑
j αj

where the forward calculation’s jth node had contribution
αj =

⊗m
i=1 αj,i. Let the “backward” direction be similarly
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(a) m = 9

10
−1

10
0

10
1

10
−3

10
−2

10
−1

10
0

10
1

Computation time (sec)

K
L 

di
ve

rg
en

ce

 

 

TTOP
AuxGibbs
IS

(b) m = 15
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(c) m = 21

Figure 4. Computation time versus KL divergence for the toroid networks when τ = 2, β = 0.5.
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(b) m = 15
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(c) m = 21

Figure 5. Computation time versus KL divergence for the toroid networks when τ = 2, β = 1.

represented as
∑

k βk with βk =
⊗m

i=1 βk,i. It can easily
be shown that

Na∑
j=1

αj �
Nb∑
k=1

βk =

Na∑
j=1

Nb∑
k=1

(
m⊗
i=1

αj,i

)
�

(
m⊗
i=1

βk,i

)

=

Na∑
j=1

Nb∑
k=1

m⊗
i=1

(αj,i � βk,i) (16)

Thus, we must consider every pair of nodes, one from the
forward expansion and one from the backward expansion.
For each pair, the components of the factored representa-
tion are point-wise multiplied together to obtain the pair’s
contribution to the answer.

We want to include these terms judiciously to best use a
finite computational budget. We do this by keeping a fron-
tier set of pairs of computation nodes, one from the forward
tree and one from the backward tree. If we have explored
(added to the smoothing result) αj�βk, we add to our fron-
tier set αj paired with all of βk’s children and αj’s children
paired with βk. We use a closed list to ensure no pair is
considered twice.

The question then is how to prioritize members of the fron-
tier. We need to have an estimate of the total contribution of

this pair and all subsequent pairs in the graph. We select the
sum of this node’s contribution to the query value (absolu-
tion value of the change) and the product of the maximum
value in each node.

3. Experiments
We implemented our method, TTOP (Tree of Time-
Ordered Products), as part of the CTBN-RLE code base
(Shelton et al., 2010), and it will be included in the next
version. We evaluated our method on a synthetic network
of Ising model dynamics. The Ising model is a well-known
interaction model with applications in many fields includ-
ing statistical mechanics, genetics, and neuroscience (Zhou
& Schmidler, 2009). The experimental results focus on in-
ference accuracy given a known network. The Ising model
was chosen so that we could compute the true answer in a
reasonable time and scale the problem size.

Using this model, we generated a directed toroid net-
work structure with cycles following (El-Hay et al., 2010).
Nodes follow their parents’ states according to a coupling
strength parameter (β). A rate parameter (τ ) determines
how fast nodes toggle between states. We scale the num-
ber of nodes in the network but limit it to 21 to be able to



Deterministic Anytime Inference for Stochastic CTMPs

compare the results to exact inference. We use three net-
works of respectively m = 9, 15, and 21 binary variables.
We could not include networks with more than 21 binary
variables because we cannot do exact exponentiation on a
matrix of size bigger than 221 × 221 in a reasonable time.
We scale the network by adding rows of nodes. For these
networks we fix the τ parameter and vary β. Nodes can
take on values −1 and +1.

We compare TTOP to two efficient anytime algorithms:
auxiliary Gibbs sampling (AuxGibbs) (Rao & Teh, 2011)
and importance sampling (IS) (Fan et al., 2010). We also
compared to a mean field variational approach (MF) (Cohn
et al., 2009); however, error for MF is above the error range
of other methods for all computation times. For this reason,
we omit the MF results in the plots. We analyze the error
in marginals computed by each method relative to exact in-
ference. We focus on the computation time because in our
experiments memory was not an issue and whole computa-
tion tree occupied only a few GBs.

For TTOP, we set the number of splits for the quadrature
(see Equation 5) to 10 because it produces a good compu-
tation time versus error performance. We vary the compu-
tation time budget to observe the trade-off between compu-
tation time and the error.

For AuxGibbs, we vary the sample size between 50 and
5000, and set the burn-in period to be 10% of this value.
For IS, the sample size varies between 500 to 50000. We
ran the experiments 100 times for each test for both sam-
pling methods. The computation time shown in the plots
is the average of these runs for a given number of sam-
ples. The error is the sum of the KL-divergences of all the
marginals from their true values.

Our experiments focus on smoothing. The networks start
from a deterministic state, for m = 9: at t = 0 variables
1–5 are +1 and 6–9 are −1. At t = 1, variables 1–3 have
switched to −1, 4–5 remain +1, and 6–9 have switched to
+1. For m = 15 and 21 we use a similar pattern of evi-
dence for comparison reasons. For m = 15, the variables
1–5, 7–8, 10–11 start at +1 and the remaining variables
start at −1. The variables 1–3 switch to −1, while 4–5,7–
8, and 10–11 stay at +1, and 6, 9 and 12–15 switch to +1.
The evidence for m = 21 also follows the same pattern
scaled to 21 nodes.

The nodes are not observed between t = 0 and t = 1.
We query the marginal distributions of nodes at t = 0.5.
Figures 4 and 5 show computation time versus sum of KL-
divergence of marginals. We focus on the first 20 seconds
of computation time because usually a few seconds are
enough for our inference tasks. The lines in the plots con-
tinue their trend and cross at some point except for Figure
4-b. A KL-divergence sum of 10−2 is generally accurate

for these networks.

Figure 4 shows the results for τ = 2, β = 0.5. For most
of these experiments, TTOP performs better than sampling
methods. When the coupling strength of the network is
increased to β = 1 as shown in Figure 5, TTOP has more
variations in the error as the computation time increases but
still has better performance overall. The occasional peaks
in the error happen because sometimes a part of the com-
putation tree is expanded and added to the sum, without the
part that balances it since the time budget expired. This can
be seen as more computation time is given to the algorithm,
the errors decrease with the addition of the balancing part.

As the number of nodes in the network increase, our
method keeps the computation time versus error advantage.
Additionally, the gap between our method and others in-
creases with the network size. Especially when β = 1,
it performs better for the larger networks. While we can-
not perform exact inference for larger networks, we expect
these trends would continue as the problem size scales.

TTOP is also much better for short computation times, be-
cause it solves e(At) directly by integration while the sam-
pling methods can generate only a few samples. Although
the derivatives are smaller for the TTOP lines, this could
potentially be fixed with better node prioritization. The best
node prioritization would be one that looked at the contri-
bution of the whole subtree rooted at a node rather than
only the contribution of that node. Our heuristic is good
for the first few levels of the tree, but it does not do as well
as we go deeper in the tree.

The fluctuations in the error of TTOP are expected. The
error from a single run of sampling would fluctuate as
well. The plotted results of our method are from a single
run compared to the averaged results of sampling methods
which are 100 runs.

4. Conclusion
We have demonstrated an anytime algorithm for structured
CTMP filtering and smoothing. Unlike prior work, it is de-
terministic, which can be of benefit when used inside learn-
ing methods. In the experiments, it has better computation
time versus error performance than prior anytime conver-
gent methods, especially for loosely coupled systems. Also
as network size increases and coupling strength stays the
same, our method’s advantage increases as well.
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