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ABSTRACT OF THE DISSERTATION

Continuous Time Bayesian Network Approximate Inference and Social Network
Applications

by

Yu Fan

Doctor of Philosophy, Graduate Program in Computer Science
University of California, Riverside, December 2009

Dr. Christian R. Shelton, Chairperson

Many real world systems evolve asynchronously in continuous time, for example com-

puter networks, sensor networks, mobile robots, and cellular metabolisms. Continuous time

Bayesian Networks (CTBNs) model such stochastic systems incontinuous time using graphs

to represent conditional independencies among discrete-valued processes. Exact inference in

a CTBN is often intractable as the state space of the dynamic system grows exponentially

with the number of variables.

In this dissertation, we first focus on approximate inference in CTBNs. We present

an approximate inference algorithm based on importance sampling. Unlike other approxi-

mate inference algorithms for CTBNs, our importance sampling algorithm does not depend

on complex computations, since our sampling procedure onlyrequires sampling from reg-

ular exponential distributions which can be done in constant time. We then extend it to
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continuous-time particle filtering and smoothing algorithms. We also develop a Metropolis-

Hastings algorithm for CTBNs using importance sampling. These algorithms can estimate

the expectation of any function of a trajectory, conditioned on any evidence set containing

the values of subsets of the variables over subsets of the time line.

We then apply our approximate inference algorithms to learning social network dynam-

ics. Existing sociology models for social network dynamicsrequire direct observation of

the social networks. Furthermore, existing parameter estimation technique for these models

uses forward sampling without considering the given observations, which affects the esti-

mation accuracy. In this dissertation, we demonstrate thatthese models can be viewed as

CTBNs. Our sampling-based approximate inference method for CTBNs can be used as the

basis of an expectation-maximization procedure that achieves better accuracy in estimating

the parameters of the model than the standard learning algorithm from the sociology litera-

ture. We extend the existing social network models to allow for indirect and asynchronous

observations of the links. A Markov chain Monte Carlo sampling algorithm for this new

model permits estimation and inference. Experiments on both synthetic data and real social

network data show that our approach achieves higher estimation accuracy, and can be applied

to various types of social data.
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Chapter 1

Introduction

Many real world applications, such as computer networks, sensor networks, social networks,

mobile robots, and cellular metabolisms, involve highly complex dynamic systems. For ex-

ample, a mobile robot keeps receiving signals from its sensors reflecting the changing of its

environment as it moves around. Or in a computer network, each computer receives and

sends hundreds of different types of packets every second. These applications usually con-

tain a large number of stochastic variables, which evolve asynchronously in continuous time.

Modeling, learning and reasoning about these complex dynamic systems is an important task

and a great challenge.

1.1 Continuous Time Bayesian Networks

In all the above applications, one central task is to understand how variables of the system

change and to predict when the change happens. That is, we would like to answer questions
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about probability distributions of the system over time. For instance, we might want to know

how likely two persons will become friends in the next six months. Since all variables evolve

in continuous time, one natural approach is to use continuous-time models. Markov processes

are commonly used for systems with a finite number of states. To model a multi-variable

system, we need to combine all variables of the system into a single process variable. For

example, suppose we want to model the friendship between twopersons and their phone call

communications. We need a binary variableXij to represent whether a personi is a friend

of a personj, and another binary variableCij to represent whetheri is callingj. To consider

these two factors using a single Markov process, we need to combine these two variables

together, which needs four states, each of which corresponds to a possible state combination

of Xij andCij. If we also include the information fromj to i, i.e.,Xji andCji, we will need

16 states for this Markov process, each of which represents apossible combination of these

four binary variables. If we want to analyze these types of dynamics with more people, the

number of states of the Markov process increases exponentially.

Such growth of the state space of the Markov process makes it very difficult to repre-

sent large systems and calculate probability distributions for them. One solution is to use

a structured representation to factorize the state space according to the dependencies of the

variables. Bayesian networks [Pearl, 1988] are a standard method for modeling static sys-

tems, and dynamic Bayesian networks (DBNs) [Dean and Kanazawa, 1989] are commonly

used for dynamic systems. A DBN describes the dynamic systemas a time-sliced model by

measuring the evolution of the system with a (usually fixed) time interval∆t. The transition
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ji
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ji

Figure 1.1: A DBN model of friendship and phone call

probabilities from states at timet to states at timet + ∆t are represented by a Bayesian net-

work. For example, we can model the dynamics of the friendship and phone calls betweeni

andj using a DBN shown in Figure 1.1. Variables with a superscript0 represent variables at

time stept and those with a superscript 1 represent variables at time stept+∆t. The dynam-

ics of each variable only depend on some variables at timet andt + ∆t. For example, the

transition probability ofX1
ij depends onX0

ij , X0
ji, while C1

ij depends onX1
ij andC0

ij. Using

the dependencies among variables, the transition probabilities between two time slicest and

t + ∆t are decomposed into each variables. Thus, large dynamic systems can be represented

efficiently using DBNs.

DBNs work well for systems that are observed at regular time steps. However, discretiz-

ing time line has several limitations. First, we usually choose a fixed time interval,∆t. In

many real world systems, variables evolve at different timegranularities. Some variables

may evolve very fast whereas some evolve very slowly. Choosing an appropriate time in-
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terval is a difficult task. A larger∆t may result in an inaccurate model while a smaller∆t

may cause the model to be inefficient. For instance, in the friendship and phone call system

in Figure 1.1, two persons may call each other four or five times every week. To accurately

represent this, we have to choose the finest granularity, which is computationally inefficient

as the friendship between the two persons is not expected to change for several months. If

we choose a larger time interval, the resulting model is insufficient to represent the phone-

call events that happen during time intervals, which makes the transition model inaccurate.

Moreover, variables in a system may evolve in irregular steps. Take the phone-call event as

an example. During one month, we may observe many events in the first two days and ob-

serve nothing in the rest of the month. However, once we choose the time interval, we have

to propagate the distribution in each time step even when no events are observed.

Second, the dependencies of the transition model are unstable with respect to∆t. That is,

different choices of∆t may result in different network structures betweent andt + ∆t. For

example, we can unroll the DBN in Figure 1.1 for 2 time steps, which results in Figure 1.2(a).

Figure 1.2(a) describes the dependencies among variables at time stepst, t+∆t andt+2∆t.

From the figure, we can see thatC2
ij also depends onX0

ij, since the probability influence of

X0
ij can flow fromX1

ij andC1
ij to C2

ij. Thus, if we choose a new interval∆t′ = 2∆t, we will

obtain a different DBN as shown in Figure 1.2(b).

Finally, DBNs (and discrete-time Markov processes in general) do not necessarily cor-

respond to processes that are Markovian outside of the sampled instants of time. Therefore,

there may not be any simple extension of a DBN to the times between the sampled instants.

4
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(b)

Figure 1.2: A DBN for a different time interval. (a) UnrolledDBN of friendship and phone
call for 2 time steps. (b) DBN structure for a different time interval.

For example, the transition probabilities of a Markov chainwith n states can be represented

using ann×n matrixP , where each elementPij in P describes the probability of transition-

ing from statei to statej in each time step fromt to t + ∆t. If we further want to include

the Markov behaviors in the middle of each time intervalt + 1
2
∆t, we need to use another

transition matrixP ′ for the new model. Thus, the transition probabilities fromt to t + ∆t

under the new model can be calculated asP ′ × P ′. To preserve the Markov property in the

old Markov chain,P ′ should satisfyP ′×P ′ = P . However, there is not always a real-valued

solution for suchP ′.

Since discrete-time models such as DBNs have some limitations and single Markov pro-

cesses suffer from the state space explosion as the number ofvariables increases, an ideal
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solution is to use a continuous-time model that can provide astructured representation to

decompose the state space.

Recently, Nodelman et al. [2002] presentedcontinuous time Bayesian networks(CTBNs),

which provide a structural representation of continuous-time, finite-state, Markov processes.

A CTBN factorizes a multi-variable Markov process into local variables using a graphical

representation. Each variable is modeled as an inhomogeneous Markov process whose dy-

namics depend on the current value of a set of variables in thesystem. For example, the

friendship and phone-call model can be described using the CTBN shown in Figure 1.3.

Since we use a continuous-time model, only four variables are needed, each of which is

an inhomogeneous Markov process. The dynamics of each variable depend on the current

instantiation of a set of other variables in the model. Thesedependencies are represented

using the arcs in the graph. For instance, the dynamics ofCij depend on the current value

of Xij . By doing this, CTBNs explicitly represent the temporal dynamics in continuous

time and exploit the dependencies among stochastic variables using a structured represen-

tation. Thus, exponential explosion in the representationis avoided, and queries can be

answered using distributions over continuous time. Because of these advantages, CTBNs

have been applied to various real world systems, including human-computer interactions

[Nodelman and Horvitz, 2003], server farm failures [Herbrich et al., 2007], robot monitoring

[Ng et al., 2005], network intrusion detection [Xu and Shelton, 2008], and social network

analysis [Fan and Shelton, 2009]. Kan and Shelton [2008] exploited the CTBN representa-

6



Cij Cji

Xij Xji

Figure 1.3: A CTBN model of friendship and phone call

tion and presented an approach to solve structured continuous-time Markov decision pro-

cesses.

1.2 Inference in CTBNs

In CTBNs, a trajectory (or sample) consists of the starting values for the system along with

the (real-valued) times at which the variables change, and their corresponding new values. A

partial trajectory is a trajectory in which some values or transitions are missing for some vari-

ables during some time intervals. An observation (or evidence) in a CTBN is usually a partial

trajectory. Inference for CTBNs is the task of estimating distributions given some observa-

tions. Inference is very important as it not only helps us answer queries about distributions,

but it is also involved in parameter estimation when the observation data are incomplete. Per-

forming exact inference in a CTBN requires combining all thevariables in the CTBN into a

single Markov process. This method, as discussed previously, suffers from the exponential

explosion of the state space. Thus, many applications of CTBNs require an approximate in-

7



ference method. One method based on expectation propagation [Minka, 2001] was presented

in Nodelman et al. [2005a]. Saria et al. [2007] extended it tofull belief propagation and pro-

vided a method to adapt the approximation quality. Cohn et al. [2009] provided a method

based on mean field variational approximation. All these methods depend on complex nu-

merical computations, are hard to implement, and are not guaranteed to converge to the true

value in the limit of infinite computing time.

Another approximate inference method is to use a sampling-based algorithm. In CTBNs,

a sample is a trajectory that is consistent with the evidence. Given the evidence, a sampling-

based algorithm generates a set of trajectories by simulating the dynamic system according

to the evidence. Queries about CTBNs are answered using the sample trajectories. For

example, if we want to know the probability that a variableX = x at timet, we check the

value ofX at t for each sampled trajectory and calculate the ratio of the number of samples

for which X = x to the total number of samples as the approximated probability. Sampling

has the advantage of being an anytime algorithm. That is, we can stop at any time during the

computation and obtain an answer. Furthermore, in the limitof infinite samples (computation

time), it converges to the true answer. Another advantage ofsampling-based algorithm is that

it is easy to handle any kind of query. Queries such as “the expected value ofX at the time

whenY transitions to valuey1 for the second time” can be calculated directly using samples,

which is difficult using the other approximate inference methods mentioned above.

Sampling from dynamic systems is not new. However, most of the previous work has

been in the area of discrete-time systems. Continuous-timesystems pose different problems.
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Any evidence containing a record of the change in a variable has a zero probability under the

model. Therefore rejection sampling and straightforward likelihood weighting are generally

not viable methods. Ng et al. [2005] developed a continuous-time particle filtering algorithm.

However, it only handles point evidence on binary and ternary discrete variables using rejec-

tion sampling, and focuses primarily on the incorporation of evidence from the continuous-

state part of the system. Recently, El-Hay et al. [2008] provided another sampling algorithm

for CTBNs using Gibbs sampling. The Gibbs sampling algorithm can handle any type of ev-

idence, and it provides an approach to sample from the exact posterior distribution given the

evidence. However, the posterior distribution can be any arbitrary function. Thus, in order to

sample exactly from it, binary search has to be applied and the posterior distribution has to

be evaluated repeatedly, which may affect the efficiency of the algorithm.

In this dissertation, we provide another sampling-based algorithm for CTBNs using im-

portance sampling. Our importance sampling algorithm generates weighted samples by nat-

urally simulating the CTBN we are reasoning about. It only forces the behavior of some

variables according to the upcoming evidence and calculates the corresponding weight contri-

bution. Queries are answered using these weighted samples.Using the importance sampling

algorithm, we can answer any type of query given any type of evidence. We also extend the

algorithm to particle filtering and smoothing algorithms. AMetropolis-Hastings algorithm

for CTBNs can also be derived based on our algorithm. The importance sampling algorithm

does not depend on complex numeric computations and is easy to implement. It can be

applied to many applications where the dependencies among variables are complicated and
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other inference algorithms are difficult to implement. One example of such applications is

social networks.

1.3 Modeling Social Network Dynamics

Social networks are a very important type of continuous-time dynamic system in our daily

life. They represent the relationships (such as friendshipor co-authorship) among actors

(such as individuals or companies). They are highly dynamicand naturally evolve in contin-

uous time. Understanding the dynamics of the social networkallows us to predict, evaluate

and control social processes more accurately. For example,it can help us control the spread

of a disease or predict the reactions of terrorists.

Social networks have been studied for decades. However, themajority of the existing

studies model social networks use static or discrete time models. Static models such as the

p1 model [Holland and Leinhardt, 1981], the Exponential Random Graph Model (ERGM, or

p∗ model) [Anderson et al., 1999], and the latent space model [Hoff et al., 2002] only focus

on the static properties of social networks and usually require the network to be fully observ-

able. Dynamic properties of social networks cannot be reflected using these models. Other

models such as those of Sarkar and Moore [2005] and Guo et al. [2007] assume social net-

works evolve in discrete time steps and study the dynamics ofsocial networks using discrete

time models. However, actors in social networks behave verydifferently. Events in social

networks often happen at an irregular pace. For example, a person may receive a lot of Face-
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book posts on the person’s birthday and only receive one or two in the next month. As we

mentioned in Section 1.1, choosing the correct time interval is a great challenge.

As social networks evolve asynchronously, a continuous-time model can provide more

flexibility and higher fidelity in modeling such networks. Recently, Snijders [2005] provided

an actor-oriented model which considers the whole social network evolution as a continuous-

time Markov process. The evolution of the network is modeledas actors making decisions

to add or remove a link to maximize a utility function. Thus, each link in the network is

modeled as an inhomogeneous Markov process, whose intensity depends on the structure of

the network and changes over time. Dynamics of the social networks in this model purely

depend on the topology of the networks. Usually, the characteristic attributes of the actors

and the networks structure (both time-variant) depend on each other. For example, people

who have the same interests are likely to become friends and friends are likely to influence

each other’s interests. Such effects should be considered when modeling social networks.

Snijders et al. [2007] extended the actor-oriented model tothe network-attribute co-evolution

model which added effects between the network structure andthe actors attributes. These

two social network dynamic models allow us to model the dynamics of social networks in

continuous time and allow the social network dynamics to depend on the entire structure

of the network and actors attributes. However, there are twoaspects upon which we can

improve.

First, the parametric estimation in Snijders [2005] and Snijders et al. [2007] was imple-

mented using a forward sampling method. However, this method can only handle data that
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completely specifies all variables at discrete time instants. The samples generated by their

forward sampling algorithm are not entirely consistent with the observations and the infor-

mation provided by the observations is only partially used during the learning procedure.

Second, parametric estimation for the network-attribute co-evolution model requires obser-

vations of the network as it evolves (at least three snapshots at different times). Usually,

direct observation of a social network is very expensive. The scarceness of the data could

result in an inaccurate estimation of the model.

In this dissertation, we address these two issues by demonstrating the relationship be-

tween social network dynamic models and CTBNs. Our importance sampling algorithm for

CTBNs can be applied to social network dynamic models with small modifications. Using

importance sampling, we can handle asynchronous, partial and duration observations, and

improve the previous parametric estimation methods for social network dynamics. We ad-

dress the second issue by noticing the fact that other observations, such as communication

events among people (emails and instant messages), can reflect people’s relationships indi-

rectly. More importantly, they are easier to collect. We develop ahidden social network

dynamics model, in which indirect observations such as emails events amongpeople can be

utilized.
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1.4 Outline and Contribution

In this dissertation, we explore sampling-based approximate inference algorithms for CTBNs

using importance sampling. We then discuss how to apply these algorithms to real world

applications, such as social network analysis. The remainder of the dissertation is structured

as following:

In Chapter 2, we review the background of continuous time Markov processes, which is

the basis of both CTBNs and continuous-time social network dynamics models.

In Chapter 3, we review the background of CTBNs, including the model definition, exact

inference and approximate inference in CTBNs, and parametric estimation using complete

and partial observations.

In Chapter 4, we discuss sampling-based approximate inference algorithms for CTBNs

using importance sampling. We explain our importance sampling algorithm for CTBNs, and

then extend the algorithm to particle filtering and smoothing algorithms. We also demonstrate

a Metropolis-Hastings algorithm for CTBNs.

In Chapter 5, we review continuous-time social network dynamics models. We intro-

duce the actor-based models, the network-attribute co-evolution models and the method of

moments algorithm for parameter estimation in these models.

In Chapter 6 we show how to apply CTBNs and our importance sampling algorithms to

continuous-time social network dynamic models. We also provide our hidden social network
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dynamic model and explain a parametric estimation algorithm using our Metropolis-Hastings

sampling algorithm.

Chapter 7 concludes this dissertation with a summary and discussion.

The contributions of this dissertation are represented in Chapter 4 and Chapter 6. More

specifically, the contributions of this dissertation are:

• We develop an importance sampling algorithm for CTBNs. The algorithm can handle

any type of observation and does not depend on complex numeric computations. It can

be easily extended to continuous time systems other than CTBNs.

• We extend the importance sampling algorithm to particle filtering and smoothing algo-

rithms.

• We present a Metropolis-Hastings algorithm for CTBN based on the importance sam-

pling algorithm.

• We introduce the CTBN model and our importance sampling algorithm to social net-

work analysis. We adopt the importance sampling algorithm to a continuous-time so-

cial network dynamic model. The algorithm guarantees that the samples generated

from continuous-time social network dynamic models are consistent with the observa-

tions, which greatly improves the learning accuracy.

• We design the hidden social network dynamics model. The model allow us to use

indirect observation data, such as communication events among people, to learn the

dynamics of the social network dynamics, which is unobserved (hidden) all the time.
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• We develop a Metropolis-Hastings sampling algorithm for the hidden social network

dynamics model. The algorithms can handle both complete andpartially observed

data.

• We apply our sampling algorithms and hidden social network dynamics model to sev-

eral real world applications. We demonstrate that social network dynamics can be

learned from many indirect observations, which greatly extends the data types that can

be used in analyzing social network dynamics.
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Chapter 2

Continuous Time Markov Processes

In this chapter, we provide the background material about continuous-time Markov pro-

cesses (see Norris [1997] for a more complete treatment). Wefirst give the definition for

a continuous-time, finite-state, homogeneous Markov process, and then discuss how to rea-

son about continuous-time Markov processes.

2.1 Representation

Let X be a continuous-time, finite-state, homogeneous Markov process. X hasn states

{x1, x2, . . . , xn}. X(t) is the (finite) state of the system at timet. The collection of random

variables{X(t)|t ∈ R+} composes the process.X satisfies the Markov assumption. That is,

P (X(t + s) = xj |X(s) = xi, X(r) = xr) = P (x(t + s) = xj|x(s) = xi)
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∀s, t ≥ 0, 0 ≤ r < s andi, j ∈ {1, . . . , n}.

The initial distributionP 0
X = P (x(0)) is a multinomial distribution overn states ofX.

The transient behavior ofX is described by the initial distributionP 0
X and the transition

model which is often represented by the intensity matrix

QX =




−qx1 qx1x2 · · · qx1xn

qx2x1 −qx2 · · · qx2xn

...
...

. . .
...

qxnx1 qxnx2 · · · −qxn




,

whereqxixj
is the intensity with whichX transitions fromxi to xj andqxi

=
∑

j 6=i qxixj
.

The diagonal elementsqi and the off-diagonal elementsqij define the instantaneous tran-

sition probabilities ofX. More precisely,

lim
∆t→0

P (X(t + ∆t) = xj |X(t) = xi)

∆t
= qij

lim
∆t→0

1− P (X(t + ∆t) = xi|X(t) = xi)

∆t
= qi .

The intensity matrixQX is time invariant. GivenQX , the transient behavior ofX can be

described as the following:X stays in statexi for an amount of timet and transitions to state

xj . t is exponentially distributed with parameterqxi
. That is, the probability density function
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f(qxi
, t) and the corresponding distribution functionF (qxi

, t) for X staying in statexi are

f(qxi
, t) = qxi

exp(−qxi
t), t ≥ 0.

F (qxi
, t) = 1− exp(−qxi

t), t ≥ 0.

The expected time of transitioning is1/qxi
. Upon transitioning, the probability thatX tran-

sitions from statexi to xj is θxixj
= qxixj

/qxi
.

Example 2.1.1 Assume we want to model the behavior of a person’s exercise intensityE(t)

which has three values (V al(E(t)) = {eo = light, e1 = medium, e2 = heavy}). We could

represent the dynamics ofE(t) using the intensity matrix

QE =




−1.8 1.6 0.2

0.5 −1 0.5

0.5 1.5 −2




.

If we set the time unit to one month, this means that we expect the person changes his

exercise intensity in1/2 = 0.5 months if his current intensity is heavy. When the intensity

is changing, with probability0.5/2 = 0.25 the new value will be light and with probability

1.5/2 = 0.75 the new value will be medium.

Often times, the dynamics system we are trying to model contain more than one variable.

To model a multi-variable system, we first combine all variables into a single joint variable

by enumerating all possible states of the variables. If the system hasN variablesXi (i =
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1, . . . , N), and each variable containsSi states, the total number of states of the joint process

is n =
∏N

i=1 Si and the size of the intensity matrix for the joint process isn by n. As the

number of variable increases, the size of the intensity matrix grows exponentially.

Example 2.1.2 Assume that in the previous example, we also need to considerthe effect of

the weatherW (t) which has two values (V al(W (t)) = {w0 = rainy, w1 = sunny}). To

model the dynamics of this system, we first list all the possible values of the joint variable:

(w0, e0), (w0, e1), (w0, e2), (w1, e0), (w1, e1), (w1, e2). We then write the transition intensity

of each pair of values into the joint intensity matrix.

w0e0




−3.5 0.7 0.3 2.5 0 0

4.4 −7.5 0.6 0 2.5 0

8.9 1.1 −12.5 0 0 2.5

0.75 0 0 −2.55 1.6 0.2

0 0.75 0 0.55−1.75 0.45

0 0 0.75 0.5 1.5 −2.75




w0e1

w0e2

w1e0

w1e1

w1e2

Notice that elements representingW (t) andE(t) changing simultaneously are all zeros.

This means that we assume any two variables cannot change their state at exactly the same

time. Since we are modeling a continuous-time dynamics, this is a natural assumption.
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2.2 Likelihood and Sufficient Statistics

Samples from a Markov process are often called trajectories, each of which consists of the

starting value of the process and a sequence of events. Each event is a transition that denotes

the new valuexi that variableX changes to at timet. The probability or likelihood of the

data thus can be calculated using sufficient statistics of the trajectories.

Suppose we are given a complete trajectoryσ generated from the Markov processX(t).

To calculate the likelihood, we can decompose the trajectory into n segments according to

the transition time. We represent each segment asdi =< ti, xi, xi+1 > wherexi is the value

of X before the transition,xi+1 is the value after the transition, andti is the timeX spends

in statexi before transitioning. The likelihood of a segmentdi can be written as

LX(di) = qxi
exp(−qxi

ti)× θxixi+1
.

The likelihood of the entire trajectoryσ is the probability of the starting valuex0, times

the multiplication of the likelihood of each segmentLX(di):

LX(σ) = P 0
X(x0)

n∏

i=1

LX(di)

= P 0
X(x0)

n∏

i=1

qxi
exp(−qxi

ti)× θxdi
xdi+1

.

We summarize the data using the sufficient statistics:

• T [x], the total amount of timeX spends in statex, and
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• M [x, x′], the total number of timesX transitions from statex to statex′, wherex 6= x′.

The likelihood of the trajectoryσ can be written as

LX(σ) = P 0
X(x0)

∏

x

(
qM [x]
x exp(−qxT [x])×

∏

x 6=x′

θ
M [x,x′]
xx′

)
.

2.3 Query of Markov Process

Given the intensity matrixQX and the initial distributionP 0
x of a continuous-time homoge-

neous Markov processX, there are a number of questions we can answer.

Commonly we wish to calculate the conditional probabilityP (X(t) = xt|X(s) = xs),

wherext is the value ofX at timet andxs is the value ofX at an earlier times. If X hasn

states{x1, . . . , xn}, all the conditional probabilities can be represented using ann×n matrix

P (X(t)|X(s)), where theith row vector is the conditional distribution over the value ofX

at timet givenX(s) = xi. P (X(t)|X(s)) can be calculated as

P (X(t)|X(s)) = exp(QX(t− s)) .

Let PX(t) be a row vector representing the distribution over the values of X at timet.

This distribution can be calculated as

PX(t) = P 0
X exp(QXt)
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where the initial distributionP 0
X is represented as a row vector. The functionexp() denotes

the matrix exponential, which is defined as following for a matrix Q:

exp(Q) =

∞∑

k=0

Qk

k!
. (2.1)

For a real matrix of size2× 2, the matrix exponential can be calculated exactly as

exp(




q11 q12

q21 q22


) =

1

∆




m11 m12

m21 m22


 ,

where

m11 = e(q11+q22)/2(∆cosh(
1

2
∆) + (q11 − q22)sinh(

1

2
∆))

m12 = 2q12e
(q11+q22)/2sinh(

1

2
∆)

m21 = 2q21e
(q11+q22)/2sinh(

1

2
∆)

m22 = e(q11+q12)/2(∆cosh(
1

2
∆)− (q11 − q12)sinh(

1

2
∆))

and

∆ =
√

(q11 − q22)2 + 4q12q21

For general real matrices, the matrix exponential can only be calculated numerically.
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2.4 Summary

Many real world systems evolve naturally in continuous time. Continuous-time Markov pro-

cess allows us to realistically model and reason about thesedynamic systems using continuous-

time. However, the size of the state space of a continuous-time Markov process grows expo-

nentially with the number of variables in the system, which makes this method infeasible for

large systems. One solution for such state space explosion is to use models with structured

state spaces in which the dynamics of each local variable canbe represented more efficiently.

A Continuous time Bayesian network(CTBN) is such a model that decomposes a Markov

process using graphical representation. It allows us to model large dynamic systems more

efficiently and reason about these systems in continuous time. We will discuss the CTBN

model in more detail in the following chapter.
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Chapter 3

Continuous Time Bayesian Network

As we have discussed in the previous chapter, a continuous-time Markov process suffers from

state space explosion when handling large dynamic systems.A structured representation is

needed to deal with systems with many variables. In this chapter, we desribe thecontinuous

time Bayesian networks(CTBNs), which were first introduced by Nodelman et al. [2002].

CTBNs use a graphical representation to describe multi-variable continuous-time stochastic

processes, which can model real world dynamic systems efficiently.

3.1 Structured Process Representation

In order to decompose a multi-variable dynamic system, we introduce aconditional intensity

matrix (CIM) to describe the dynamics of local variables in a system. LetX be all the

variables of the dynamic system we are trying to model. LetX ∈ X be one variable in the

system andU ⊂ X be a set of other variables. The conditional intensity matrix QX|U for
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variableX is defined as a set of intensity matricesQX|u, one for each instantiationu of the

variable setU. The evolution ofX depends instantaneously on the values of the variables in

U. Using a CIM, we can model each local variable as an inhomogeneous Markov process,

whose intensities are a function of the current values of a set of other variables.

Example 3.1.1 Let us consider the dynamic system described in Example 2.1.2. Instead of

using a single Markov process to represent the whole system,we can model the dynamics

of each local variable separately by utilizing the dependecies among the variables. For

example, it is natural to stipulate that the exercise intensity depends on the weather condition.

Therefore, the dynamics of the exercise intensity can be described using two CIMs.

QE|w0
=




−1.0 0.7 0.3

4.4 −5.0 0.6

8.9 1.1 −10.0




QE|w1
=




−1.8 1.6 0.2

0.55 −1.0 0.45

0.5 1.5 −2.0




.

The behavior of variableE(t) is now represented as an inhomogeneous Markov process,

whose intensities depend on the current value ofW (t). WhenW (t) = w0, the behavior of

E(t) is described usingQE|w0
. WhenW (t) = w1, it is described usingQE|w1

.

3.2 The CTBN Model

Using CIMs, we can explore the dependencies among variablesand model each local variable

as an inhomogeneous Markov process. Thus, we can represent amulti-variable dynamic

system using a structured model, in which relations among variables can be described using
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Exercise

Weather

BodyWeight

Calorie Intake

Figure 3.1: CTBN Example: Weight Control Effect

a directed graph. Each node in the graph represents a variable and each arc between two

nodes represents the dependency between those two variables.

3.2.1 Model Definition

Definition 3.2.1 [Nodelman et al., 2002] Acontinuous time Bayesian networkN over X

consists of two components: aninitial distributionP 0
X, specified as a Bayesian networkB

overX, and acontinuous transition model, specified using a directed (possibly cyclic) graph

G whose nodes areX ∈ X. LetUX denote the parents ofX in G. Each variableX ∈ X is

associated with a conditional intensity matrix,QX|UX
.

Example 3.2.2 Assume we want to model the behavior of a person controlling his body

weight. When the person is overweight, he may exercise more to lose the excess weight.
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Increasing exercise intensity tends to increase his appetite, which will increase his daily

calorie intake. Both exercise intensity and calorie intakecontribute to his body weight. Fur-

thermore, his exercise intensity also depends on the weather. Such a dynamic system contains

four variables: body weight, exercise, calorie intake, andweather. Each variable changes in

continuous time and its changing rate depends on the currentvalue of some other variables.

We can use a CTBN to represent such behavior. The dependencies of these four variables

are depicted using a graphical structure, as shown in Figure3.1. The quantitative transient

dynamics for each variable are represented using CIMs. Let’s assume all the four variables

are binary. LetB(t) be the person’s body weight (V al(B(t)) = {b0 = normal, b1 =

overweight}), E(t) be the exercise intensity (V al(E(t) = {e0 = light, e1 = heavy}), C(t)

be his daily calorie intake (V al(C(t) = {c0 = low, c1 = high}), andW (t) be the weather

( V al(W (t) = {w0 = rainy, w1 = sunny}). The conditional intensity matrices for the four

variables can be specified as

QW QW =



−0.5 0.5

0.5 −0.5




QE|W,B

QE|w0,b0 =



−0.1 0.1

2 −2


 QE|w1,b0 =



−0.3 0.3

1 −1




QE|w0,b1 =



−0.5 0.5

0.5 −0.5


 QE|w1,b1 =



−1 1

0.1 −0.1



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QC|E QC|e0
=



−0.2 0.2

1 −1


 QC|e1

=



−1 1

0.2 −0.2




QB|E,C

QB|e0,c0 =



−0.2 0.2

0.8 −0.8


 QB|e1,c0 =



−0.1 0.1

1 −1




QB|e0,c1 =



−1 1

0.1 −0.1


 QB|e1,c1 =



−0.2 0.2

0.6 −0.6




Notice that unlike Bayesian networks, CTBN models allow cycles. The transient behavior

of each local variable is controlled by the current value of its parents. If the person is doing

light exercise and his calorie intake is low, the dynamics ofhis body weight are determined

by the intensity matrixQB|e0,c0. If the time unit is one month, we expect his weight will go

back to normal in1/0.8 = 1.25 months if he is currently overweight, doing light exercise,

and controlling his daily calorie intake.

3.2.2 Conditional Independencies

By using the graphical model, CTBNs not only provide a structured representation language

for multi-variable Markov processes, but also describe theindependencies (and dependen-

cies) among variables. Since a CTBN represents continuous-time dynamic systems, the in-

dependencies specified by a CTBN are between distributions over entire trajectories of the
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variables. Similar to a Bayesian Network, each variableXi in a CTBN is separated from all

the other variables by its Markov blanket. The Markov blanket of variableXi is defined as

the parents ofXi, the children ofXi, and the children’s parents. In a CTBN,Xi is indepen-

dent of all the other variables in the CTBN given the entire trajectory of the Markov blanket

of a variableXi.

Example 3.2.3 In the CTBN model showed in Figure 3.1, variableC(t)’s Markov blanket is

B(t) andE(t). Therefore,C(t) andW (t) are separated byB(t) andE(t). That is, given the

entire trajectory ofB(t) andE(t), C(t) andW (t) are independent.

3.2.3 Joint Markov Process

Although each node in a CTBN model represents an inhomogeneous Markov process, the

behavior of the entire CTBN model still represents a single homogeneous Markov process.

The intensity matrixQ for this joint Markov process is generated by combining all the CIMs

in the CTBN model together, which is calledamalgamation[Nodelman et al., 2002]. A

basic assumption of CTBNs is that two variables cannot transition at exactly the same time.

Therefore, all the elements in the joint intensity matrix that reflect two variables changing

simutaneously should be zeros. If each variableXi in the CTBNN hasni states, the number

of states of the joint Markov process isn =
∏

ni andQ is ann× n matrix. We generate the

joint intensity matrixQ by three steps.

• Let i andj be any pair of states in the joint Markov process where there is only one

variable whose value is different between them. LetX be that different variable andU
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be the set of parents ofX. Let u be the instantiation ofU in statei andj. The value

of the off-diagonal elementqij in Q is set to be the corresponding intensity in the CIM

QX|u.

• All the other off-diagonal elements are zero since two variables cannot transition at

exactly the same time in a CTBN.

• The diagonal elements are computed to make each row sum to zero.

Example 3.2.4 For CTBN model in Figure 3.1, we can amalgamate all the CIMs and form

a homogeneous continuous-time Markov process. The joint Markov process has 16 states:

x1 = (w0, e0, c0, b0), x2 = (w1, e0, c0, b0), x3 = (w0, e1, c0, b0), . . ., x16 = (w1, e1, c1, b1).

Therefore, the intensity matrix for the joint Markov process is of size16 × 16. The value

of each off-diagonal element for which only one variable value is different between any two

states is set to be the corresponding intensity in the CIM of that variable. For example, the

value of theqx1x3 represents changing from state(w0, e0, c0, b0) to state(w0, e1, c0, b0). We set

it to be 0.1 according to the conditional intensity matrixQE|w0,b0. All the other off-diagonal

elements are set to be zeroes. The resulting matrix is
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w0e0c0b0

2
6666666666666666666666666666666666666666666666666666666666664

−1 0.5 0.1 0 0.2 0 0 0 0.2 0 0 0 0 0 0 0

0.5 −1.2 0 0.3 0 0.2 0 0 0 0.2 0 0 0 0 0 0

2 0 −3.6 0.5 0 0 1 0 0 0 0.1 0 0 0 0 0

0 1 0.5 −2.6 0 0 0 1 0 0 0 0.1 0 0 0 0

1 0 0 0 −2.6 0.5 0.1 0 0 0 0 0 1 0 0 0

0 1 0 0 0.5 −2.8 0 0.3 0 0 0 0 0 1 0 0

0 0 0.2 0 2 0 −2.9 0.5 0 0 0 0 0 0 0.2 0

0 0 0 0.2 0 1 0.5 −1.9 0 0 0 0 0 0 0 0.2

0.8 0 0 0 0 0 0 0 −2 0.5 0.5 0 0.2 0 0 0

0 0.8 0 0 0 0 0 0 0.5 −2.5 0 1 0 0.2 0 0

0 0 1 0 0 0 0 0 0.5 0 −3 0.5 0 0 1 0

0 0 0 1 0 0 0 0 0 0.1 0.5 −2.6 0 0 0 1

0 0 0 0 0.1 0 0 0 1 0 0 0 −2.1 0.5 0.5 0

0 0 0 0 0 0.1 0 0 0 1 0 0 0.5 −2.6 0 1

0 0 0 0 0 0 0.6 0 0 0 0.2 0 0.5 0 −1.8 0.5

0 0 0 0 0 0 0 0.6 0 0 0 0.2 0 0.1 0.5 −1.4

3
7777777777777777777777777777777777777777777777777777777777775

.

w1e0c0b0

w0e1c0b0

w1e1c0b0

w0e0c1b0

w1e0c1b0

w0e1c1b0

w1e1c1b0

w0e0c0b1

w1e0c0b1

w0e1c0b1

w1e1c0b1

w0e0c1b1

w1e0c1b1

w0e1c1b1

w1e1c1b1

As we include more variables in this system, the size of the intensity matrix grows expo-

nentially with the number of variables.

3.3 Sufficient Statistics and Likelihood

The probability density over trajectoriesσ of a set of variablesX described by a CTBN

belongs to the exponential family. Therefore, similar to likelihood of a single Markov process

in Section 2.2, the distribution of a CTBN can be described interms of the sufficient statistics

of σ [Nodelman et al., 2003]. In a CTBN, each variableX ∈ X is conditioned on its parent

setU. We can define the sufficient statistics of a CTBN as

• T [x|u] , the amount of timeX = x while UX = u, and
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• M [x, x′|u], the number of transitions fromx to x′ while UX = u.

If we let M [x|u] =
∑

x′ M [x, x′|u], the likelihood of each local variableX is

LX(T [X|UX ], M [X|UX ]) =
∏

u

∏

x

(
q

M [x|u]
x|u exp(−qx|uT [x|u])

∏

x′ 6=x

θ
M [x,x′|u]
xx′|u

)
(3.1)

The probability density of trajectoryσ is

PN (σ) = P 0
X(σ0)

∏

X∈X

LX(T [X|UX ], M [X|UX ]) (3.2)

whereP 0
X(σ) is the probability of the starting values of the variables intrajectoryσ. Since

the initial distribution of a CTBN is specified using a Bayesian NetworkB of X, P 0
X(σ) is

the product of the conditional probability of each variablein B.

The likelihood also decomposes by time. That is, the likelihood of a trajectory on[0, T )

is equal to the likelihood based only on sufficient statistics from time0 to time t multiplied

by the likelihood based only on sufficient statistics from timet to timeT .

3.4 Inference in CTBNs

Given a CTBN model, we would like to use it to answer queries conditioned on observations.

Or in many situations, we would like to estimate the parameters of a CTBN model based on

some partially observed evidence. In both cases, we need to perform inference in CTBNs.
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3.4.1 Evidence and Queries

Evidence for a CTBN is usually a partial trajectory, in whichsome values or transitions are

missing for some variables during some time intervals. There are two common types of

observations: point evidence and continuous evidence. Point evidence represents the ob-

servation of the value of some variables at a particular timeinstant. Continuous evidence

provides the behavior of some variables throughout an interval [t1, t2). For instance,x = 1

during the interval[2, 3.5), or x = 1 from t = 2 to t = 3 and thenx transitions tox = 0 at

t = 3 and stays in that state untilt = 5. We definex[t1 : t2) to be the behavior of variableX

on the interval[t1, t2), x[t1 : t2] to be the behavior ofX on the interval[t1, t2], andx(t1 : t2]

to be the behavior ofX on the interval(t1, t2].

Queries can ask about the marginal distribution of some variables at a particular time,

such as the distribution ofx andy at t = 2, or the timing of a transition, such as the distri-

bution over the time thaty transitions fromy = 1 to y = 2 for the first time in the interval

[1, 4). In learning (especially when employing expectation-maximization), we might query

the expected sufficient statistics of a CTBN conditioned on some evidence, which include the

expected total amount of time that a variable spends in a state, and the expected total number

of times that a variable transitions from one state to another state under certain conditions.

For example, we might want to know the total amount of time that x = 0 throughout the

entire interval, or the number of times thatx transitions from1 to 2 during the time interval

[2, 3) wheny = 0.
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3.4.2 Exact Inference in CTBNs

A CTBN can be viewed as a homogeneous Markov process with a large joint intensity matrix

amalgamated from the CIMs of the CTBN. Exact inference in a CTBN can be performed

by generating a single joint intensity matrix over the entire state space of the CTBN and

running the forward-backward algorithm on the joint intensity matrix of the homogeneous

Markov process. We review this method here, but a more complete treatment can be found

in Nodelman et al. [2002].

Assume that we have a partially observed trajectoryσ of a CTBNN from 0 toT . We can

divide the evidenceσ into N intervals[ti, ti+1) (i = 0, . . . , N − 1) according to the observed

transition times. That is, each interval contains a constant observation of the CTBN, and

ti is the time that a variable begins being observed, stops being observed, or is observed to

transition. We sett0 = 0 andtN = T .

To perform exact inference, we first generate the intensity matrix Q for the joint homoge-

neous Markov process using the amalgamation method described in Section 3.2.3. We then

incorporate the evidence intoQ as following.

We reduce the joint intensity matrixQ to Qi for each interval[ti, ti+1) by zeroing out

the rows and columns ofQ which represent states that are inconsistent with the evidence.

Additionally, letQi,j be the matrixQ with all elements zeroed out except the off-diagonal

elements that represent the intensities of transitioning from non-zero rows inQi to non-zero

columns inQj . If evidence blocksi andj differs only in which variables are observed (no

transition is observed between them), thenQi,j is the identity matrix instead.
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exp(Qi(ti+1 − ti)) represents the transition matrix for interval[ti, ti+1) andQi,i+1 cor-

responds to the transition probability density between twoconsecutive intervals at timeti+1.

We can use the forward-backward algorithm for Markov processes to answer queries.

We define the forward and backward probability vectorsαt andβt as

αt = p(Xt, σ[0,t])

βt = p(σ[t,T )|Xt) .

whereσ[ti,tj ] andσ[ti,tj) represent the trajectory during interval[ti, tj] and[ti, tj) respectively.

αt andβt each have one element for each state of the system.

Let α0 be the initial distributionP 0
X over the state at time 0 andβT be a vector of ones.

The forward and backward distribution vectors for each interval can be calculated recursively:

αti+1
= αti exp(Qi(ti+1 − ti))Qi,i+1

βti
= Qi−1,i exp(Qi(ti+1 − ti))βti+1

.

The distribution over the state of the CTBN at timet ∈ [ti, ti+1) given the evidenceσ[0,T )

can be computed as

P (Xt = k, σ[0,T )) = αti exp(Qi(t− ti))∆k,k exp(Qi(ti+1 − t))βti+1
(3.3)
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where∆i,j is ann× n matrix of zeros except for a single one in positioni, j. Other queries

can be similarly computed.

Sufficient statistics of data are often used to calculate probabilities regarding the data and

estimate the parameters of the model. When the given data is only partially observed, we

can use inference to calculate theexpected sufficient statistics. Given a partially observed

trajectoryσ, we can divide the trajectory into intervals as above and calculate the expected

sufficient statistics during each interval[ti, ti+1) as following.

The expected total amount of time that the joint Markov process spends in statej during

interval [ti, ti+1) given the evidence is:

1

C

∫ ti+1

ti

αti exp(Qi(t− ti))∆j,j exp(Qi(ti+1 − t))βti+1
dt , (3.4)

whereC is the normalization constant to guarantee that the summation of the total time the

process spends on each state during interval[ti, ti+1) is ti+1 − ti.

The expected number of times that the joint Markov process transitions from statej to

statek and was not observed doing so is:

qjk

C

∫ ti+1

ti

αti exp(Qi(t− ti))∆j,k exp(Qi(ti+1 − t))βti+1
dt (3.5)

For details of computing the expected sufficient statisticsin a CTBN, see Nodelman et al.

[2005b]
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3.4.3 Approximate Inference in CTBN

As discussed in the previous section, exact inference in a CTBN requires generating a single

joint intensity matrix over the entire state space and calculating the exponential of the matrix

(Equation 2.1). As the number of variables increases, the size of the entire state space grows

exponentially. Exact inference is intractable for large networks. Therefore, approximate

inference method is used. Several approximate inference algorithms have been developed.

Generally, they can be categorized into three types:expectation propagation[Minka, 2001]

approaches,mean field variationalapproaches, and sampling approaches.

Since a CTBN model uses a graphical representation, inference methods based on mes-

sage passing can be applied. Nodelman et al. [2005a] introduced an approximate inference

method based onexpectation propagation. The algorithm partitions the evidence trajectory

into segments according to the transitions of the evidence.On each segment, marginal distri-

butions of local variables can be calculated using the forward-backward algorithm described

in Section 3.4.2. Messages (marginal distributions andCIMs) of each segment are passed

among the local variables. The accuracy of theexpectation propagationalgorithm can be

increased by refining the length of the segments. Saria et al.[2007] extended it to full belief

propagation and provided a method to adapt the approximation quality.

An inference algorithm based on mean field was introduced by Cohn et al. [2009]. Given

a CTBN with n variables and observations, the algorithm approximates the posterior of

the process usingn independent inhomogeneous Markov processes. Each inhomogeneous

Markov process is represented by a family of functions. Theninference in the given CTBN
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can be posed as an optimization problem, which is to find the function of each inhomoge-

neous Markov process to maximize the free energy. The optimization can be performed by

numerically solving a set of ordinary differential equations for each inhomogeneous Markov

process iteratively.

Another way to perform approximate inference in CTBNs is to use sampling. Sampling

has several advantages. Usually, it is easy to implement anddoes not require complex nu-

meric computations. It is an anytime algorithm: we can stop at any time and use the samples

we have obtained to compute the answer.

Ng et al. [2005] developed a continuous-time particle filtering algorithm. However, it

only handles point evidence on binary and ternary discrete variables using rejection sampling,

and focuses primarily on the incorporation of evidence fromthe continuous-state part of the

system.

El-Hay et al. [2008] provided another sampling algorithm for CTBNs using Gibbs sam-

pling. The algorithm starts from an arbitrary trajectory that is consistent with the evidence.

Then, in each iteration, it randomly picks one variableX and samples an entire trajectory

for that variable by fixing the trajectory of all the other variables. Since onlyX is not fixed,

the conditioned cumulative distributionF (t) that X stays in one state less thant and the

state transition probabilities can be calculated exactly using standard forward and backward

propagation within the Markov blanket ofX. The Gibbs sampling algorithm can handle any

type of evidence and it provides an approach to sample from the exact posterior distribution

given the evidence. However, the posterior distributionF (t) can be an arbitrarily complex
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function. To sample exactly from it, binary search has to be applied andF (t) is repeatedly

evaluated, which may affect the efficiency of the algorithm.

A different sampling-based approach using importance sampling (our work) was first

presented in Fan and Shelton [2008]. The algorithm generates weighted samples to approxi-

mate the expectation of a function of a trajectory. In Chapter 4, we will discuss the detailed

algorithm.

3.5 CTBN Parameter Estimation

If we know the graphical structure of a CTBN, the parameters (the conditional intensity

matrices) of the model can be estimated using a set of trajectoriesD = {σ1, σ2, . . . , σn}.

When the datasetD is complete, where each trajectoryσi is a complete set of state tran-

sitions and the times at which they occurred, the parameterscan be learned by maximizing

the log-likelihood of the dataset [Nodelman et al., 2003]. According to Equation 3.1 and 3.2,

the log-likelihood can be written as the sum of the log-likelihood for each local variable. By

maximizing the log-likelihoods in Equation 3.1, the parameters can be derived as

q̂x|u =
M [x|u]

T [x|u]
; θ̂xx′|u =

M [x, x′|u]

M [x|u]
. (3.6)

The expectation maximization (EM) algorithm [Dempster et al., 1977] can be used to

find the maximum likelihood parameters [Nodelman et al., 2005b] when the dataset is in-

complete. The EM algorithm begins with an arbitrary initialparameter assignment, and alter-
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natively repeats the expectation step and maximization step until convergence. In the expec-

tation step, for each trajectoryσi ∈ D, the expected sufficient statistics̄M [x|u], M̄ [x, x′|u]

and T̄ [x|u] are computed using exact inference. In the maximization step, new parameters

are computed according to Equation 3.6 as if the expected sufficient statistics were the true

sufficient statistics.

The expected sufficient statistics can be calculated using any inference algorithms (exact

inference or approximate inference). When a sampling algorithm is used, this is called the

Monte Carlo EM [Wei and Tanner, 1990] algorithm.

3.6 Summary

A CTBN provides a structured representation to model large dynamic systems. It allows us

to model a dynamic system in continuous time. Therefore, a lot of complex dynamic sys-

tems, for example social networks, can be naturally modeledusing CTBNs. Inference for a

CTBN is the task of estimating the distribution over trajectories given a partially observed

evidence. It is used in both answering queries about distributions and calculating expected

sufficient statistics to estimate parameters of a CTBN when the observation data is incom-

plete. Performing exact inference in a CTBN requires constructing a joint intensity matrix

for the entire system and computing the exponential of the matrix, which is often intractable.

Thus, approximate inference methods need to be applied in many situations. However, many

existing approximate inference methods for CTBNs depend oncomplex numeric computa-
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tions. In the following chapter, we will introduce our sampling algorithms for CTBNs based

on importance sampling, which only require simple calculations and are very easy to imple-

ment.
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Chapter 4

Importance Sampling for CTBNs

As we described in the previous chapter, exact inference in aCTBN can be performed by

generating a single joint intensity matrix over the entire state space. As the number of states

is exponential in the number of the nodes in the network, thisapproach is infeasible when the

network size is large. Approximate inference algorithms, therefore, are often used. However,

a lot of existing approximate algorithms for CTBNs depend oncomplex numeric computa-

tions. They are often very hard to implement.

In this chapter, we provide a sampling based algorithm for CTBNs using importance

sampling. The algorithm generates a trajectory by samplingthe transition time and transi-

tion state naturally from exponential and multinomial distributions, which is very easy to

implement. We extend the importance sampling algorithm to particle filtering and smoothing

algorithms. We also derive a Metropolis-Hastings algorithm for CTBN inference based on

the importance sampling algorithm.
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4.1 Forward Sampling

Queries that are not conditioned on evidence can be answeredby randomly sampling many

trajectories and looking at the fraction that match the query. More formally, if we have a

CTBN N we generate a set of particlesD = {σ[1], . . . , σ[M ]} where each particle is a

sampled trajectory. WithD we can estimate the expectation of any functiong by computing

ÊN [g] =
1

M

M∑

m=1

g(σ[m]) . (4.1)

For example, letg = 1{x(5) = x1}, where1{expr} is 1 if expr is true and returns 0

otherwise. Then we could use the above formula to estimatePN (x(5) = x1). Or the function

g(σ) might count the total number of times thatX transitions fromx1 to x2 while its parent

U has valueu1, allowing us to estimate the expected sufficient statisticM [x1, x2|u1]. The

algorithm for sampling a trajectory is shown in Figure 4.1. For each variableX ∈ X, it

maintainsx(t) — the state ofX at timet — andTime(X) — the next potential transition

time for X. The algorithm adds transitions one at a time, advancingt to the next earliest

variable transition. When a variableX (or one of its parents) undergoes a transition,Time(X)

is resampled from the new exponential waiting time distribution. We useuX(t) to represent

the instantiation to parents ofX at timet.

If we want to obtain a conditional probability of a query given evidence, the situation

is more complicated. We might try to userejection sampling: forward sample to generate

possible trajectories, and then simply reject the ones thatare inconsistent with our evidence.
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ProcedureCTBN-Sample(tend)
1. t← 0, σ ← ∅
2. For each variableX ∈X

Choose statex(0) according toθB
X|paB(X).

Loop:
3. For each variableX such thatTime(X) is undefined:

Choose∆t for nextX transition from an exponential with parameterqx(t)|uX(t).
DefineTime(X)← t + ∆t

4. LetX = arg minX∈X[Time(X)]
5. If Time(X) ≥ tend return σ
6. Updatet← Time(X)
7. Choosex(t), the next value ofX, from the multinomial with parametersθx(t)|uX(t).

Add 〈X ← x(t), t〉 to σ.
UndefineTime(X), andTime(Y ) for all variablesY for whichX ∈ UY .

Figure 4.1: Forward sampling semantics for a CTBN

The remaining trajectories are sampled from the posterior distribution given the evidence, and

can be used to estimate probabilities as in Equation 4.1. However, this approach is entirely

impractical in our setting, as in any setting involving an observation of a continuous quantity

— in our case, time. In particular, suppose we observe thatX transitions fromx1 to x2 at

time t. The probability of sampling a trajectory in which that transition occurs at precisely

that time is zero. Thus, if we have evidence about transitions, with probability 1, none of our

sampled trajectories will be relevant.

4.2 Importance Sampling in CTBNs

A more practical approach to sampling in the presence of evidence is importance sampling

[Hesterberg, 1995]. In this section, we introduce an importance sampling algorithm for

CTBNs.
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In importance sampling, we generate samples from a proposaldistributionP ′ which guar-

antees that our sampled trajectories will conform to our evidencee. We must weight our

samples to correct for the fact that we are drawing them fromP ′ instead of the target distri-

butionPN defined by the CTBN. In particular, ifσ is a sample fromP ′ we set its weight to

be

w(σ) =
PN (σ, e)

P ′(σ)
. (4.2)

In normalized importance sampling, we draw a set of i.i.d. samplesD = {σ[1], . . . , σ[M ]}

from the proposal distribution, and estimate the conditional expectation of a functiong given

evidencee as

ÊN [g | e] =
1

W

M∑

m=1

g(σ[m])w(σ[m]) (4.3)

whereW is the sum of the weights.

This estimator is consistent if the support ofP ′ is a superset of the support ofPN (·|e). In

general,ÊN is biased and the bias deceases asO(M−1). The variance of the estimator also

decreases asO(M−1).

For our algorithm, we base the proposal distribution on the forward sampling algorithm.

As we are sampling a trajectory, we occasionally depart fromthe regular forward sampling

algorithm and “force” the behavior of one or more variables to ensure consistency with the

evidence.
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4.2.1 Simple Evidence

The simplest query involves evidence over some subset of variablesV ⊂ X for the to-

tal length of the trajectory. We force only the behavior of the variablesV and there are

no choices about how to do that. In particular, we use the following proposal distribution:

forward sample the behavior of variablesX ∈ (X \ V ) inserting the known transitions at

known times for variables inV as determined by the evidence. As there are no choices in

our forcing, the likelihood of drawingσ from the proposal distribution is just the likelihood

contribution of forward sampling the behavior of the variablesX ∈ (X \ V ), in the context

of the total behavior of the system.

According to Section 3.3,x[t1 : t2) can be summarized by the sufficient statistics over

X on the interval[t1, t2). Let L̃X(x[t1 : t2)) be a partial likelihood contribution function,

computed by plugging the sufficient statistics ofx[t1 : t2) into Equation 3.1. The partial

contribution function can be defined over a collection of intervalsI as

L̃X(I) =
∏

x[t1 : t2)∈I

L̃X(x[t1 : t2)).

Returning to our simple evidence above, letτ1 < τ2 . . . , τn−1 < τn be all the transition times

in σ[0,T ), τ0 = 0 andτn+1 = T . The likelihood of drawingσ from the target distributionPN

is

L̃N (σ) =
∏

X∈X

n∏

i=0

L̃X(x[τi : τi+1))
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Let L̃′
X(x[t1 : t2)) be the corresponding probability density for our sampling procedure.

Since we force the values and transitions of variables inV according to the evidence, the

probability that we sample an intervalx[τi : τi+1) for X ∈ V from proposal distributionP ′

is always 1. Therefore, the likelihood of drawingσ from the proposal distributionP ′ is

L̃′
N (σ) =

∏

X∈X

n∏

i=0

L̃′
X(x[τi : τi+1))

=
∏

X∈(X\V )

n∏

i=0

L̃X(x[τi : τi+1))×
∏

X∈V

n∏

i=0

1

To compute the proper weightw(σ) we substitute in Equation 4.2, and get

w(σ) =
PN (σ, e)

P ′(σ)
=

∏
X∈X

∏n
i=0 L̃X(x[τi : τi+1))∏

X∈(X\V )

∏n
i=0 L̃X(x[τi : τi+1))

=
∏

X∈V

n∏

i=0

L̃X(x[τi : τi+1))

Therefore, the weightw(σ) is the likelihood contribution of all the variables inV . This algo-

rithm exactly corresponds tolikelihood weightingin Bayesian networks [Shachter and Peot,

1989, Fung and Chang, 1989]. Intuitively, this makes sense because we can account for all

the evidence by simply assigning the observed trajectoriesto the observed variables.

4.2.2 General Evidence

Now, consider a general evidence patterne, in which we have time instants where variables

become observed or unobserved. How can we force our trajectory to be consistent withe?
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Suppose there is a set of variables which have evidence beginning atte. We cannot simply

force a transition at timete to make the variables consistent with the evidencee: if the set

contains more than one variable, the sample would have multiple simultaneous transitions,

an event whose likelihood is zero.

Instead, we look ahead for each variable we sample. If the current state of the variable

does not agree with the upcoming evidence, we force the next sampled transition time to

fall before the time of the conflicting evidence. To do this, we sample from a truncated

exponential distribution instead of the full exponential distribution. In particular, if we are

currently at timet and there is conflicting evidence forX at timete > t, we sample from

an exponential distribution with the sameq value as the normal sampling procedure, but

where the sample for∆t (the time to the next transition) is required to be less thante − t.

The probability density of sampling∆t from this truncated exponential is q exp(−q∆t)
1−exp(−q(te−t))

whereq is the relevant intensity for the current state ofX (the diagonal element ofQX|UX

corresponding to the current state ofX).

To calculate the weightw(σ), we partitionσ into two pieces. Letσe be the collection for

all variablesX ∈ X of intervalsx[t1 : t2) where the behavior ofX is set by the evidence.

Let σs be the complement ofσe containing the collection of intervals of unobserved behavior

for all variables. By applying Equation 4.2, we have
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w(σ) =
PN (σ, e)

P ′(σ)

=
∏

x[τi : τi+1)∈σs

L̃X(x[τi : τi+1))

L̃′
X(x[τi : τi+1))

×
∏

x[τi : τi+1)∈σe

L̃X(x[τi : τi+1))

L̃′
X(x[τi : τi+1))

=
∏

x[τi : τi+1)∈σs

L̃X(x[τi : τi+1))

L̃′
X(x[τi : τi+1))

×
∏

x[τi : τi+1)∈σe

L̃X(x[τi : τi+1)) (4.4)

Based on the distribution we sampled for transition time of the variable in each step, we

can further partitionσs into three pieces:

• σsn be the collection for all variablesX ∈X of intervalsx[t1 : t2) where the transition

time is sampled from an exponential distribution.

• σst be the collection for all variablesX ∈X of intervalsx[t1 : t2) where the transition

time is sampled from a truncated exponential distribution and the variable is involved

in the next transition.

• σsf be the collection for all variablesX ∈ X of intervalsx[t1 : t2) where the transi-

tion time is sampled from a truncated exponential distribution and the variable is not

involved in the next transition.
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Therefore, we can rewrite Equation 4.4 as

w(σ) =
∏

x[τi : τi+1)∈σsn

L̃X(x[τi : τi+1))

L̃′
X(x[τi : τi+1))

×
∏

x[τi : τi+1)∈σst

L̃X(x[τi : τi+1))

L̃′
X(x[τi : τi+1))

×
∏

x[τi : τi+1)∈σsf

L̃X(x[τi : τi+1))

L̃′
X(x[τi : τi+1))

×
∏

x[τi : τi+1)∈σe

L̃X(x[τi : τi+1)) (4.5)

Example 4.2.1 Assume that we are given a CTBN with two binary variablesX andY . X

has two statesx0 and x1. Y has two statesy0 and y1. We have the observation thatX is

x1 in interval [t1, t2) and [t3, T ), as shown in Figure 4.2(a). To answer queries based on the

evidence, we use the method above to sample trajectories. Figure 4.2(b) shows one of the

sampled trajectories. To calculate the weight of the trajectory, we partition the trajectory

into four categories (as shown in Figure 4.2(c) and Figure 4.2(d)), and apply Equation 4.5.

According to Equation 4.5, each time we add a new transition to the trajectory, we ad-

vance time fromt to t + ∆t. For each variablex we must update the weight of the trajectory

to reflect the likelihood ratio forx[t : t + ∆t] based on the distribution we use to sample

the “next time” and the transition variable we select. Each such variable can be considered

separately as their times are sampled independently.

For any variablex whose value is given in the evidence during the interval[t, t + ∆t), as

we discussed above, the contribution to the trajectory weight is justL̃N (x[t : t + ∆t)). For

any variable-intervalx[t : t + ∆t) ∈ σns, whose “next time” was sampled from an exponen-

tial distribution,L̃X(x[τi : τi+1)) = L̃′
X(x[τi : τi+1)) and the ratio is 1.
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Figure 4.2: Example of calculating weight contribution. (a) Evidence of a CTBN. (b) A
sampled trajectory agreeing with the evidence. (c). Partitioning of the trajectory according
to the evidence and the transitions.σe equalsx[τ3 : τ4) andx[τ7 : τ8) (d) Partitioning of the
trajectory based on the different sampling situations.
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Now, we consider segmentsx[t : t + ∆t) ∈ σst andx[t : t + ∆t) ∈ σsf . The behavior of

the variables in these segments are forced due to upcoming evidence.

For variableX that x[t : t + ∆t) ∈ σst, the variable’s “next time” is sampled from a

truncated exponential distribution and it is part of the next transition. The weight must be

multiplied by the probability density of sampling the transition in PN divided by the prob-

ability density in the sampling algorithm. The former is an exponential distribution and the

latter is the same exponential distribution, truncated to be less thante − t. The ratio of these

two probabilities is1− exp(−q(te − t)), whereq is the relevant intensity.

Otherwise,x[t : t + ∆t) ∈ σsf , the next time for the variable was sampled from a trun-

cated exponential but was longer than∆t. In this case, the ratio of the probabilities of a

sample being greater than∆t is 1−exp(−q(te−t))
1−exp(−q(te−t−∆t))

. Note that when∆t is small (relative to

te − t, the time to the next evidence point for this variable), the ratio is almost1. So, while

the trajectory’s weight is multiplied by this ratio for every transition for every variable that

does not agree with the evidence, it does not overly reduce the weight of the entire trajectory.

The algorithm for CTBN importance sampling is shown in Figure 4.3. To more easily

describe the evidence, we define a few helper functions:

eval
X (t) is the value ofX at timet according to the evidence, or undefined ifX has no

evidence att.

etime
X (t) is the first time aftert wheneval

X (t) is defined.
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ProcedureCTBN-Importance-Sample(tend, e)
1. t← 0, σ ← ∅, w← 1 *
2. For each variableX ∈X

If e
val
X (0) defined,
setx(0)← e

val
X (0), *

Setw ← w · θB
x(0)|paB(0) *

Else choose statex(0) according toθB
X|paB(X)

Loop:
3. For eachX ∈X such thatTime(X) is undefined:

If e
val
X (t) is defined, set∆t← e

end
X (t)− t *

Elseifeval
X (te) is defined wherete = e

time
X (t), x(t) 6= e

val
X (te),

choose∆t from an exponential distribution with
parameterqx(t)|uX(t) given∆t < (te − t). *

Else choose∆t from an exponential w/ param.qx(t)|uX(t)

DefineTime(X)← t + ∆t

4. LetX = arg minX∈X [Time(X)]
5. If Time(X) ≥ tend

w ← Update-Weight(X, w, t, tend) *
return (σ, w)

Else *
w ← Update-Weight(X, w, t, Time(X)) *

6. Updatet← Time(X)
7. If eend

X (t) 6= t or eval
X (t) is defined *

If e
val
X (t) is defined, setx(t)← e

val
X (t) *

Else choosex(t), the next value ofX , from a
multinomial with parameterθx(t)|uX(t)

Add 〈X ← x(t), t〉 to σ.
UndefineTime(X) andTime(Y ) for all variablesY
for whichX ∈ UY

Else *
UndefineTime(X). *

ProcedureUpdate-Weight(Y, w, t1, t2)
1. For eachX ∈X such thateval

X (t) is defined fort ∈ [t1, t2):
w ← w · L̃X(x[t1 : t2))

2. For eachX ∈X such thateval
X (te) is defined,

wherete = e
time
X (t1), andx(t1) 6= e

val
X (te):

If X = Y , w ← w · (1− exp(−qx(t1)|uX(t1)(te − t1)))

Elsew ← w ·
1−exp(−qx(t1)|uX (t1)(te−t1))

1−exp(−qx(t1)|uX (t1)(te−t2))

3. return w

Figure 4.3: Importance sampling for CTBNs. Changes from Figure 4.1 are noted with aster-
isks.
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eend
X (t) is the first time after or equal tot wheneval

X (t) changes value or becomes unde-

fined.

Note thateend
X (t) = t when there is point evidence att, whent is the end of an interval of

evidence, and when there is a transition in the evidence at timet.

In Figure 4.3, the line numbers follow those given in the forward sampling algorithm with

new or changed lines marked with an asterisk.Time(X) might be set to the end of an interval

of evidence which is not a transition time but simply a time when we need to resample a

next potential transition. This means that we will not update σ with a new transition every

time through the loop. The algorithm differs from the forward sampling procedure as follows.

Step 2 now accounts for evidence at the beginning of the trajectory (using standard likelihood

weighting for Bayesian networks). In Step 3, we draw∆t from the truncated exponential if

the current value disagrees with upcoming evidence. If the current evidence includes this

variable,∆t is set to the duration of such evidence. Step 5 updates the weights using the

procedureUpdate-Weight. Finally, Step 7 now deals with variables that are just leaving the

evidence set.

4.2.3 Predictive Lookahead

The algorithm in Figure 4.3 draws the next state for a variable from the same distribution as

the forward sampling algorithm. This may cause a variable totransition several times in a

short interval before evidence as the variable “searches” to find a way to transition into the

evidence. Thus, we may generate many unlikely samples, making the algorithm inefficient.
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We can help mitigate this problem by trying to force the variable into a state that will lead to

the evidence.

When sampling the next state for variableX at time t, instead of sampling from the

multinomial according toθx(t)|uX(t), we would like to sample from the distribution of the

next state conditioned on the upcoming evidence. SupposeX is in statexi at timet, and the

next evidence forX is statexk at te. Assuming the parents ofX do not change beforete and

ignoring evidence over the children ofX, the distribution of the state ofX at t given only

the evidence can be calculated using Equation 3.3:

P̃ (Xt+∆t = xj |X[t : t + ∆t) = xi, Xte = xk) =
1

Z
δ⊤j QX exp(QX(te − t))δk = pi,j

whereδj is the vector of zeros, except for a one in positionj. We can therefore select our new

state according to the distribution of̃P (Xt+∆t|X[t : t + ∆t) = xi, Xte = xk) and, assuming

statexj is selected, multiply the weight by
θxixj |uX (t)

pi,j
to account for the difference between

the target and sampling distributions.

4.3 Particle Filtering

The algorithm in Figure 4.3 allows us to generate a single trajectory and its weight, given the

evidence. To apply this algorithm to the task of online inference in a dynamic system, we can

generate multiple trajectories in parallel, advancing time forward as evidence is obtained.
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The resulting algorithm is an instance of sequential importance sampling, and therefore

suffers from its characteristic flaw: As the trajectory length increases, the distribution of the

importance weights gets increasingly skewed, with most importance weights converging to

zero exponentially quickly. Thus, the number of “relevant”samples gets increasingly small,

and the estimates provided by the set of samples quickly become meaningless. A family

of methods, commonly known as sequential Monte Carlo or particle filtering [Doucet et al.,

2001], have been proposed in the setting of discrete-time processes to address this flaw. At

a high level, these methods re-apportion our samples to focus effort on the more relevant

samples — those with higher weight.

The application of this idea to our setting introduces some subtleties because different

samples are not generally synchronized. We could pick a timet and run the algorithm in

Figure 4.3 withtend = t so that samples are synchronized att. We would re-apportion the

weights and continue each trajectory from its state att, first settingTime(X) to be undefined

for all X. However, choosing the proper synchronization timet is a non-trivial problem

which may depend on the evidence and the speed the system evolves.

Instead of synchronizing all the particles by the time, we can align particles by the number

of transitions. If we letti be theith transition time,Xi be the value ofX from ti−1 to ti, t1:n be

the sequence of transition timeti, andX1:n be the sequence of values ofXi, (i = 1, . . . , n),

the following recursion holds.
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ProcedureCTBN-Particle-Filtering({X i
0, w

i
0}i=1...N , tend, e)

1. k ← 0, Wt ← 1, Nr ← N
2. Fori← 1 to N : Pai

0 ← i, wi ← 1/N
Loop:
3. For each i such thattik < tend :

(X i
k+1, t

i
k+1, w

i
k+1)←

Sample-Segment(X
Pai

k
k , t

Pai
k

k , wi, tend, e)
If tik+1 ≥ tend

Nremain ← Nr − 1,
Wt ←Wt − wi

k+1

4. k ← k + 1
5. If Nr = 0

return {X i
mi

, timi
, wi

mi
, Pai

mi
}i=1...N,mi=1...ni

,
whereni is the number of transitions of theith particle

6. CalculateN̂eff of all incomplete particles
7. If N̂eff < Nthr

SamplePai
k according towi

k

wi ←Wt × 1/Nr

Else
wi ← wi

k, Pai
k ← Pai

k−1

Figure 4.4: Particle Filtering for CTBNs
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P (X[0 : tn)) =P (X1:n, t1:n, e[0:tn))

=P (X1:n−1, t1:n−1, e[0:tn−1))P (Xn|Xn−1)P (tn, e[tn−1,tn)|tn−1, Xn)

The weighted approximation of this probability is given by

P (X[0 : tn)) ≈
N∑

i=1

w(X i[0 : tn))δ(X[0 : tn), X i[0 : tn))

whereX i[0 : tn) is theith sample andw(X i[0 : tn)) is the normalized weight of theithsample.

According to Equation 4.5, the weight can be updated after every transition step. The weight

update equation can be shown as

w(X i[0 : tn)) ∝ w(X i[0 : tn−1))
L̃X(X i[tn−1 : tn))

L̃′
X(X i[tn−1 : tn))

Thus, to sample multiple trajectories in parallel, we applythe CTBN importance sampling

algorithm to each trajectory until a transition occurs. To avoid the degeneracy of the weights,

we resample the particles when the estimated effective sample sizeN̂eff = 1P
i(w

i
k)2

is below a

thresholdNthr. This procedure is similar to the regular particle filteringalgorithm except that

all particles are not synchronized by time but the number of transitions. To answer queries in

the time interval[0, T ), we propagate the particles until all of their last transitions are greater

thanT .
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Figure 4.4 shows the algorithm for generatingN trajectories from 0 toT in a CTBN. It

assumes that the initial values and the weights have alreadybeen sampled. The procedure

Sample-Segmentloops from line 3 to 7 in Figure 4.3 until a transition occurs,returns the tran-

sition time and variables value, and updates the corresponding weight for that segment. Note

that we are approximating the distributionP (X1:n, t1:n, e[0:tn)) for all possiblen. Therefore,

we only propagate and re-apportion weights for particles that have not yet reached timeT .

Particles that have been sampled pastT are left untouched.

4.4 Particle Smoothing

Although the resampling step in the particle filtering algorithm reduces the skew of the

weights, it leads to another problem: the diversity of the trajectories is also reduced since

particles with higher weights are likely to be duplicated multiple times in the resampling

step. Many trajectories share the same ancestor after the filtering procedure. A Monte

Carlo smoothing algorithm using backward simulation addresses this problem [Godsill et al.,

2004].

The smoothing algorithm for discrete-time systems generates trajectories usingN weighted

particles{xi
t, w

i
t} from the particle filtering algorithm. It starts with the particles at timeT ,

moves backward one step each iteration, and samples a particle according to the product of its

weight and the probability of it transitioning to the previously sampled particle. Specifically,

in the first step, it samples̃xT from particlesxi
T at timeT with probabilitywi

T . In the back-
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ward smoothing steps it samplesx̃t according towi
t|t+1 = wi

tf(x̃t+1|xi
t), wheref(x̃t+1|xi

t) is

the probability that the particle transitions from statexi
t to x̃t+1. The resulting trajectory set

is an approximation ofP (x1:T |y1:T ) wherey1:T is the observation.

This idea can be used in our setting with some modifications. Given the filtered particles

{X i
mi

, timi
, wi

mi
}, we need to sample both variable values and transition time at each step

when we move backward. There are two main differences from the algorithm in Godsill et al.

[2004]. First, there are fewer thanN particles that can be used at the beginning steps of the

backward smoothing since the trajectories do not have exactly the same number of transitions.

And second, not all particles at stepn can be considered as candidates to move backward. A

particle{X i
n, t

i
n, w

i
n} is a valid candidate as the predecessor for{X̃n+1, t̃n+1} only if (1) tin <

t̃n+1, (2) the values ofX i
n andX̃n+1 differ in only one variable (thus a single transition is

possible), and (3)e(tin,etn+1) contains no transitions.

Figure 4.5 shows the smoothing algorithm which generates a trajectory from the filtering

particles. We apply the algorithmN times to sampleN trajectories. These equally weighted

trajectories can be used to approximate the distributionP (X[0,T )|e). Generating one tra-

jectory with this smoothing process requires considering all the particles at each step. The

running time of samplingN trajectories using particle smoothing is on the order ofN times

of that of particle filtering.
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ProcedureCTBN-Particle-Smoothing({X i
mi

, timi
, wi

mi
}, tend, e)

i = 1 . . .N, mi = 1 . . .Mi

1. σ ← ∅
2. Choosek with probabilitywMi

i

3. setY = XMk
k
, s←Mk, t← tks

Loop:
4. σ[ts−1,s) ← Y
5. If σ is complete

return σ
6. Forj ← 1 to N

w′
j ← Check-Weight(Y, t, Xj

s−1, t
j
s−1, w

j
s−1)

7. Choosei with probabilityw′
i

8. S ← S − 1, Y ← Xs
i , t← tjs

ProcedureCheck-Weight(X, t, Xs, ts, ws)
1. If t ≤ ts or e(ts,t) contains a transition, or

the value ofX andXs do not differ by only one variable
return 0

2. σ[ts,t) ← Xs, σ(t)← X

3. w ← ws · L̃X(σ[ts,t2])
4. return w

Figure 4.5: Particle Smoothing for CTBNs
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4.5 Markov Chain Monte Carlo for CTBNs

As we discussed above, importance sampling has the problem that the distribution of the

importance weights gets increasingly skewed as the length of the trajectory increases. An

alternative method to solve this problem isMarkov chain Monte Carlo (MCMC). The MCMC

method generates a sequence of samples by running a carefully constructed Markov chain for

a long time. The Markov chain is constructed so that successive samples in the sequence are

drawn from distributions that gets closer and closer to the target distributionπ.

In particular, assume we want to generate samples from a target distributionπ over vari-

ablesX with state spaceV al(X). We construct a Markov chain in which each state of the

chain is an instantiation ofX, and thus the state space of the Markov chain is all the possi-

ble instantiations ofX. The transition modelT (x → x′) is designed so that the stationary

distribution of the Markov chain is the target distributionπ. We simulate the Markov chain

as follows. We start the Markov chain with a random generatedstate. Then at each step,

we generate the next state by picking a variableXi ∈ X randomly, forgetting the current

value ofXi, fixing the values of the rest of the variables, and sampling the new value ofXi

according to the transition probabilityT . Therefore, in each step, we generate a sample of

X from the Markov chain. If we run the Markov chain for a long time, the state distribution

gets closer and closer to the stationary distribution, which is the target distributionπ. Then

we can consider that samples we generate from the Markov chain are generated fromπ.
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In a CTBN, each sample is a trajectory over all the variables of the CTBN. To apply

MCMC method, we need to construct a Markov chain in which eachstate represents a possi-

ble trajectory of the CTBN. Thus, a state transition in the Markov chain consists of removing

the entire trajectory of one variable and replacing it with anewly sampled one. Specifically,

suppose we want use MCMC algorithm to sample trajectories from a CTBNN with n vari-

ablesX = (Xi, X2, . . . , Xn) given the evidencee. We construct a Markov chain whose

state space is all the possible trajectories ofN that are consistent with the evidencee. We

start the Markov chain with an arbitrary trajectory that is consistent with the evidence. In

each step, the sampler randomly picks one variableXi, fixes the trajectories of the other vari-

ablesY = {X1, . . . , Xi−1, Xi+1, . . . , Xn} as evidence, and samples the entire trajectory of

Xi according to the transition modelT (σ → σ′), whereσ is the current state of the MCMC

sampler (trajectory of the CTBN) andσ′ is the newly generated MCMC state.

Different choices of the transition modelT of the Markov chain result in different MCMC

algorithms. In this section, we introduce a Gibbs sampling algorithm for CTBNs due to

El-Hay et al. [2008] and a Metropolis-Hastings algorithm based on our importance sampling

algorithm for CTBNs.

4.5.1 Gibbs Sampling

El-Hay et al. [2008] recently provided a Markov Chain Monte Carlo (MCMC) procedure

which used a Gibbs sampler to generate samples from the posterior distribution given the

evidence. Gibbs sampling defines the transition probability T to be the posterior distribution
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of the selected variableXi given the rest of the trajectory and evidencee. More precisely, let

σXi
be the trajectory ofXi in σ, σ′

Xi
be the trajectory ofXi in σ′, andσY be the trajectory of

the rest of the variables. The transition model is defined as

T (σ → σ′) = T ((σXi
, σY )→ (σ′

Xi
, σY )) = P (σ′

Xi
|σY , e) (4.6)

To generate the entire trajectory ofXi from the posterior distributionP (σ′
Xi
|σY , e), the

states and transitions ofXi need to be sampled in those intervals thatXi is not observed

according to the evidence. The trajectory in each unobserved interval ofXi can be generated

by alternatively sampling a transition time∆t and a new statex from the posterior distribution

givene and the trajectories of the other variablesY .

Assume we are sampling the trajectory ofX for the interval[0, T ], andXi(0) = x0,

Xi(T ) = xT . The first transition time∆t is sampled by inverse transform sampling: first

drawξ from the[0, 1] uniform distribution and set∆t = F−1(ξ), whereF−1(ξ) is the inverse

of the conditional cumulative distribution functionF (t) thatXi stays in statex0 for a time

less thant:

F (t) = 1− Pr(Xi(0 : t] = x0|Xi(0) = x0, Xi(T ) = xT , Y [0 : T ])
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Pr(Xi(0 : t] = x0|Xi(0) = x0, Xi(T ) = xT , Y [0 : T ]) can be decomposed using the

Markov property of the process:

Pr(Xi(0 : t] = x0|Xi(0) = x0, Xi(T ) = xT , Y [0 : T ]) =
α̃(t)β̃x0(t)

β̃x0(0)

where

α̃(t) = Pr(Xi(0 : t] = x0, Y [0 : T ]|Xi(0) = x0, Y0)

β̃x(t) = Pr(Xi(T ) = xT , Y (t : T ]|Xi(t) = x, Y (t))

α̃(t) andβ̃x(t) can be calculated using a slightly modified version of the standard forward-

backward algorithm described in Section 3.4.2. Using the fact thatXi is independent of all

the other components given the entire trajectory of its Markov blanket, the computation of

α̃(t) andβ̃(t) can be limited toXi and its Markov blanket (the parents ofXi, the children of

Xi, and the children’s parents).

Since the conditional cumulative distribution functionF (t) can be arbitrarily complex,

the inverse functionF−1(t) can not be solved analytically. Finding∆t that satisfiesF (∆t) =

ξ is performed using a two-step searching method: first find theinterval[τk, τk+1] that satisfies

F (τk) < ξ < F (τk+1), whereτk are the transition points of the Markov blanket ofXi. Then

∆t is found by performing anL step binary search on the interval[τk, τk+1].
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The transition probability thatXi transitions fromx(0) to a new statex can be calculated

similarly:

Pr(Xi(t
+) = x|Xi(0 : t) = x(0), Y (0 : T ]) =

q
Xi|Y
x0,x β̃x(t)∑

x′ 6=x0
q

Xi|Y
x0,x′ β̃x′(t)

The Gibbs sampling algorithm can handle any type of evidence. The sampled trajec-

tories are guaranteed to be consistent with the evidence. However, sampling the transition

time ∆t requires using a binary search algorithm and repeatedly computing the conditional

cumulative distribution functionF (t), which may require longer running time.

4.5.2 Metropolis-Hastings Algorithm

Alternatively, we can use the Metropolis-Hastings algorithm which allows us define the tran-

sition model in a more general way. Unlike the Gibbs samplingalgorithm, the Metropolis-

Hastings algorithm does not require the transition distribution of the Markov chain to be the

posterior distributionP (σ′
Xi
|σY , e). Instead, it uses a proposal distributionT Q as the transi-

tion model. In each step, we do not simply accept the new stateσ′ generated by the proposal

distribution. We either reject it and stay at the old stateσ, or accept it with acceptance prob-

ability A(σ → σ′). The acceptance probability is defined as

A(σ → σ′) = min

[
1,

π(σ′)T Q(σ′ → σ)

π(σ)T Q(σ → σ′)

]
. (4.7)
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Now, in each step when we pick a variableXi to sample, instead of sampling the trajec-

tory of Xi from P (σ′
Xi
|σY , e), we can use our importance sampling algorithm considering

e and the trajectory of all the other variables as evidence. That is, we choose the transition

model as the proposal distribution defined by the importancesampling algorithm. Therefore,

we have

T Q(σ′ → σ) = P ′(σ′
Xi
|σUXi

, eXi
), (4.8)

whereσ′
Xi

is the new trajectory we sampled forXi using the importance sampling algorithm,

σUXi
is the trajectory of the parents ofXi andeXi

is the evidence ofXi.

Using Equation 4.8, we can calculate the acceptance ratioπ(σ′)T Q(σ′→σ)
π(σ)T Q(σ′→σ)

as the following:

π(σ′)T Q(σ → σ′)

π(σ)T Q(σ′ → σ)
(4.9)

=
PN (σ′)

PN (σ)

P ′(σXi
|σUXi

, eXi
)

P ′(σ′
Xi
|σUXi

, eXi
)

=
PN (σ′)

PN (σ)

PN (σ′
Xi

, eXi
|σUXi

)

P ′(σ′
Xi
|σUXi

, eXi
)

P ′(σXi
|σUXi

, eXi
)

PN (σXi
, eXi
|σUXi

)

PN (σXi
, eXi
|σUXi

)

PN (σ′
Xi

, eXi
|σUXi

)

According to Equation 4.2,
PN (σ′

Xi
,eXi

|σUXi
)

P ′(σ′
Xi

|σUXi
,eXi

)
is the weight contributionw(σ′

Xi
) of variable

Xi when we use importance sampling algorithm to sampleσXi
consideringe and the trajec-

tory of all the other variables ofσ as evidence.
PN (σXi

,eXi
|σUXi

)

P ′(σXi
|σUXi

,eXi
)

is the weight contribution of

Xi as if σXi
were sampled using importance sampling algorithm. We denote it asw(σXi

).
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Then Equation 4.9 can be written as

π(σ′)T Q(σ′ → σ)

π(σ)T Q(σ′ → σ)
=

LN (σ′)

LN (σ)
·
w(σ′

Xi
)

w(σXi
)
·

LXi
(σ)

LXi
(σ′)

(4.10)

=
LY (σ′)

LY (σ)
·
w(σ′

Xi
)

w(σXi
)
,

whereLN (·) is the likelihood of the whole CTBN,LXi
(·) is the likelihood contribution ofXi

andLY (·) is the likelihood contribution of all variables exceptXi.

Replacing the acceptance ratio in Equation 4.7 with Equation 4.10, the acceptance prob-

ability of the Metropolis-Hastings algorithm for CTBNs is

A(σ → σ′) = min

[
1,

LY (σ′)

LY (σ)

w(σ′
Xi

)

w(σXi
)

]
. (4.11)

LY (·) is the product of the likelihood contributionLX(·) for eachX ∈ Y , which can be

calculated using Equation 3.1. The weight contributionw(σXi
) andw(σ′

Xi
) are calculated

according to Equation 4.5. Our Metropolis-Hastings sampling algorithm for CTBNs can be

described as follows. We start an arbitrary trajectory thatis consistent with the evidencee.

Each step, we randomly pick a variableXi. We remove the trajectory ofXi from the current

trajectoryσ and generate a new trajectoryσ′ by using our importance sampling algorithm to

sample trajectory forXi, fixing all the other variables as evidence. We calculate theaccep-

tance ratio according to Equation 4.10. If the ratio is larger than 1, we acceptσ′. Otherwise,

acceptσ′ with probability equal to the acceptance ratio, or rejectσ′ and keepσ.
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4.6 Experimental Results

In this section, we report on the performance of our algorithm on synthetic networks and a

network built from a real dataset of people’s life histories. We tested our algorithm’s accuracy

for the task of inference and parameter estimation. We also compare our algorithms with

other approximate inference algorithms for CTBNs: the method based on the expectation

propagation in Saria et al. [2007] and the method based on Gibbs sampling in El-Hay et al.

[2008].

All the algorithms we used in the experiments were implemented in the same code base to

make fair comparisons. We tried our best to optimize all the code. The implementations are

general so that they can be applied to any CTBN model. Our implementation of expectation

propagation is adapted from that of Saria et al. [2007] who were kind enough to share their

code.

4.6.1 Networks

In our experiments, different types of network structures were used: the drug effect network

[Nodelman et al., 2002], a chain-structured network, and the BHPS network [Nodelman et al.,

2005b]. All the networks are at the upper size limit for the exact inference algorithm so that

we can compare our result to the true value.

Drug Effect Network: The drug effect network is a toy model of the effect of a pain-

relief medicine. It has 8 (5 binary and 3 ternary) variables.The structure of the network is
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Eating Hungry

Concentration

DrowsyJoint
Pain

Uptake

Barometer

Full Stomach

Figure 4.6: Drug Effect Network

shown in Figure 4.6. Att = 0 the person is not hungry, is not eating, has an empty stomach

and is not drowsy. He has joint pain due to the falling barometric pressure and takes the drug

to alleviate the pain.

Chain Structured Network: The chain network contains five nodesX0, . . . , X5, where

Xi is the parent ofXi+1 for i < 5. Each node has five states,s0, . . . , s4. X0 (usually) cycles

in two loops: s0 → s1 → s3 → s0 and s0 → s2 → s4 → s0. Each node stays at its

current state if it matches its parents and otherwise transitions to its parent’s state with a high

probability. Each variable starts in states0.
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More specifically, the intensity matrix ofX0 is

QX0 =




−2.02 1 1 0.01 0.01

0.01 −2.03 0.01 2 0.01

0.01 0.01 −2.03 0.01 2

2 0.01 0.01 −2.03 0.01

2 0.01 0.01 0.01 −2.03




,

and for all other nodes, the off-diagonal elements of the intensity matrices are given by

qsi,sj |u=sk
=





0.1 if i 6= j andj 6= k,

10 if i 6= j andj = k.

BHPS Network: This network was learned from the British Household Panel Survey

(BHPS) [ESRC Research Centre on Micro-social Change, 2003]dataset. The dataset pro-

vides information about British citizens. The data are collected yearly by asking thousands

of households questions such as household organisation, employment, income, wealth and

health. Similar to Nodelman et al. [2005b], we keep a small set of variables so that exact

inference could be applied. We chose four variables: employ(ternary: student, employed,

unemployed), children (ternary: 0, 1, 2+), married (binary: not married, married), and smok-

ing (binary: non-smoker, smoker), and we assumed there is a hidden variable (binary) for

each of those four variables. We trained the network on 8935 trajectories of people’s life
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Figure 4.7: British Household Panel Survey Network

histories. We applied the structural EM algorithm in Nodelman et al. [2005b] and learned

the structure of the network shown in Figure 4.7. We then estimated the parameters of the

network using the EM algorithm and exact inference. We consider the learned model as the

true BHPS network model for these experiments.

4.6.2 Evaluation Method

We evaluated the performance of the approximate inference algorithms in two tasks: the in-

ference task of answering queries given evidence and the learning task of parametric learning

with partially observed data.

In the inference task, each evidence is a partially observedtrajectory of the CTBN net-

work. The evidence is generated using two methods. The first method is to set it manually.

The second is to generate a trajectory using the forward sampling algorithm and randomly

remove some parts of the sampled trajectory. For the latter,we repeated the following proce-
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duren times: for each variable, we randomly removed the information of the trajectory from

ts to ts + γT , whereT is the total length of the trajectory,ts is randomly sampled from the

[0, T − γT ] uniform distribution andγ < 1. After we run the removing proceduren times,

there are at mostnγ duration of information missing for each variable. In all comparisons,

this procedure was applied once and the same evidence was given to all algorithms.

In our experiments, we set our query to be one of three types: the expected total amount

of time a variableX stays on some statexi, the expected total number of times that a variable

transitions from statexi to statexj , or the distribution of variable at timet.

For each query, we ran the sampling algorithms with different sample sizes,M . For each

sample size, we ran the experimentN times. We calculated our query according to Equation

4.2 and compared the result to the true value calculated using exact inference. We used two

metrics: the relative bias|
P

vM−v∗|
v∗N

, wherevM is the query value of sampling algorithm with

sample sizeM , andv∗ is the true value; and the relative standard deviationσM

v∗
whereσM is

the standard deviation from the true value when sample size isM . For each sample size, we

also recorded the average running timet̄M of each experiment and usedt̄M to evaluate the

efficiency of the algorithm.

In the learning task, we used the sampling algorithms to estimate the parameters of a

CTBN network given some partially observed data. Monte Carlo EM [Wei and Tanner, 1990]

was applied in this task: In each iteration, we used the sampling based algorithm to estimate

the expected sufficient statistics given the incomplete data and used Equation 3.6 to compute

the parameters.
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The training data were generated by sampling trajectories from the true model and ran-

domly removing some portion of the information as describedabove. We sampled another

set of trajectories from the true model as the testing data. We calculated the log-likelihood of

the testing data under the learned model to evaluate the learning accuracy.

4.6.3 Experimental Results: Inference Task

In this section, we evaluate the performance of our importance sampling based algorithms in

answering queries and compare with the EP algorithm in Sariaet al. [2007] and the Gibbs

sampling algorithm in El-Hay et al. [2008].

Comparison of Importance Sampling and Predictive Lookahead

We first tested the importance sampling algorithm and the predictive lookahead modification

using the drug effect network. We set the observed evidence:on t = [0, 1) the stomach is

empty, ont = [0.5, 1.2) the barometer is falling, and ont = [1.5, 2.5) he is drowsy. Our

query is the expected total amount of time that he has no jointpain on[0, 2.5). (The true

value is 0.1093). We ran the two algorithms with sample sizes, M , from 5 to 90000. For

each sample size, we ran the algorithmsN = 1000 times.

The results are shown in Figure 4.8. Both algorithms achievethe correct result when the

sample size is large. The standard deviation decreases at a rate ofO( 1√
M

) (shown by the thin

solid line). The sampling algorithm with prediction achieves lower standard deviation than

the non-prediction version.
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Figure 4.8: Relative bias and standard deviation of sampling with and without predictive
lookahead.

Importance Sampling, Particle Filtering and Smoothing

We then used the chain network to evaluate the efficiency of the importance sampling, par-

ticle filtering, and smoothing algorithms. We assumed that only X4 was observed in this

experiment. We used four different evidences. The first one is a simple evidence: only part

of the behavior ofX4 is observed: on[1, 1.7), X4 = s3, and on[2, 2.5), X4 = s2. For

the other three, we used a complex evidence: the behavior ofX4 is fully observed during

the interval[0, T ), whereT = 3, 6, 9. This is done by forward sampling a trajectory from

0 to T and keeping only the information aboutX4. Our query is the marginal distribution

P (X2(
T
2
)|e[0,T )). Note that this is the most difficult case for the importance sampling algo-

rithm since the chain network is nearly deterministic. We recorded the average running time

and KL-divergence between the estimated and true distributions, for each sample size across

N = 300 trials.
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Figure 4.9: Time-efficiency comparison of particle filtering, smoothing and importance sam-
pling
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Figure 4.9 shows the efficiency of the three algorithms. In Figure 4.9(a), we used the

simple evidence. In Figure 4.9 (b)-(d), we used the evidencewith X4 fully observed and

T = 3, 6, 9 respectively. In all four cases, the particle filtering and smoothing algorithms both

outperform the importance sampling algorithm when the sample size is small (small running

time). For simple evidence (Figure 4.9(a)), the importancesampling algorithm achieves

comparable performance when the sample size is large. When the evidence is complicated

(Figure 4.9 (b)-(d)), the error of importance sampling is large, even we use very large sample

sizes. When the trajectory is short, the particle filtering algorithm is slightly better than

the particle smoothing algorithm. This is because the filtering algorithm can generate more

samples than the smoothing algorithm with the same running time. However, as the trajectory

length increases, the particle smoothing algorithm outperforms the filtering algorithm due to

particle diversity problems.

Comparison of Importance Sampling and EP

We also compared our three sampling algorithms to the approximate inference algorithm

based on expectation propagation in Saria et al. [2007]. We did not use their adaptive splitting

method (for reasons we explain below). Even without the adaptive splitting, their method still

differs from that of Nodelman et al. [2005a], in that it allows asynchronous propagation of

messages along time.

We used the same evidence as in Section 4.6.3 on the drug effect network and answered

two queries: the total amount of time that the concentrationis low and the total amount of
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Figure 4.10: Comparison to expectation propagation: Drug Network

time the person has no joint pain. For the EP algorithm, we first tried segmentations that

were split at the evidence. We then gradually decreased the time interval of the segments

to 0.15. The results of accuracy with respect to running timeare shown in Figure 4.10.

The importance sampling algorithm and the particle filtering algorithm outperforms the EP

algorithm in answering both queries. Among the sampling-based algorithms, the importance

sampling algorithm performs the best and the smoothing algorithm is the worst. This is

not surprising given that most of the nodes are binary. At each transition time, the sampled

trajectory has no choice as to the next state. Therefore, smoothing (or filtering) has less effect

as there is no need to intelligently select the next state. However, the extra computation time

for resampling and backward simulation makes the filtering and smoothing algorithm less

efficient.

As mentioned above, we did not employ the adaptive splittingmethod of Saria et al.

[2007]. It would not have changed our results much. The left-most points in Figure 4.10
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correspond to the minimum number of splits. (They are as fastas possible.) The right-

most points of the Figure 4.10 correspond to many fine splits,and are about as accurate as

possible, and we can see that the accuracy has flattened out. So, while the horizontal widths

of the EP curves would have been shortened (by allowing for the better accuracy in less time),

the vertical spread would have been approximately the same.In neither plot of Figure 4.10

would this have made a large difference in the comparisons toour sampling method.

Comparison of Importance Sampling and Gibbs Sampling

We compared our importance sampling algorithm to the Gibbs sampling algorithm as dis-

cussed in El-Hay et al. [2008]. We used three CTBN network models: the drug effect net-

work, the BHPS network, and the chain structured network.

For each network, we randomly generated evidence using the procedure described in

Section 4.6.2. We setn = 4 andγ = 0.2. Thus, at most 80% of the information is missing

for each variable.

For the importance sampling algorithm, we chose the sample sizeM from 10 to 500000.

For the Gibbs sampling algorithm, we chose the sample sizeM from 10 to 5000. We ran

the experiments for each sample sizeN = 100 times and recorded the average running time

for each algorithm. For the Gibbs sampling algorithm, we first ran 100 “burn-in” iterations

for each sample size before we sampled trajectories from thesampler. The time spent on the

“burn-in” iterations was not included in the final running time.
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Figure 4.11: Comparison to Gibbs sampling: drug network. Note burn-in time for Gibbs
Sampling is not included (3.94 seconds on average).

For the drug effect network, the evidence trajectory beginsat timet = 0 and ends at time

t = 5. We asked two queries: the expected total amount of time the person’s stomach is half

full, and the expected number of times that the person’s stomach changes from empty to half

full.

Using enough running time (sample size), we observed that both algorithms could answer

the queries accurately (with a relative bias below 0.1%). The decreasing of the relative stan-

dard deviation with respect to the running time of the two algorithms are shown in Figure

4.11. The average “burn-in” time for the Gibbs sampler is about 3.94 seconds. From the

figure, we can see that importance sampling outperforms the Gibbs sampling in answering

both queries.

For the BHPS network, we set the evidence fromt = 0 to t = 50 (years). We asked

similar queries: the expected total amount of time a person’s employment status is as a

student and the expected number of times that he becomes employed. We chose the same
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(a) Query of Time (b) Query of Transition

Figure 4.12: Comparison to Gibbs Sampling: BHPS network. Note burn-in time for Gibbs
Sampling is not included (30.88 seconds on average).

sample sizes as on drug effect network and ran each sample size N = 100 times. Figure

4.12 shows the result of the decreasing of the standard deviation of the two algorithms. The

average “burn-in” time for Gibbs sampling algorithm in thisexperiment is 30.88 seconds.

We achieved similar result as the experiments with drug effect network. The importance

sampling algorithm outperformed the Gibbs sampling algorithm in answering the query of

time. The performances on the query of transitions are almost the same.

In both networks, importance sampling outperformed Gibbs sampling in three of the four

cases, even when the running time on “burn-in” iterations was not considered. To achieve

the same accuracy and standard deviation, Gibbs sampling algorithm requires fewer samples.

This is because for each variable, Gibbs sampling samples from the true posterior distribu-

tion given the evidence and its Markov blanket. However, sampling from the true posterior

distribution is computational costly, since it requires repeatedly computing the conditional
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(a) Query of Time (b) Query of Transition

Figure 4.13: Comparison to Gibbs sampling: chain network. Note burn-in time for Gibbs
Sampling is not included (11.42 seconds on average).

cumulative distribution function. Using the same amount oftime, importance sampling can

sample far more trajectories, which outperforms Gibbs sampling.

We last compared these two algorithms using the chain network. The evidence trajectory

begins at timet = 0 and ends at timet = 5. We set the queries to be the expected total

amount of timeX2 stays in states1 and the expected number of times thatX2 transitions

from s0 to s1. Figure 4.13 shows the result overN = 100 runs. The average “burn-in” time

for the Gibbs sampling algorithm in this experiment is 11.42seconds.

Gibbs sampling achieved a better performance in this experiments. The result is not sur-

prising. As we have mentioned before, the chain structured network is nearly deterministic,

and it is the hardest case for the importance sampling algorithm. We further examined the

randomly generated evidence. The only observed state onX0 is s0, which makes this exper-

iment even harder for the importance sampling algorithm. However, it is a very easy case

for the Gibbs sampling algorithm since it is nearly deterministic and is structurally simple.
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(There are only at most one parent and one child for each node.) Although importance sam-

pling can generate many more samples in the same period of time, most of these samples are

trajectories with very small weights.

4.6.4 Task in Parametric Estimation

In this section, we evaluate the performance of our importance sampling algorithm on para-

metric estimation and compare to the Gibbs sampling algorithm.

We used the drug effect network for this experiment. We sampled increasing numbers

of trajectories of 5 time lengths. To hide part of the trajectory, we did the following: In

each iteration, for each variable we randomly selected a time window of 0.5 time lengths and

removed the content in that window. We repeated this until wedropped 50% of the content

of the trajectory. We used these incomplete trajectories asour training data. We sampled

another 200 trajectories with the same length to be our testing data.

To estimate the parameters of the CTBN network, we followed the EM algorithm in

Nodelman et al. [2005b]. When calculating the expected sufficient statistics, importance

sampling and Gibbs sampling were used. Therefore, the likelihood in the E-step was cal-

culated approximately. In our experiment, we fixed the totalnumber of iterations for the

EM algorithm. In each iteration, we compared the calculatedlikelihood to the likelihood in

the previous iteration. If the likelihood decreased, we kept the parameters in the previous

iteration.
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Figure 4.14: Learning results for drug effect network

We chose the initial parameters for the EM algorithm by sampling the diagonal elements

of the conditional intensity matrices from the Gamma distribution with parameters(0.5, 1)

and sampling the transition probabilities from a Dirichletdistribution. We randomly sampled

5 models as the initial parameters for the EM algorithm. For each initial parameter set,

we ran the EM algorithm 10 times. We evaluated the learning accuracy by calculating the

average log-likelihood of the testing data on the 50 learnednetworks. To compare the running

efficiency of the two sampling-based algorithm, we fixed the total amount of time for the

sampler to generate samples in each EM iteration. For the Gibbs sampling algorithm, we

dropped the first 50 trajectories as “burn-in” iterations. Figure 4.14 shows the results as we

increased the number of training trajectories from 1 to 6. The amount of time for sampling in

each EM iteration was set to be 8 seconds. The number of EM iterations was fixed to be 15.

Both algorithms obtain higher log-likelihood on the testing data when we increase the

number of training trajectories. The importance sampling algorithm achieved better estima-
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tion than the Gibbs sampling algorithm, especially when thenumber of training data was

small.

Discussion

From the results, we can see that our importance sampling algorithm performs well in both

inference and learning tasks. When the sample size is large,our algorithm achieves the cor-

rect value in the inference experiments. As for the efficiency of the algorithm, our importance

sampling outperforms both EP and Gibbs Sampling in most of the experiments.

Our importance sampling algorithm did not perform very wellin the experiment with

the chain network. As all the variables are highly correlated in the chain network, choosing

a proposal distribution that only consider the upcoming of each single sampled variable is

insufficient. An alternative solution is to use MCMC methods. However, in our experiments,

we found that Gibbs sampling is very computationally expensive. Thus, in real world appli-

cations such as social networks, where network size is usually very large and the network

structure is complex, we use Metropolis-Hastings algorithm to lower the computation cost.

We will discuss this in Chapter 6.

4.7 Conclusion

We have presented an approximate inference algorithm with two variations based on impor-

tance sampling. We naturally extended the algorithm to sequential Monte Carlo methods

such as particle filtering and smoothing in CTBNs. A Metropolis-Hastings algorithms for
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CTBNs was also developed based on the importance sampling algorithm. We applied our

sampling algorithm to synthetic networks and a network derived from real data. We evalu-

ated the efficiency of our algorithms and compared to other approximate inference algorithms

based on expectation propagation and Gibbs sampling. Our importance sampling algorithm

outperforms both in most of the experiments.

The networks used in our work are at the upper size limit for exact computation. For

example, calculating the expected sufficient statistics ofthe chain structured network given

evidence takes more than two days using exact inference. Thus, approximate inference meth-

ods are critical for tracking, predicting, and learning in continuous time Bayesian networks

for real applications. Our importance sampling based algorithms are fast, simple to imple-

ment and can be used to calculate the expected value of any function of a trajectory, including

the expected sufficient statistics necessary for expectation-maximization for parameter esti-

mation with missing data.
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Chapter 5

Continuous-Time Social Network

Dynamic Model

In the previous two chapters, we introduced the CTBN model and our sampling-based ap-

proximate inference algorithms for CTBNs using importancesampling. CTBNs provide a

representation language to model large dynamic systems compactly and to explore depen-

dencies among variables in the systems. Our importance sampling algorithms allow us to

perform inference in a dynamic system even when it is large and complicated. Social net-

works are one such important type of dynamic systems in our daily life. In this chapter, we

first review several sociology models for social network dynamics. In the next chapter, we

then demonstrate that these models can be viewed as CTBNs andour importance sampling

algorithms can be used as the basis to estimate the parameters of these models.

87



5.1 Background

A social network models the relationships (such as friendship or co-authorship) among actors

(such as individuals or companies). The relationships among actors can be represented using

a network withN nodes, each representing an actor, whereN is number of actors. An arc

from nodei to nodej represents a tie or relationship from actori to actorj. At any time, the

status of the tie from an actori to another actorj can be represented using a binary variable

Yij with V al(Yij) = {0, 1}. Therefore, the structure of the entire network can be described

using ann× n adjacency matrixY = (Yij). The dependencies among the actors in a social

network are complex. Understanding these dependencies canhelp us in many areas. For

example, when recommending a new game to a user on Facebook, it is very useful to know

whether the person’s friends are also interested in the game. It can also help us control the

spread of a disease or predict the reactions of terrorists. Therefore, there has been a surge of

studies on analyzing social networks in recent years.

5.2 Social Network Dynamic Models

Usually, social networks are not static but evolve in continuous time. The dynamic infor-

mation is very important when modeling social networks. However, much of the past work

focuses on building probabilistic models of social networks using static network snapshot

data.
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5.2.1 Static Social Network Models

One of the widely used models is the exponential random graphfamily, which was first

proposed as thep1 model [Holland and Leinhardt, 1981] and was further developed into the

exponential random graph model (ERGM, orp∗ model) [Anderson et al., 1999]. The ERGM

defines the logarithm of the probability of a complete socialnetwork structure to be a linear

combination of some structural features of the network. Generalizations of ERGM called

curved exponential family models are presented in Hunter and Handcock [2006] which use

non-linear parametrizations of the network structure probabilities.

Another popular model is the latent space model [Hoff et al.,2002], which assumes that

each actor has a position in an unobserved “social space.” The probability of the presence or

absence of a link between two actors depends on their positions in the latent space. It also

assumes that the probability of the link is conditionally independent of all the other links in

the system given the unobserved positions of the two actors.Inference is performed using

maximum likelihood and a Bayesian framework.

These works described above only focus on the static properties of social networks. So-

cial networks, however, always evolve over time. It is therefore important to study the dy-

namics of social networks. Indeed, more and more work emphasises the evolution of social

networks.
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5.2.2 Discrete-time Model

Some work extends the previous static social network modelsto dynamic social network

models using discrete-time models.

A class of hidden temporal exponential random graph models (htERGMs) was proposed

by Guo et al. [2007], which is an extension of ERGMs for modeling networks evolving over

discrete time steps. The network topology is considered to be a latent process and is assumed

to be conditionally independent given the topology of the previous time step. The observed

attributes of all the nodes of the network at time stept are conditionally independent of all

others given the network topology and some time-invariant global features. Learning and

inference on htEMGRs can be performed using sampling algorithms.

Sarkar and Moore [2005] extended the latent space model of Hoff et al. [2002] into a dy-

namic system that captures the changing of friendships, which are similar to hidden Markov

chains. It assumes that the position of each individual can move in discrete time steps ac-

cording to a transition model. The model further makes a standard Markov assumption that

the position of an actor in the latent space at timet is conditionally independent of all past

positions given the position at the previous time step. The observed graph att is condition-

ally independent of all other positions and graphs given thepositions att. Inference can be

performed by running the standard forward-backward algorithm on the model.

Liben-Nowell and Kleinberg [2003] provided a link prediction method that tries to pre-

dict new links of the network based purely on the social network structure. Given a snapshot

of a social network, the prediction method calculates a connection weight score of each pair
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of nodes in the network. A new link is predicted between the pair of nodes with the highest

score. The score is based on the structure of the observed network such as the shortest path

distance of the two nodes or the number of neighbors shared bythe two nodes.

These discrete-time models capture the dynamics of social networks and are able to make

predictions on the changing of the network. However, socialnetworks always evolve asyn-

chronously since there is no global coordination of the actors. As we discussed in previous

chapters, discrete-time models have several limitations when handling these asynchronous

dynamic systems. In many cases, a continuous-time model canprovide more flexibility in

modeling the dynamics of social networks.

5.2.3 Continuous-time Models

The idea of using continuous-time model is not new. Early models such as the reciprocity

model can be found in Wasserman [1979]. The reciprocity model considers the link pair

(Yij,Yji) between any two actorsi andj in a network as a homogeneous continuous-time

Markov process with four states (00, 01, 10, 11). It further makes the dyad independence

assumption that each pair of(Yij, Yji) is independent of all the other links in the network.

Therefore, the network as a whole is also a homogeneous continuous-time Markov process

which includes many independent processes.

Another early model is the popularity model in Wasserman [1980]. It also models each

link pair (Yij, Yji) as an independent continuous-time Markov process. However, the transi-

tion intensity of each Markov process depends on the number of incoming links of the actor
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that the transition link points to. Thus, the intensity of each Markov process is time variant

and the state of popular actors who have more incoming links may change faster.

These models are computationally efficient because of the dyad independence assump-

tion. But the assumption also limits the ability of the modelto represent some common

properties of the social network, such as transitivity. (Actor i has higher probability of creat-

ing a friendship with actorj if i’s friends also knowj.)

Usually, the evolution of each link between any two actors also depends on the link status

of other actors. Therefore, a more general model for the dynamics of social networks should

allow link change probabilities to also depend on the entirenetwork structure. The actor-

oriented model [Snijders, 2005], an extension of the reciprocity model, is such a model. In

this model, the evolution of the entire network is still modeled as a homogeneous continuous-

time Markov process. However each link variable is modeled as an inhomogeneous Markov

process. The probability that a link changes can depend on the entire network structure.

The evolution of the network is modeled as the actors making decisions to add or remove

links to maximize a utility function. The model can be simulated using the forward sam-

pling method, and the method of moments [Bowman and Shenton,1985] is used to estimate

parameters. An alternative Bayesian based parameter estimation method is implemented in

Koskinen and Snijders [2007].

One important factor we should consider is the characteristic attributes of actors. The

characteristic attributes of the actors and the network’s structure (both time-variant) may

depend on each other. For example, people who have the same interests are likely to be-

92



come friends and friends are likely to influence each other’sinterests. Such effects should

be considered when modeling the social networks. Snijders et al. [2007] extended the actor-

oriented model to the network-attribute co-evolution model which added effects between the

network structure and the actors’ attributes. Steglich et al. [2006] showed an application of

this model. They studied the dynamics of a friendship network considering attributes of ac-

tors, such as alcohol consumption. We will give detailed introduction of the network-attribute

co-evolution model in the following sections.

5.3 Network-attribute Co-evolution Model

There are two types of variables in the network-attribute co-evolution model: the evolving

pair-wise relationships among theN actors and theH ≥ 1 discrete-valued attributes1 of

each actor. The number of actors is fixed during the entire process. At any timet, the

ties can be described as a directed graph, which is represented by anN × N adjacency

matrix Y (t), whereYij(t) represents the relation directed from actori to actorj (i, j ∈

{1, . . . , N}). Yij(t) = 1 if there is a tie from actori to j andYij(t) = 0 otherwise. Self

relations are not considered in the network. The actors’ attributes att can be represented

by H integer vectorsZh(t) of sizeN , whereZhi(t) denotes the value of actori on attribute

h. Therefore, the network-attribute co-evolution is modeled using the stochastic process

X(t) = (Y (t), Z1(t), . . . , ZH(t)).

1Snijders et al. [2007] call the attributes of the actors “behaviors.” We call them “attributes” to avoid confu-
sion with the dynamic behavior of the model.
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The network-attribute co-evolution model assumes that theprocessX(t) is a continuous-

time Markov process. The evolution of the network is modeledas actors making decisions

to maximize their satisfaction with the network: an actor may choose to add or remove an

outgoing tie, or change the value of one attribute in order to(approximately and locally)

maximize a utility function. At any timet, given the current stateX(t), the decisions made

by the actors are conditionally independent.

It is further assumed that when making a decision, the actor can only change one outgoing

tie or change one attribute value. Because of the continuous-time nature, no two events may

occur at exactly the same time. Thus, at any time, only one actor can add or remove an

outgoing tie or increase or decrease one value unit of an attribute. For each actori, the

times between two network changes and between two attributedecisions are exponentially

distributed with parametersλn
i andλa

i , called rate functions. Usually, they are assumed to be

constant values.

At a transition point, the actor chooses to add or remove a tieto maximize the value of

the network utility functionfn
i (βn, y〈i, j〉, z) + ǫn, or to change the value of an attribute

to maximize the attribute utility functionfa
i (βa, y, zh〈i, δ〉) + ǫa, wherefn

i (βn, y〈i, j〉, z)

andfa
i (βa, y, zh〈i, δ〉) are the objective functions for network and attribute decisions respec-

tively. y andz are the current states of the network and attributes.y〈i, j〉 denotes the state

of the network after the tie fromi to j changes.zh〈i, δ〉 denotes the state of the attribute

after actori changes the attributezh by δ, whereδ ∈ {−1, +1}. Both objective functions are

modeled as a weighted sum of effects (features) that depend on the topology of the network
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and the attribute values. The functions have the form

fi(β, y, z) =

L∑

k=1

βksik(y, z)

wheresik(y, z) is an effect that expresses a property of the network structure and the attribute

values from the view of actori, andL is the number of effects the actor considers.

Example 5.3.1 We can define the utility functions as follows. For the network utility func-

tion, assume that the evolution of the network structure depends on two effectssn
i1(y, z) and

sn
i2(y, z). Let sn

i1(y, z) be the “density effect,” defined as the number of out-going ties from

i. Let sn
i2(y, z) be the “reciprocity effect,” defined as the number of reciprocated links toi.

For the attribute utility function, we assume it depends on the “attribute tendency” and the

“similarity effect” of actor i. The “attribute tendency” is defined as the current attribute

value ofi. The “similarity effect” is defined by a similarity function. Then the utility function

fn
i (βn, y〈i, j〉, z) andfa

i (βa, y, zh〈i, δ〉) are

fn
i (βn, y〈i, j〉, z) =βn

1

∑

j

yij + βn
2

∑

j

yijyji

fa
i (βa, y, zh〈i, δ〉) =βa

1zih + βa
2

∑
j
yijsimij

wheresimij = 1− |zih − zjh|/Range(zh) is the attribute similarity between actorsi andj.

If βn
1 = −2, betan

2 = 1.5, βa
1 = 0.5, andβa

2 = 1, this means that when making decision to

change the status of a link, actori is unlikely to randomly create a relation (βn
1 < 0, discour-
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aging dense network) and is likely to create reciprocated connections (βn
2 > 0, encouraging

reciprocated links). The actor has a preference for high value of attributeZh (βa
1 > 0, en-

couraging higher value ofzh), and the actor tends to change the attribute to be similar tohis

friends (βa
2 > 0, encouraging similarity).

ǫn andǫa are random noises. Following Snijders et al. [2007], they are set to be Gumbel

distributions with mean 0 and scale parameter 1. Then the transition probability of actori

changing the tie toj and actori changing the value ofzh by δ are

P (y〈i, j〉|y, z) =
exp(fn

i (βn, y〈i, j〉, z))∑
k 6=i exp(fn

i (βn, y〈i, k〉, z))
(5.1)

P (zh〈i, δ〉|y, z) =
exp(fa

i (βa, y, zh〈i, δ〉))∑
δ exp(fa

i (βa, y, zh〈i, δ〉))
. (5.2)

Given the rate functions and the transition probabilities,the intensity matrix of the con-

tinuous Markov processX(t) can be written as

qx,x̂=





λn
i P (y〈i, j〉|y, z) if x̂ = (y〈i, j〉, z)

λa
i P (zh〈i, δ〉|y, z) if x̂ = (y, zh〈i, δ〉)

−
∑

i(λ
n
i + λa

i ) if x̂ = x

0 otherwise.

(5.3)

When there are no observations, we can generate trajectories for X(t) using standard

forward sampling method for continuous-time Markov processes.
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Since the network-attribute model is an extension of the actor-orientated model, the actor-

oriented model can be considered as a special case of the network-attribute model where

the evolution of a social network only depends on the structure of the network and no ac-

tor attributes are considered. Thus, we only need the rate function λn
i and utility function

fn
i (βn, y〈i, j〉, z) to model the dynamics of a social network under the actor-oriented model.

The dynamics of the entire social network are still a continuous-time Markov process. The

intensity matrix of the process is

qx,x̂=





λn
i P (y〈i, j〉|y) if x̂ = y〈i, j〉

−
∑

i λ
n
i if x̂ = x

0 otherwise.

(5.4)

5.4 Parameter Estimation

Snijders et al. [2007] assume that observations are only available at discrete time points

t1 < t2 < · · · < tM , whereM ≥ 3. The parametersα = (λn, λa, βn, βa) are estimated based

onM network observationsy(t1), . . . , y(tM) and attribute observationsz(t1), . . . , z(tM). Pa-

rameters are estimated using the method of moments (MoM) [Bowman and Shenton, 1985].

MoM estimates the parameters such that the expected values of some statisticsD(y, z)

under the estimated parameter are equal to the observed values. The statistics used by

Snijders et al. [2007] for each parameter are as follows.
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Parameter D(y, z)

λn
∑

i,j |yij(tm−1)− yij(tm)|

λa
∑

h,i |zhi(tm−1)− zhi(tm)|

βn
k

∑
i s

n
ik(y(tm), z(tm−1))

βa
k

∑
i s

a
ik(y(tm−1), z(tm))

Their estimation algorithm uses the Newton-Raphson methodstarting with random pa-

rameters. In each iteration, parameters are updated so thatthe expected statisticsD(y, z)

listed above equal the statistics of observation data. The expectation of the statistic values

are calculated using forward sampling between two consecutive time pointstm and tm+1

without considering the observations.

MoM estimates the parameters using some statistics of the observations data, which im-

plies that there should not be missing values in theM network observationsy(t1), . . . , y(tM)

and attribute observationsz(t1), . . . , z(tM ). However, in real applications, missing values in

observation data are inevitable. In Snijders [2005], network observations are completed by

simply replacing missing values with zeros. Huisman and Steglich [2008] only set missing

values to be zero in the first network observation so that forward sampling algorithm can be

performed. To estimate parameters, only observations thatare available at two consecutive

time points are used, which means that a lot of useful information is discarded.
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5.5 Summary

Social networks usually evolve in continuous time. The actor-oriented model and the network-

attribute co-evolution model provide approaches to model the dynamics of social networks

naturally using continuous-time Markov processes. Also, the evolution of social networks

is allowed to depend on the entire network structure. Furthermore, the network-attribute

co-evolution model includes the influence of the dynamic attributes of actors in the model.

These two models give us more flexibility when modeling the dynamics of social networks.

However, there are several limitations in these two models.Only some sufficient statistics

of the evidence are considered when estimating the parameters. Samples generated to esti-

mate the parameters do not fully agree with the evidence, which may affect the estimation

accuracy. Second, fully observed network structure and attribute values at each observation

point are required when calculating the sufficient statistics of observation data. However,

missing values in observation data are very common in real social network applications. Fi-

nally, these two models assume that direct observations of the network structure are available

at M ≥ 3 time points. Collecting this type of social network data is very expensive, which

may take several years. These facts limit the range of socialnetwork data to which these two

models can be applied.

One solution for these problem is to view the actor-orientedmodel and the network-

attribute co-evolution model as CTBNs, since they all treatthe dynamic systems as continuous-

time Markov processes. Algorithms in CTBNs then can be adapted to social network dy-

99



namic models, which we will discuss in details in the next chapter. This allows us to deal

with general evidence patterns.
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Chapter 6

Learning Social Network Dynamics

In the previous chapter, we introduced the actor-oriented model and the network-attribute co-

evolution model. These two social network models provide usapproaches to model the dy-

namics of social networks in continuous time, where the evolution of each tie in the network

may depend on the entire structure of the network. The network-attribute co-evolution model

further allows the impact of actor’s characteristic attributes to be considered when studying

the evolution of social networks. However, since the learning algorithm in these models only

uses forward sampling, estimation accuracy may be affected. Also, only evenly-spaced, fully

observed network snapshots data can be handled using the prior learning algorithms.

In this chapter, we will show that these two models can be viewed as CTBNs. Therefore,

our importance sampling algorithm for CTBNs can be adapted to these social network models

to develop a maximum likelihood estimation algorithm. Furthermore, using CTBN models,

we present a hidden social network dynamics model in which indirect observations such as
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emails events among people can be utilized. The Metropolis-Hastings algorithm developed

in Chapter 4 can be applied as the basis for parameter estimation. Thus, we not only improve

upon previous parameter estimation methods for social network dynamics, but also extend

their range to deal with more flexible data sources.

6.1 Sampling for Learning Social Networks

The method of moments (MoM) parameter estimation method in Snijders et al. [2007] only

uses some sufficient statistics of the observation data. Samples generated during the esti-

mation procedure do not fully agree with the observations, which may affect the estimation

accuracy. Additionally, calculating the true statistics,D(y, z), requires that, at each obser-

vation point, all the network and attribute values are fullyobserved. Thus, it is hard for

MoM estimation to handle observation data with missing values or evidence about durations,

common in real applications.

Since the network-attribute co-evolution model assumes that the entire stateX(t) of the

social network is a continuous-time Markov process, we can easily convert it to a CTBN, and

apply the importance sampling algorithm to the converted model. The samples generated

by importance sampling algorithm are consistent with the observations, and we can apply

maximum likelihood estimation.
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6.1.1 Importance Sampling for Network-attribute Co-evolution Model

Given the current instantiation(y, z) of the whole system, the conditional intensity matrix

Qn
ij|y,z for link variableyij(t) can be extracted from Equation 5.3:

Qn
ij|y,z =



−λn

i P
0
i,j λn

i P 0
i,j

λn
i P

1
i,j −λn

i P 1
i,j


 . (6.1)

whereP k
i,j = P (y〈i, j〉|yij = k, y, z) for k = {0, 1}. The conditional intensity matrixQa

i|y,z

for attribute variableZhi(t) can be extracted similarly.

The transition probabilities depend on the utility functions, whose values depend on the

current instantiation of the entire system. Independencies among variables only hold for par-

ticular assignments to certain other variables (analogousto context sensitive independence

for Bayesian networks). For example, if the network utilityfunction’s features include the

attribute similarity to connected actors, then the dynamics of link Yij can potentially depend

on allZk, but at any given instant, only depends on thoseZk for whichYik = 1. If any one of

these linksYik changes, the independencies betweenYij and{Zk} will change. However, the

independencies are fixed between any two consecutive transitions. Therefore, this dynamic

CTBN structure prevents efficient use of other approximate CTBN inference algorithms like

expectation propagation [Saria et al., 2007]. We could apply the Gibbs sampling algorithm of

El-Hay et al. [2008], but it must calculate the true posterior density between every two con-
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secutive transitions which can be arbitrarily complex. Sampling from the posterior density

involves binary search. As we have shown in Chapter 4, it is very computational costly.

Using the converted CTBN model, we can apply the importance sampling algorithm for

the model. This also allows for general evidence patterns beyond complete snapshots.

6.1.2 Maximum Likelihood Estimation

The importance sampling algorithm can generate weighted samples that fully agree with the

observations. The log-likelihood of the samples can be calculated using Equation 3.1 and

Equation 4.3. Therefore, we can use maximum likelihood estimation to learn the parameters

α = (λn, λa, βn, βa). Since the data are partially observed, we employ the Monte Carlo

expectation maximization (MCEM) algorithm [Wei and Tanner, 1990]. For this application

of EM, the steps are as follows.

Expectation Step: Using the current parameters, apply the importance sampling al-

gorithm to generatem weighted samples. Calculate the sufficient statistics and the log-

likelihood of the samples.

Maximization Step: Update parameters, using the sufficient statistics and log-likelihood

as if they came from the complete data. Rate parametersλn
i andλa

i are set to beMn[i]/T and

Ma[i]/T respectively, whereMn[i] andMa[i] are the number of link changes and attribute

changes for actori, respectively. We use conjugate gradient ascent [Press et al., 1992] to

estimate the weight parametersβn andβa since they cannot be solved analytically from the

log-likelihood function.
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Notice that the rate parameters and the weight parameters can be updated separately. To

increase the accuracy, we divide the EM iterations into two loops so that the two sets of

parameters are estimated alternatingly. Specifically, in each EM iteration, we first fix the

current parameters for the weight parameters, estimate therate parameters by conducting

the above two steps. We then update the rate parameters, fix them, and estimate the weight

parameters using the above two steps.

The rate parameters are calculated using the expected number of transitions of the model.

Since the time intervals between transitions are sampled from the exponential distribution

with the current intensity rateq, it is difficult to sample a trajectory with a slower rate. (The

algorithm tends to add additional transitions to get the trajectory to agree with the evidence.)

Therefore, if the initial rate parameter is larger than the true value, it is unlikely that the EM

algorithm will converge to the true rate with a reasonable number of samples. To avoid this,

instead of sampling transitions using the current intensity q, we sample transitions from the

exponential and truncated exponential distribution with intensityq/2. We adjust the sample

weights accordingly.

6.2 Hidden Social Network Dynamics Model

The network-attribute co-evolution model assumes that theadjacency matrixY (t) can be

observedM ≥ 3 times. Observation of network structure for each actor are collected using

survey or interview instruments, which sometimes takes several years. It is very expensive
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even obtaining one complete observation of the network. However, communication events

among people, such as emails, instant messages, and phone calls, are easier to collect. We

can fully observe these events continuously with lower cost. The occurrence of such an event

depends on the connection status between the actors involved. Thus, although they may not

be as accurate, these events indirectly reflect the relationships among people. In such model,

the network itself is unobserved (hidden) all the time. We call this model the hidden social

network dynamics model.

6.2.1 Model Definition

Let Y (t) be the network ofN actors, which evolves in continuous time in the same way as

in the network-attribute co-evolution model. (We do not consider the attribute variables, but

adding them to the model is straight-forward.) LetO(t) be the observations (such as emails

or phone calls) among theN actors.O(t) can be fully or partially observed asY (t) evolves.

Oij(t) ∈ O(t) (i, j = 1, . . . , N, i 6= j) is the observation of communication directed fromi

to actorj. We assume that the dynamics ofOij(t) depend only onYij(t) andYji(t). Thus,

the dynamics of each observation variableOij(t) can be described using four conditional

intensity matricesQobs
ij|Yij=k,Yji=l (k, l ∈ {0, 1}), each of which corresponds to a state ofYij(t)

andYji(t). We further assume that all the event variables share the same set of parameters.

That is,∀i, j, thati 6= j, Qobs
ij|Yij=k,Yji=l = Qobs

Yij=k,Yji=l.

Therefore, the hidden social network dynamic model contains two sets of variables: the

network variablesY (t) and the observationsO(t). The evolution of the network variables is
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the same as in the network-attribute co-evolution model. Itdepends on the network rateλn

and the utility functionfn. The dynamics of each observation variableOij(t) depend only on

the state of link variablesYij(t) andYji(t). According to the Markov properties of CTBNs,

Oij(t) is independent of all the other variables given the entire trajectory ofYij(t) andYji(t).

Example 6.2.1 One of the commonly observed social events is mobile phone calls among

people. Currently, almost everyone uses mobile phones, andmobile phone calls usually

indirectly reflect the relationships among people, though perhaps not exactly. For example,

not every person one calls is a friend, but most phone traffic is between friends.

Most of the time, a mobile phone is in a standby state. When a person wants to commu-

nicate with his friend using a mobile phone, one of the the following three situations may

happen.

• The person calls his friend and has a conversation.

• The person sends a text message to his friend.

• The person calls his friend but his friend misses that call.

Therefore, we can describe the dynamics of a mobile phone using the following conditional

intensity matrix

Qobs
ij|Yij=k,Yji=l =




−qs
kl qcall

kl qmsg
kl qmiss

kl

qc
kl −qc

kl 0 0

∞ 0 −∞ 0

∞ 0 0 −∞




standby

in-call

text message

missed call

.
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qcall
kl , qmsg

kl and qmiss
kl are the intensities of a person making a successful call, sending a

message and making a no-answer call respectively.qs
kl = qcall

kl + qmsg
kl + qmiss

kl is the intensity

that a mobile phone leaves the standby state.qc
kl is the intensity of a mobile phone leaving

the conversation state. When a conversation is ended, the mobile phone can only go back to

the standby state. The intensities of changing from conversation state to text message state

or missed call state are zeroes. Text message and missed callare all instantaneous events.

There should be no duration for these two states. The corresponding intensities are set to be

infinities.

6.2.2 Metropolis-Hastings Sampling Algorithm

Due to the large number of variables in the hidden social network dynamic model, exact

inference is intractable. Since the model can be naturally converted to a CTBN, we can apply

the importance sampling algorithm to the converted model. However, because onlyY (t)’s

children are observed, the trajectory ofY (t) would be sampled blindly with no guidance

from the evidence. Any incorrectly sampled variable can make the entire trajectory be highly

unlikely. Given the large sample space forY (t), the importance sampler generates many

trajectories with very small weights.

An alternative method is to use the Metropolis-Hastings algorithm described in Section

4.5.2. Unlike importance sampling algorithm, the Metropolis-Hastings algorithm evaluates

the newly sampled trajectoryσ′ in each iteration. A trajectory with low probability is likely
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to be rejected according to the acceptance probabilityA(σ → σ′). Therefore, the Metropolis-

Hastings algorithm guides the sampling toward more likely trajectories.

Notice that in the hidden social network dynamic model, eachobservation variableOij(t)

is independent of all the other variables given the entire trajectory ofYij(t) andYji(t). Given

the entire trajectory ofYij(t) andYji(t), queries aboutOij(t) can be calculated using exact

inference. According to the Metropolis-Hastings algorithm, the sampling procedure starts

with an arbitrary trajectory when samplingY (t). Then in each iteration, the sampler ran-

domly picks a variableYij(t) and replaces the entire trajectory ofYij(t) using the importance

sampling algorithm, fixing the rest of the trajectory as evidence. If the acceptance ratio of

the new sampled trajectory is larger than a random numberu, sampled from a[0, 1] uniform

distribution, the new trajectory is accepted. Otherwise, the old trajectory is kept.

Let σ be the trajectory from the previous iteration, andσ′ be the sampled trajectory in

the current iteration. LetP be the target distribution given by the model andP ′ be the

proposal distribution used by the importance sampling algorithm. We need to calculate the

acceptance ratio of the sampled trajectoryσ′ in the Metropolis-Hastings algorithmr(σ, σ′) =

P (σ′)P ′(σ|σ′)
P (σ)P ′(σ′|σ)

.

We defineσY to be the trajectory ofY (t) in σ, σYij
to be the trajectory ofYij(t) in σ and

σ/Yij
to be the trajectory ofY (t) exceptYij(t). We defineσO andσOij

similarly. If Yij is the
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variable to be resampled, according to the Markov properties of CTBNs, we have

r(σ,σ′) =
P (σ′

Y )P (σO|σ′
Y )

P (σY )P (σO|σY )

P ′(σY |σ′
Y , σO)

P ′(σ′
Y |σY , σO)

=
P (σ′

Y )

P (σY )

P (σOij
, σOji

|σ′
Yij

, σYji
)

P (σOij
, σOji

|σYij
, σYji

)

P (σ′
Yij

|σ/Yij
)

P ′(σ′
Yij

|σ/Yij
)

P (σYij
|σ/Yij

)

P ′(σYij
|σ/Yij

)

P (σYij
|σ/Yij

)

P (σ′
Yij
|σ/Yij

)

=
L(σ′

/Yij
)

L(σ/Yij
)

P (σOij
|σ′

Yij
, σYji

)

P (σOij
|σYij

, σYji
)

P (σOji
|σ′

Yij
, σYji

)

P (σOji
|σYij

, σYji
)

w(σ′
Yij

)

w(σYij
)

(6.2)

whereL(·) is the partial likelihood function andw(·) is the weight contribution of the variable

in the importance sampling algorithm.

If the proposal distribution is as described in Chapter 4,w(σ′
Yij

) andw(σ′
Yij

) in Equation

6.2 are 1 since there is no evidence onYij(t). If another proposal distribution is used, the

weight contribution should be adjusted accordingly.

If the behavior ofO(t) is completely observed,P (σOij
|σYij

, σYji
) can be represented

using likelihood ofOij givenσYij
andσYji

. Then the acceptance ratio is

r(σ, σ′) =
L(σ′

/Yij
)

L(σ/Yij
)

L(σOij
|σ′

Yij
, σYji

)

L(σOij
|σYij

, σYji
)

L(σOji
|σ′

Yij
, σYji

)

L(σOji
|σYij

, σYji
)

w(σ′
Yij

)

w(σYij
)

(6.3)

If O(t) is partially observed, we can calculateP (σOij
|σYij

, σYji
) as follows. Assume

that we are sampling trajectories from time 0 to timeT . Oij(t) is observed on intervals

[tk, tk + ∆tk] (k = 1, . . . , m), wheretk+1 > tk + ∆tk, t1 ≥ 0, andtm + ∆tm ≤ T . Let σk
Oij
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be the observed trajectory ofOij on interval[tk, tk + ∆tk]. Using Markov property, we have

P (σOij
|σYij

, σYji
) =

∏

k

αk[Oij(tk)]× L(σk
Oij
|σYij

, σYji
)× βk[Oij(tk + ∆tk)] ,

whereL(σk
Oij
|σYij

, σYji
) is the partial likelihood ofσk

Oij
, and the vectorsαk andβk are defined

component-wise as

αk[i] = P (Oij(tk) = i|Oij(tk−1 + ∆tk−1), σYij
, σYji

)

βk[i] = P (Oij(tk+1)|Oij(tk + ∆tk) = i, σYij
, σYji

) .

αk andβk can be calculated using the standard forward-backward algorithm described in

Section 3.4.2.

6.2.3 Parameter Estimation

The parameters can be estimated using the Monte Carlo EM algorithm described in Section

6.1.2. In the expectation step, we use the Metropolis-Hastings algorithm to generate equally

weighted samples. In the maximization step, we update the parameters alternatingly. Calcu-

lating λn andβn is the same as described in Section 6.1.2. According to Equation 3.6, the
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conditional intensity matrix for observation variableQobs
ij|Yij=k,Yji=l can be estimated as

qobs
o|Yij=k,Yji=l =

∑
i6=j MOij

[o|Yij = k, Yji = l]∑
i6=j TOij

[o|Yij = k, Yji = l]
(6.4)

θobs
oo′|Yij=k,Yji=l =

∑
i6=j MOij

[o, o′|Yij = k, Yji = l]∑
i6=j MOij

[o|Yij = k, Yji = l]
(6.5)

whereMOij
[oo′|Yij = k, Yji = l] is the number of timesOij transitions from stateo to o′

whenYij = k andYji = l, TOij
[o|Yij = k, Yji = l] is the total amount of timeOij stays in

stateo whenYij = k andYji = l, MOij
[o|Yij = k, Yji = l] =

∑
o′ MOij

[oo′|Yij = k, Yji = l],

andqobs
oo′|Yij=k,Yji=l = θobs

oo′|Yij=k,Yji=l × qobs
o|Yij=k,Yji=l.

WhenO(t) is only partially observed, the expectation of the sufficient statistics above

can be calculated using exact inference described in Section 3.4.2.

6.3 Experimental Results

We evaluate the learning algorithm using importance sampling on both synthetic data and

real sociological data. We compare the result to the method of moments (MoM) learning al-

gorithm. We also evaluate our learning algorithm using MCMCfor the hidden social network

dynamics model on a real dataset of emails.
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6.3.1 Network-attribute Co-evolution Model

Synthetic Dataset

We first built a synthetic social network with 10 people and one time-variant attribute for

each person. We assume the rates are homogeneous across people. We consider three effects

on the network change rule (features): the density effect (number of outgoing links), the

reciprocity effect (number of reciprocated links) and the attribute-related similarity. The

attribute utility function considers two effects: tendency and similarity. The utility functions

are therefore

fn
i (βn, y, z) =

∑
j
(βn

1 yij + βn
2 yijyji + βn

3 yijsimij)

fa
i (βa, y, z) = βa

1zi + βa
2

∑
j
yijsimij (6.6)

wheresimij = 1−|zi−zj |/Range(z) is the attribute similarity between actorsi andj. These

are the same effects or features as in Snijders et al. [2007].We set(βn
1 , βn

2 , βn
3 ) = (−1, 1.5, 1)

and(βa
1 , βa

2) = (0.1, 1) to generate the synthetic data. Rate parameters for the network and

attributes were both set to be 0.5.

We also implemented the MoM learning algorithm in Snijders et al. [2007] and com-

pared the result to our important sampling method. Note thatthe learning algorithm in

Snijders et al. [2007] can only deal with evenly-spaced, fully observed point evidence. There-

fore, for a comparison, the observation dataset was generated by sampling a full trajectory

113



but only recording the values at regular intervals of∆t. We randomly sampled another 100

full trajectories as testing data.

Learning accuracy was tested by calculating the log-likelihood of the testing trajectories

under the estimated models. Figure 6.1 shows the results fordifferent amounts of data and

different values of∆t. We used400 samples and averaged across4 runs (although the values

were very stable across runs).

Our algorithm outperforms MoM almost all the time. Its accuracy is much higher than

the MoM when the number of observation is small. Since samples generated by our algo-

rithm fully agree with the observations, they provide more accurate information about the

system, which is valuable when observation data are limited. When the time interval is rel-

atively small and there are enough observation data, our algorithm can accurately estimate

the model. As∆t increases, the estimation accuracy drops. The expected time between

transitions for any given variable is2 time units. Therefore, when∆t = 8, it is difficult to

estimate the number of changes in the network between observations, thus explaining the

poor performance of both algorithms.

Real Social Data Example

We then applied our algorithm to the “50 girls data” from theTeenage Friends and Lifestyle

Study[Michell and Amos, 1997]. The dataset measures the changes in a network of 50 school

girls, along with time-variant attributes such as smoking habits and alcohol consumption.

The data contains three observations spaced one year apart.In this paper, we concentrate
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Figure 6.1: Log-likelihood of testing data as a function of the number of training data inter-
vals.
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Network Parameters Attribute Parameters
λn Rate/Actor 0.019 λa Rate/Actor 0.004
βn

1 Density −2.39 βa
1 Tendency 0.14

βn
2 Reciprocity 2.15 βa

2 Similarity 1.17
βn

3 Similarity 0.53

Figure 6.2: Estimated parameters for the 50 girls dataset.

on exploring the effect between the network and the level of alcohol consumption. Alcohol

consumption was measured by self-reported questions on a scale ranging from 1 (never)

to 5 (more than once a week). We consider the same effects (features) as in the previous

experiment. That is, the utility functions have the same format as Equation 6.6. The true

parameters are obviously unknown.

Since this model describes the dynamics of all the links between any two actors in the

network and the alcohol attribute for every actor, the modelcontains 2500 variables; 50 have

5 values and the remainder are binary. No existing exact inference algorithm can handle

a system with so many variables. We ran the EM algorithm with our Metropolis-Hastings

algorithm on this model using 400 samples. The estimated parameters are shown in Figure

6.2. The time unit was one day. We can see that, on average, a student reconsiders her

friendships every one to two months, and a student’s alcoholconsumption level remains

unchanged for approximately 8 months. Parameterβa
2 indicates that students tend to change

their attributes so that they will be similar to their friends. The network parametersβn show

that people strongly prefer to build reciprocated connections and they are unlikely to build

a connection with someone arbitrary. These parameters seemreasonable and roughly match

the rates found by Snijders et al. [2007].
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6.3.2 Hidden Social Network Dynamics Model

To evaluate the hidden social network dynamic model, we usedtwo real world datasets: the

Enron email dataset [Shetty and Adibi, 2004] and the realitymining dataset [Eagle and Pentland,

2006].

Enron Dataset

The Enron email dataset contains emails from 151 employees between 1998 and 2002. Email

events are considered as the observation variable in the hidden social network dynamic

model, which are fully observed in the Enron email dataset. Usually, this type of obser-

vation is just a set of instantaneous events. There is no “state” for this kind of variable. We

use “toggle variables” to model such variables as a continuous-time Markov process. That

is, each variableOij(t) is a binary variable containing two indistinguishable stateso0 ando1.

The intensities with which the variable transitions in bothstates are required to be the same.

The instantaneous event is represented as the variable flipping between states. That is, the

intensity matrix forOij(t) is

Qobs
ij|Yij=k,Yji=l =



−qobs

kl qobs
kl

qobs
kl −qobs

kl




wherek, l ∈ {0, 1}.
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qobs
kl in the conditional intensity matrix ofOij can be estimated as

qobs
kl =

∑
i6=j MOij

[o0|Yij = k, Yji = l] +
∑

i6=j MOij
[o1|Yij = k, Yji = l]∑

i6=j TOij
[o0|Yij = k, Yji = l] +

∑
i6=j TOij

[o1|Yij = k, Yji = l]
.

We preprocessed the data as follows: We only chose emails sent in 2001 since most

of the emails were sent in that year. We removed emails whose sender and recipient were

the same. Emails that were sent to many recipients were usually general notices such as a

reminder of a presentation at certain time and not indicative of a working relationship. If the

number of recipients in an email is larger than a thresholdtr, we filtered out that email. In our

experiment, we settr be 5. For the rest of the emails which were sent to multiple recipients,

we treated them as multiple single-recipient e-mails and randomly jittered the sent times. We

took the intersection of people who sent at least 100 emails in 2001 and people who received

at least 100 emails in 2001 as the set of the actors in our model. Emails among these actors

were used as our observation. After this process, we obtained a dataset containing 6738

emails for 31 people. We set the time unit to be one day in this experiment.

We considered four effects on the network utility function:the density effect, the reci-

procity effect, the activity effect, and the popularity effect. Therefore, the utility function is

fn(βn, y) =
∑

j

(βn
1 yij + βn

2 yijyji + βn
3 yij

∑

k

yjk + βn
4 yij

∑

k

ykj) . (6.7)

We ran Monte Carlo EM using the Metropolis-Hastings samplerwith 400 samples for

each iteration. We took one sample for every 1000 steps of MCMC. Before starting the EM
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λn Rate/Actor 0.031
βn

1 Density −2.362
βn

2 Reciprocity 1.210
βn

3 Activity 0.115
βn

4 Popularity 0.119

k, l qobs
kl

0, 0 0.002
0, 1 0.023
1, 0 0.296
1, 1 0.604

Figure 6.3: Estimated parameters for the Enron dataset

iterations, we sampled 10000 samples as the “burn-in” iterations. In each EM iteration, we

used the last trajectory in previous iteration as our initial sample and used 1000 samples as

the “burn-in” iterations. We randomly picked the initial parameters for the model and ran the

EM algorithm 5 times. All the 5 runs had very similar results.We took the average for each

parameter as our learned parameters. The learned parameters are listed in Figure 6.3.

We can see that, on average, a person considers changing a working relationship about

every month. When choosing the connection to change, the person is very unlikely to build

a random connection (βn
1 = −2.1) and prefers to build reciprocated connections (βn

2 = 1.5).

These results are very similar to what we learned from the “50girls dataset.” The popularity

and activity of an actor has a positive effect (βn
3 andβn

4 are multiplied by the number of

connections to or from an actor, so they can be smaller thanβn
2 and still have similar impact).

On average, a personA will send an email to another personB about every 3 days if there is

a connection fromA to B. If there is a reciprocated connection,A will send an email toB

at least every 2 days. If there is no connection fromA to B, it is unlikely thatA will send an

email toB.

We used the learned parameters as the true parameters of the model. Starting with a

random trajectory, we ran our MCMC algorithm for 1,000,000 “burn in” iterations. Then
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we drew a sample every 1000 iterations. We repeated this until we sampled 1000 tra-

jectories. Using the 1000 trajectories, we calculated the probability P (Yij(t) = 1), for

i, j ∈ {1, . . . , 31}, i 6= j. Figure 6.4 shows the network structures as matrices at three

different times throughout the year. Darker spots represent higher connection probability.

We consider a connection as static if the probabilityP (Yij(t) = 1) is larger than 0.95 at all

three time points. Figure 6.4(d) shows all the static links among the actors. Since the Enron

dataset represents working groups changing over one year, we can see that the three matrices

are different, showing that the links among people are dynamic processes, but there are some

stable connections.

Reality Mining Dataset

The reality mining dataset contains mobile phone usage information for 97 people from June

2004 to May 2005. The information includes call logs, bluetooth devices in proximity, cell

phone locations, application usage, and more. The dataset was collected by installing soft-

ware in the participants’ cellphones. The participants were all from MIT. A majority of them

are from the MIT Media Laboratory. The remaining are incoming students at the MIT Sloan

Business School. In our experiment, we only used the call logs as our observations. We

modeled the dynamics of the observation variable (phone calls of each participant) as de-

scribed in Example 6.2.1. We use the same utility function asin Equation 6.7. Since each

participant could start and stop using the data collection software at anytime, the call log for

each participant was only partially observed.
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(a) Apr. 11 (b) Jul. 20

(c) Oct. 28 (d) Static

Figure 6.4: Enron adjacency matrix at different times.
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λn Rate/Actor 0.0010
βn

1 Density −3.3254
βn

2 Reciprocity 2.7963
βn

3 Activity 0.0881
βn

4 Popularity 0.1382

Figure 6.5: Parameters of utility function for reality mining dataset

We preprocessed the dataset as the following. Since call logs can only be identified using

phone number identifiers, we only chose those who have a validphone number identifier

from the 97 participants. For phone numbers whose owners arenot listed as participants, we

chose those who were contacted by at least three of the selected participants, which gave us 13

actors whose identification is unknown. In total, there are 92 actors in our model, 25 of which

are from the MIT Sloan Business School, 54 from the MIT Media Lab, and 13 unknown

actors. We selected all the call logs among these 92 actors and remove duplications (a phone-

call may be recorded twice, on both the caller’s and callee’sphones). The observation data

contains 6488 events. We set the time unit to be one hour in this experiment.

We started the Metropolis-Hastings sampler with a randomlygenerated trajectory and

discarded the first 50000 samples as “burn in” samples. Then,in each EM iteration, we used

50000 samples to estimate the parameters of the rate function. We sampled 50000 samples,

keeping only one out of every ten samples, to estimate the conditional intensity matrix of

the observation variable. For the parameters of the utilityfunction, we estimated them by

sampling 50000 trajectories and took one for every 200 samples. During each EM iteration,

we sampled another 20000 samples as “burn in” iterations. Weran the MCEM algorithms 5

times. Each run was started with random parameters.
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The estimated parameters of utility function are shown in Figure 6.5. On average, each

actor would change a relationship about every 40 days. The estimated parameters of the

utility function are similar to those in Enron dataset. However, in this model, people are

less likely to create a random tie (βn
1 = −3.3254) and are more likely to form reciprocated

connections (βn
2 = 2.7963). People prefer the “popularity effect” (βn

4 = 0.1382) more than

the “activity effect” (βn
3 = 0.0881) in this model.

The conditional intensity matrices of the observation variable are shown in Figure 6.6. If

there is a reciprocated link between actorA andB, A will try to contactB about every 3 or

4 days. About 20 percent of the time,A will send a text message, and A will callB directly

the remaining 80 percent of the time. On average, each conversation lasts for 5 minutes. If

there is only a single linkA → B betweenA andB, A contactsB about every 10 days on

average. If there is no connection betweenA andB, they almost never call each other.

Similar to the experiment on the Enron dataset, we used the estimated parameters as

the true parameters of the model and calculated the probability P (Yij(t) = 1), for i, j =

1, . . . , 92, i 6= j using the Metropolis-Hastings sampling algorithm. We sampled 10000

trajectories to estimate the probability. Adjacency matrices of the network at different time

are shown in Figure 6.7. Figure 6.7(d) shows the static connections in this model.

In the matrices, actors are aligned according to their identifications. The first 13 rows

(and columns) represent actors whose identification are unknown. The next 25 rows represent

students from the MIT Sloan Business School and the last 54 rows represent people from the

MIT Media Lab. The three matrices are different. We can see that there are some stable links
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k , l Qobs
kl

0 , 0




−0.3094× 10−6 0.0074× 10−6 0.2998× 10−6 0.0022× 10−7

977.5440 −977.5440 0 0
∞ 0 −∞ 0
∞ 0 0 −∞




0 , 1




−0.1723× 10−3 0.1232× 10−3 0.0144× 10−3 0.0347× 10−3

977.8032 −977.8032 0 0
∞ 0 −∞ 0
∞ 0 0 −∞




1 , 0




−0.0960 0.0792 0.0144 0.0024
999.5496 −999.5496 0 0
∞ 0 −∞ 0
∞ 0 0 −∞




1 , 1




−0.3000 0.2088 0.0624 0.0288
287.3160 −287.3160 0 0
∞ 0 −∞ 0
∞ 0 0 −∞




Figure 6.6: Conditional intensity matrix of reality miningdataset. (Time unit is one day)
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? Sloan Media Lab

(a) Aug-19-2004 (b) Nov-17-2004

(c) Feb-15-2005 (d) Static

Figure 6.7: Reality mining adjacency matrix at different times.
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in the network. However, we also observe many relationship change with time, which shows

that the network structure is dynamic. Most of the links reside in the diagonal boxes in the

figure. This is very reasonable since people usually only have ties with people within their

community. This to some extent verifies the correctness of our model.

6.4 Conclusion

We provide a sampling-based learning algorithm for continuous-time social network models

and provide results for a model with 2500 variables. We also develop a hidden social network

dynamics model in which indirect observation of the networkcan be used, and we develop

an MCMC sampling algorithm for it. Our method is simple and easy to implement. The

idea of the algorithm is general and can be easily extended toother continuous-time systems.

For social networks, we provide a learning method that is better than the previous method

of moments estimation, particularly when data is scarce (a common occurrence in sociology

studies). We demonstrate results on learning a dynamic social network with approximately

9000 variables from indirect observations. These two advances greatly extend the types of

social dynamic data that can be analyzed.
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Chapter 7

Conclusion

Continuous time Bayesian networks (CTBNs) allow us to modeldynamic systems in con-

tinuous time. Their structured representation also allowsus to exploit the independencies

among the variables of a dynamic system. However, exact inference in CTBNs is often in-

tractable for large systems. Therefore, an approximate inference algorithm is needed in many

applications.

In this dissertation, we have presented an approximate inference algorithm for CTBNs

using importance sampling. Our algorithm generates weighted samples by naturally sim-

ulating the CTBN we are reasoning about. The approximate expectation of any function

of the trajectory can be calculated using these weighted samples. We naturally extended

the algorithm to sequential Monte Carlo methods, such as particle filtering and smoothing.

A Metropolis-Hastings algorithm for CTBNs was also developed based on the importance

sampling algorithm.
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We then applied CTBN models and our approximate inference algorithm to learn social

network dynamics. We argued that a number of sociology models for social network dynam-

ics can be viewed as time-variant CTBNs. Therefore, our importance sampling algorithm can

be used to develop a maximum likelihood estimation algorithm. We also proposed the hidden

social network dynamic model, which allows indirect observations of social networks. Our

experiments on real world data, such as emails and phone-call logs among people, showed

that our model learned social network dynamics effectively.

As we can see from Chapter 4, the networks used in our experiments are already at the

limit size for exact inference method. Real world applications, such as the social networks

we dealt with in Chapter 6, often contain thousands of variables. Thus, approximate infer-

ence approaches are very important for reasoning about dynamic systems. The algorithms

that we developed using importance sampling provide an simple way to reason about com-

plex dynamic systems. Our algorithms differ from other approximate inference approaches

for CTBNS in a number of key ways. In our algorithms, samples are generated by natu-

rally simulating the dynamic system we are reasoning about.Thus, our algorithm does not

depend on complex numeric computations. The transition times for variables are sampled

from regular exponential distributions in our algorithm, which can be done in constant time.

Our importance sampling based algorithms are fast and simple to implement. They can be

used to calculate the expected value of any function of a trajectory, including the expected

sufficient statistics that are necessary for expectation-maximization for parameter estimation

with missing data. The idea of our importance sampling algorithm is general; it can be ex-
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tended to other continuous-time dynamic systems. Besides social network dynamic models,

as demonstrated in the present dissertation, the idea of ouralgorithm has also been applied

to inference in a continuous-time probabilistic programming language [Pfeffer, 2009].

For social networks, our learning method not only achieves better estimation accuracy

than previous methods but also can deal with data with arbitrary observations (including

duration observations and missing observations), which isimpossible for previous social

network estimation methods. In addition, our hidden socialnetwork dynamic model utilizes

social events among people as indirect observations to learn social network dynamics. Since

missing observations and asynchronous observations are very common in social network

data, our model allows more types of social dynamic data to beanalyzed.

The proposal distribution we used in our importance sampling algorithm is based on

forward sampling algorithm. We only “force” the behavior ofthe variable we are sampling

according to its upcoming evidence. The advantage of this proposal distribution is that it

is very fast and easy to implement. However, only considering the upcoming evidence of

the sampled variable sometimes is misleading. This is especially true when the correlation

among variables are strong. We can obtain a better proposal distribution by considering the

evidence of both the variable itself and those in its Markov blanket. However, this involves

more variables which requires more complex computations, which results in longer running

times. It would be very intriguing to find a method to balance the computation complexity

and the goodness of the proposal distribution.
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Appendix A

Background Materials

A.1 Markov Chain Monte Carlo

Let X be a vector of random variables with state spaceV al(X). Letπ be a distribution over

X. To estimate the expectation of a functionf(X)

E[f(X)] =

∫
f(x)π(x)dx , (A.1)

the Markov chain Monte Carlo method generates a sequence of samplesx(t) ∈ V al(X),

t = 1, . . . , n by constructing a Markov chain and running it for a long time.The Markov

chain is constructed such that its stationary distributionis the desired distributionπ(X).
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Then Equation A.1 can be approximated by

E[f(X)] ≈
1

n

n∑

t=1

f(x(t)) .

A.1.1 Markov Chain

Let {X(0), X(1), X(2), . . .} be a sequence of random variables such that at each timet ≥ 0,

the distribution of the next stateX(t+1) depends only on the current stateX (t). That is, given

the current stateX(t), the next stateX(t+1) is independent of the past states{X(0), . . . , X(t−1)}.

We denote this distribution asT (X(t) → X(t+1)). The sequence is called a Markov chain.

The distributionT is called the transition model of the chain. We assume thatT is time-

invariant.

Assume thatX(0), the state att = 0, is from some initial distributionP (0)(X(0)). The

distribution of the state at each stept is

P (t+1)(X(t+1) = x′) =

∫
P (t)(X (t) = x)T (x→ x′)dx .

A finite-state Markov chain is called an ergodic chain if there existst such that for any

statex andx′, P (t)(X (t) = x′) > 0. If we let an ergodic Markov chain run for a long time,

it converges to a unique stationary distribution which doesnot depend onX (0). In particular,
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let φ(X) be the stationary distribution of the Markov chain.φ(X) satisfies

φ(X = x′) =

∫
φ(X = x)T (x→ x′)dx . (A.2)

If a Markov chainT and a distributionπ satisfy the following

π(x)T (x→ x′) = π(x′)T (x′ → x) , (A.3)

thenπ andT satisfy Equation A.2, since

∫

x∈V al(X)

π(x)T (x→ x′)dx =

∫

x∈V al(X)

π(x′)T (x′ → x)dx

= π(x′)

∫

x∈V al(X)

T (x′ → x)dx

= π(x′) .

Equation A.3 is called the detailed balance equation.

A.1.2 MCMC Sampler

Equation A.3 shows us one way to generate a sequence of dependent samples from a dis-

tribution π. The samples are generated through a Markov chain havingπ as its stationary

distribution. This is called Markov chain Monte Carlo (MCMC).
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Specifically, suppose we would like to generate samples froma target distributionπ(X).

We define a Markov chain via the state space ofV al(X). For each pair of statesx, x′ ∈

V al(X), we construct the transition modelT of the Markov chain such that Equation A.3 is

satisfied. If we run the Markov chain for a long time, the distribution of the state sequence

approaches to the desired distributionπ.

Given the initial state distributionP (0)(X) and the transition modelT , the MCMC sam-

pling procedure can be described as follows.

1. Samplex(0) from P (0)(X).

2. Repeat the followingN times:

Samplex(t+1) from T (x(t) → X).

3. Returnx(0), . . . , x(N).

Typically, the initial samples are not completely valid because the Markov Chain has not

converged. Samples at the beginning iterations of a MCMC runare usually thrown away.

These initial samples are called “burn-in” samples.

Different choices of the transition modelT of the Markov chain result in different MCMC

algorithms. We introduce the Gibbs sampling algorithm and the Metropolis-Hastings algo-

rithm in the following two sections.
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A.1.3 Gibbs Sampling Algorithm

Suppose we can decomposeX into d components(X1, . . . , Xd). The Gibbs sampler defines

the transition probability of the Markov chain to be the conditional distributionπ(Xi|X−i),

whereX−i represents all the variables in(X1, . . . , Xd) exceptXi. That is, in each iteration,

the Gibbs sampler only changes the value of one component andfixes the values of other

variables as evidence.

Formally, we describe the Gibbs sampler as follows. Letx(t) = (x
(t)
1 , . . . , x

(t)
d ) be the

value ofX at iterationt. Let x
(t)
−i be the values of all the components att exceptXi. At

iterationt + 1, we do the following steps:

• Randomly picki from (1, . . . , d) with probability1/d.

• Samplex(t+1)
i fromπ(Xi|X−i = x

(t)
−i), while leaving all the other variables unchanged.

That is, letx(t+1)
−i = x

(t)
−i.

It can be shown that at every step, the detailed balance condition is satisfied.

π(x
(t)
i , x

(t)
−i)π(x

(t+1)
i |x(t)

−i) =π(x
(t)
−i)π(x

(t)
i |x

(t)
−i)π(x

(t+1)
i |x(t)

−i)

=π(x
(t+1)
i , x

(t)
−i)π(x

(t)
i |x

(t)
−i)

A.1.4 Metropolis-Hastings Sampling Algorithm

The Gibbs sampling algorithm requires sampling from the conditional distributionπ(Xi|X−i).

However, in many applications, samples cannot be generatedfrom π(Xi|X−i) efficiently.
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The Metropolis-Hastings algorithm provides a more generalway to construct the Markov

chain with the desired stationary distribution.

Unlike the Gibbs sampler, the Metropolis-Hastings algorithm generates the next-state

samples using a proposal distributionT Q, whereT Q defines a distribution over possible

successor states inV al(X). The Metropolis-Hastings sampler starts with a random state. Let

x(t) be the state at iterationt. In each iteration, the Metropolis-Hastings algorithm performs

the following two steps:

• Samplex′ from the proposal distributionT Q(x(t) → x′).

• Drawu from the uniform distributionu(0, 1) and update

x(t+1) =





x′ if u ≤ A(x(t) → x′)

x(t) otherwise.

where the acceptance probabilityA(x→ x′) is defined as

A(x→ x′) = min

[
1,

π(x′)T Q(x′ → x)

π(x)T Q(x→ x′)

]
.

For any statex 6= x′, the transition modelT for the Metropolis-Hastings algorithm is

T (x→ x′) = T Q(x→ x′)min

[
1,

π(x′)T Q(x′ → x)

π(x)T Q(x→ x′)

]
.
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Hence,

π(x)T (x→ x′) =π(x)T Q(x→ x′)min

[
1,

π(x′)T Q(x′ → x)

π(x)T Q(x→ x′)

]

=min
[
π(x′)T Q(x′ → x), π(x)T Q(x→ x′)

]
,

which is a symmetric function inx andx′. Thus, the detailed balance condition is satisfied.

If X can be decomposed intod components(X1, . . . , Xd), it is often more convenient

and computationally efficient to update one component a time. Let x
(t)
i denote the value of

Xi at iterationt. Let x
(t)
−i be the values of the remaining variables. In each iteration,we

pick a componentXi, fix the value of all the other components, and updateXi according to

its proposal distributionQi(Xi|x
(t)
i , x

(t)
−i). We accept the new sampled statex′

i of Xi with

probability

A((x
(t)
i , x

(t)
−i)→ (x′

i, x
(t)
−i)) = min

[
1,

π((x′
i, x

(t)
−i))Qi((x

′
i, x

(t)
−i)→ (x

(t)
i , x

(t)
−i))

π((x
(t)
i , x

(t)
−i))Qi((x

(t)
i , x

(t)
−i)→ (x′

i, x
(t)
−i))

]
.

Notice that if we pick the proposal distributionQi to beπ(Xi|x
(t)
−i), we accept the new

state ofXi with probability 1 in each iteration, which is just the Gibbssampling algorithm.

Thus, the Gibbs sampling algorithm is a special case of the Metropolis-Hastings algorithm.
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A.2 Expectation Maximization

The expectation maximization (EM) algorithm [Dempster et al., 1977] is an iterative opti-

mization method to estimate the parameters of probabilistic models in the presence of miss-

ing or hidden data. Letθ be the parameter of the probabilistic model we are trying to estimate.

Let X denote the observed incomplete data. LetY denote an assignment to the unobserved

variables. The EM algorithm finds the parameterθ∗ such that the posterior probability ofθ

given the dataX is maximized. That is,

θ∗ = arg max
θ

∑

Y
P (θ,Y|X ) . (A.4)

Notice that maximizing Equation A.4 is equivalent to maximizing the logarithm of the

joint distribution

θ∗ = arg max
θ

log P (θ,X ) = arg max
θ

log
∑

Y
P (θ,Y ,X ) (A.5)

sinceP (θ,X ) ∝ P (θ|X ) and the logarithm function is monotonically increasing.

We can rewrite the logarithm of the joint distribution as

log P (θ,X ) = log
∑

Y
P (θ,Y ,X ) = log

∑

Y
qt(Y)

P (θ,Y ,X )

qt(Y)
,
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whereqt(Y) is an arbitrary probability distribution overY . Using Jensens inequality1, we

have

log P (θ,X ) = log
∑

Y
qt(Y)

P (θ,Y ,X )

qt(Y)
(A.6)

≥
∑

Y
qt(Y) log

P (θ,Y ,X )

qt(Y)

We can see that Equation A.6 provides a lower bound forlog P (θ,X ). The idea behind

the EM algorithm is to start with some initial parameterθ0, and alternatingly compute the

lower bound in Equation A.6 and computeθt+1 that maximizes the bound. The EM algorithm

will eventually converge to a local maximumθ∗ of the objective function, provided that the

lower bound improves at each iteration.

Maximizing this lower bound with respect toqt gives

qt(Y) = P (Y|θt,X ) . (A.7)

This is called the expectation step (or E-step), which makesthe bound tight. Having the op-

timal lower bound, we then maximize it with respect toθ. Replacingqt(Y) with P (Y|θt,X )

in Equation A.7, we have

1Jensens inequality states that, for any concave functionf ,
∑

i pif(xi) ≥ f(
∑

i pixi) where
∑

i pi = 1.
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∑

Y
qt(Y) log

P (θ,Y ,X )

qt(Y)
(A.8)

=
∑

Y
P (Y|θt,X ) logP (θ,Y ,X )−

∑

Y
P (Y|θt,X ) logP (Y|θt,X )

=
∑

Y
P (Y|θt,X ) logP (Y ,X |θ)P (θ)−

∑

Y
P (Y|θt,X ) log P (Y|θt,X )

=
∑

Y
P (Y|θt,X ) logP (Y ,X |θ) +

∑

Y
P (Y|θt,X ) logP (θ)

−
∑

Y
P (Y|θt,X ) log P (Y|θt,X )

=EP (Y|θt,X )[log P (Y ,X |θ)] + log P (θ)−EP (Y|θt,X )[P (Y|θt,X )]

The first term in Equation A.8 is the expected log-likelihoodof complete data with respect

to P (Y|θt,X ). The second term is the logarithm of the prior distribution of parameterθ. The

last term is the entropy ofP (Y|θt,X ). Since the last term does not depend onθ, maximizing

Equation A.8 with respectθ is equivalent to maximizing only the first two terms. Thus, our

maximization problem can be written as

θt+1 = arg max
θ

EP (Y|θt,X )[log P (Y ,X |θ)] + log P (θ) (A.9)

= arg max
θ

Q(θ|θt) + log P (θ)

whereQ(θ|θt) = EP (Y|θt,X )[log P (Y ,X |θ)]. This is called the maximization step (or M-

step).
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The EM procedure can be summarized as follows:

1. Initializeθ(0) randomly or based on some prior knowledge.

2. Iteratively improve the estimate ofθ by alternating the following two steps until con-

vergence:

E-Step: CalculateEP (Y|θt,X )[log P (Y ,X |θ)].

M-Step: θt+1 = arg maxθ Q(θ|θt) + log P (θ)

In the E-step, we need to calculate the log-likelihood of theexpected complete data. In

many situations, the likelihood of the data can be calculated using sufficient statistics. For

example, in the exponential family of models such as continuous time Bayesian networks, the

likelihood of the data is represented using sufficient statistics as shown in Equation 3.1 and

3.2. Therefore, it is equivalent to calculating the expected sufficient statistics in the E-step.

In the M-step, the optimization incorporates the prior distribution of the parameterθ.

Equation A.9 can be rewritten as

θt+1 = arg max
θ

EP (Y|θt,X )[log P (Y ,X |θ)] + log P (θ)

= arg max
θ

EP (Y|θt,X )[log P (Y ,X |θ)P (θ)]

= arg max
θ

EP (Y|θt,X )[log
P (θ|Y ,X )

P (Y ,X )
]

= arg max
θ

EP (Y|θt,X )[log P (θ|Y ,X )] ,
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which means that it is a maximum a posteriori (MAP) estimation. If we assume that everyθ

is equally probable, the M-step is equivalent to

θt+1 = arg max
θ

EP (Y|θt,X )[log P (Y ,X |θ)] ,

which is a maximum likelihood estimation.
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