UNIVERSITY OF CALIFORNIA
RIVERSIDE

Continuous Time Bayesian Network Approximate Inference &acial Network
Applications

A Dissertation submitted in partial satisfaction
of the requirements for the degree of

Doctor of Philosophy
in
Computer Science
by
Yu Fan

December 2009

Dissertation Committee:
Dr. Christian R. Shelton, Chairperson
Dr. Gianfranco Ciardo
Dr. Neal E. Young



Copyright by
Yu Fan
2009



The Dissertation of Yu Fan is approved:

Committee Chairperson

University of California, Riverside



Acknowledgments

There are many people to whom | owe many thanks for helping oggghrough this
long process of completing a Ph.D. First and foremost, | @dilkk to express my gratitude
to my advisor, Dr. Christian R. Shelton, for his unending @u, extremely constructive
feedback, excellent supervision, and all the encourageowan the last five years. Without
his mentorship, this dissertation would not be possiblee &kperience of studying under
him has been inestimable value to me.

| would also like to thank to my current and past committee mers: Drs. Giangfranco
Ciardo, Eamonn Keogh and Neal Young, for their support, giioé and helpful suggestions.

My deepest thanks also go to all the current and former mesntfeRiverside Lab for
Artificial Intelligence Research. Many thanks to Jing Xu Ffalping implement the Gibbs
sampling algorithm for CTBNs in Chaptier 4. Special thank®ao to former members Dr.
Kin Fai Kan, Dr. Guobiao Mei; and current members Juan Cd3gsra Celikkaya, Kevin
Horan, Antony Lam, William Lam, Joon Lee, and Dr. Teddy Yaptfte many stimulating
and enjoyable discussions. | will never forget the jokes \&eehshared and the food we
have enjoyed over the years. | feel really lucky to be arouitd such a group of wonderful
people.

Finally, and most importantly, | would like to thank my pateifor putting their faith in
me and for giving me their selfless support through all thessrs, Especially, | would like

to give my thanks to my wife, Zhihua, who went with me througjtitas journey with love.



ABSTRACT OF THE DISSERTATION

Continuous Time Bayesian Network Approximate Inference &acial Network
Applications

by

Yu Fan

Doctor of Philosophy, Graduate Program in Computer Science
University of California, Riverside, December 2009
Dr. Christian R. Shelton, Chairperson

Many real world systems evolve asynchronously in contisutime, for example com-
puter networks, sensor networks, mobile robots, and @llumletabolisms. Continuous time
Bayesian Networks (CTBNs) model such stochastic system@itinuous time using graphs
to represent conditional independencies among discadtesst processes. Exact inference in
a CTBN is often intractable as the state space of the dynaystem®s grows exponentially
with the number of variables.

In this dissertation, we first focus on approximate infeeeimt CTBNs. We present
an approximate inference algorithm based on importancekiagn Unlike other approxi-
mate inference algorithms for CTBNSs, our importance sangpéilgorithm does not depend
on complex computations, since our sampling procedure mgyires sampling from reg-

ular exponential distributions which can be done in corstame. We then extend it to



continuous-time patrticle filtering and smoothing algarth We also develop a Metropolis-
Hastings algorithm for CTBNs using importance samplingedd algorithms can estimate
the expectation of any function of a trajectory, conditidrm any evidence set containing
the values of subsets of the variables over subsets of tleelite.

We then apply our approximate inference algorithms to liegrsocial network dynam-
ics. Existing sociology models for social network dynanriequire direct observation of
the social networks. Furthermore, existing parametenegton technique for these models
uses forward sampling without considering the given ole@ms, which affects the esti-
mation accuracy. In this dissertation, we demonstratettiete models can be viewed as
CTBNs. Our sampling-based approximate inference metho@T@BNs can be used as the
basis of an expectation-maximization procedure that aekibetter accuracy in estimating
the parameters of the model than the standard learningitdgofrom the sociology litera-
ture. We extend the existing social network models to allomiidirect and asynchronous
observations of the links. A Markov chain Monte Carlo samglalgorithm for this new
model permits estimation and inference. Experiments oh bpihthetic data and real social
network data show that our approach achieves higher estimatcuracy, and can be applied

to various types of social data.

Vi



Contents

List of Figures Xi
1 Introduction 1
1.1 Continuous Time Bavesian Netwarks . . . . . . ... ... ... ...... 1
1.2 Inference iNn CTBNIS . . . . . . . . .
1.3 Modeling Social Network Dynamics . . . . .. .. ... ... ...... 10
1.4 Outline and Contribution . . . . . . . . . . . . . ... .. 12
Continuous Time Markov Processes 15
1 Representatibn . . . . . . . . ... 5
2 likelihood and Sufficient Statistics . . . . . . . . . . . .. . ... .... 19
3 QuervofMarkov Procass . . . . . . . ... 20
4 SUMMAKY . .« « v o v e e e e e e e e e e e e
3 Continuous Time Bavesian Networ 23
3.1 Structured Process Representation . . . . . .. .. ... ........ 23

Vil



3.2 The CTBN Maodeél

3.2.2 Conditional Independendies

3.2.3 Joint Markov Proc

3.3 Sufficient Statistics and Likelihdod

3.4 Inference in CTBNIs

3.4.2 Exact Inference in CTBNs

3.4.3  Approximate Inference in CTBN

3.6 Summairy

3.5 CTBN Parameter Estimation

il

Importance Samnling]\m_LclB_M
4.1 Forward Samplimg . . . . .

4.2 |Importance Samplin

4.4 Particle Smoothimng

4.5 Markov Chain Monte Carlo for CTBNs

.......................... 57

viii



5 Continuous-Time Sacial Network Dynamic Maodel
0.1 Background . . . . ... ...
.2 Social Network Dynamic Models . . . . . . . .. .. ... ... .....
b.2.1 Static Social Network Models . . . . ... ... ... .......
5.2.2 Discrete-time Model . . . . . ... ... ..o
h.2.3 Continuous-time Models . . . . .. ... ... .. .. .......

DD SUMMANY . . -« .« v v v e e e e e e e e e

6.1  Samplin

&LM.@%IH&MMm ....................
46 Experimental Results . . . . . . . . . .. 66



6.1.2 Maximum lLikelihood Estimation . ... ... ... . ... ... 100

6.2 Hidden Saocial Network Dynamics Maodel . . . . . .. ... ... .... 101
6.2.1 Moaodel Definition . . . ... ... ... ... . 102

6.2.2 Metropolis-Hastin

................................... 121
LC.Q.D.d.\.ISi.D.IL 122
Bibliography 125
A_Background Materials 129
1 MarkovChainMonteCado . . . . . ... .. ... .. ... ... ... 129
A_L_I_M.a.LKDLC.hﬁJL ............................. 130
1.2 MCMC Samplér . . . . . . . .. i 131
M@gﬁ%ﬁl’n ...................... 33
1.4 Metropolis-Hastings Sampling Algorithm . . . . . . . . .. ... 133
2 Expectation Maximization . . . . . . .. . ... ... e 136




List of Figures

1.1 __ADBN model of friendship and phone¢all . . . . ... ......... 3
1.2__ADBN foradifferenttimeinterval . . . . . .. .. .............. 5
1.3 A CTBN model of friendship and phone¢all . . . . .. .. ... ..... 7
3.1 CTBN Example: Weight Control Efféct . . . . .. ... ... ... ... 25
4.1 _Forward sampling semanticsfora CTIBN . . . . ... ... ... ...... 42
4.2 Example of calculatingﬂﬁjamﬂbulon ................ 49
4.3 _Importance sampling for C S e e 51
4.4 Particle Filtering for CTBNS . . . . . .. .. ... ... ... ... ... 55

4.7 _British Household Panel Survey Network . . . . . ... ... ...... 69
4.8 Accuracy of importance sampling algorithms . . . . . . . ... . ... 72
4.9 _Comparison of particle fiItering_s_um_aj_h_Lug_a_ud_Lm_amﬁammj_[Jg £
4.10 Comparison to expectation propagation: Drug Network. .. . . . . . . .. 75

Xi



4.13 Comparison to Gibbs sampling:

6.2 __Estimated parameters for the 50 giLIS.dﬁ.[Llset.

6.3 Estimated parameters for the Enron daI!aset

G_J_Logﬂikdihﬂ.cd_aLlesLlug_tha ...........

6.4 Enron adjacency matrix at different times. . . . . . . . . .. ... . ...

4.11 Comparison to Gibbs samnling'_d.ﬂ.l.g_u.ehl/ork e

77

78

79

81

112

. 115

Xil

6.5 __Parameters of utility function for reality mining daghs. . . . . . .. . ..

. 116

. 118

119

. 120



Chapter 1

Introduction

Many real world applications, such as computer networkssaenetworks, social networks,
mobile robots, and cellular metabolisms, involve highlyngdex dynamic systems. For ex-
ample, a mobile robot keeps receiving signals from its sen®dlecting the changing of its
environment as it moves around. Or in a computer networkh eacnputer receives and
sends hundreds of different types of packets every secohdselapplications usually con-
tain a large number of stochastic variables, which evolyaasronously in continuous time.
Modeling, learning and reasoning about these complex dimsystems is an important task

and a great challenge.

1.1 Continuous Time Bayesian Networks

In all the above applications, one central task is to undagshow variables of the system
change and to predict when the change happens. That is, wd lik@ito answer questions

1



about probability distributions of the system over timer gtance, we might want to know
how likely two persons will become friends in the next six rtten Since all variables evolve
in continuous time, one natural approach is to use contisiiiooe models. Markov processes
are commonly used for systems with a finite number of statesmddel a multi-variable
system, we need to combine all variables of the system intogdesprocess variable. For
example, suppose we want to model the friendship betweepérgons and their phone call
communications. We need a binary variablg to represent whether a persors a friend
of a persory, and another binary variabtg;; to represent whethérs callingj. To consider
these two factors using a single Markov process, we needrtibice these two variables
together, which needs four states, each of which corresptind possible state combination
of X;; andC;;. If we also include the information fromto 7, i.e., X;; andC};, we will need
16 states for this Markov process, each of which represeptssible combination of these
four binary variables. If we want to analyze these types afaihgics with more people, the
number of states of the Markov process increases expotigntia

Such growth of the state space of the Markov process makesyitdifficult to repre-
sent large systems and calculate probability distributifor them. One solution is to use

a structured representation to factorize the state spamding to the dependencies of the

variables. Bayesian networks [P =L.n_4988] are a standattiod for modeling static sys-

tems, and dynamic Bayesian networks (DBN 17B98D] are commonly

used for dynamic systems. A DBN describes the dynamic syageaitime-sliced model by

measuring the evolution of the system with a (usually fixe@dgtintervalAt. The transition



Figure 1.1: A DBN model of friendship and phone call

probabilities from states at timeo states at timeé + At are represented by a Bayesian net-
work. For example, we can model the dynamics of the frienglahid phone calls betweén
andj using a DBN shown in Figulle1.1. Variables with a supersdippresent variables at
time stept and those with a superscript 1 represent variables at tiepg st At. The dynam-
ics of each variable only depend on some variables at tiamed¢ + At¢. For example, the

transition probability ofX; depends onX ), X7

R Ji

while C}; depends orX; andCy;. Using
the dependencies among variables, the transition protiedibetween two time slicesand
t + At are decomposed into each variables. Thus, large dynantensgsan be represented
efficiently using DBNs.

DBNs work well for systems that are observed at regular titeps However, discretiz-
ing time line has several limitations. First, we usually abe a fixed time interval\z. In
many real world systems, variables evolve at different tgn@nularities. Some variables

may evolve very fast whereas some evolve very slowly. Chigpan appropriate time in-



terval is a difficult task. A largefAt may result in an inaccurate model while a smallgr
may cause the model to be inefficient. For instance, in tleadship and phone call system
in Figure[1.1, two persons may call each other four or five sireeery week. To accurately
represent this, we have to choose the finest granularitygiwisicomputationally inefficient
as the friendship between the two persons is not expectelatoge for several months. If
we choose a larger time interval, the resulting model isfiitgant to represent the phone-
call events that happen during time intervals, which makestitansition model inaccurate.
Moreover, variables in a system may evolve in irregular stéfake the phone-call event as
an example. During one month, we may observe many event®ifirth two days and ob-
serve nothing in the rest of the month. However, once we ahtwostime interval, we have
to propagate the distribution in each time step even wherveots are observed.

Second, the dependencies of the transition model are destéh respect ta\t. That is,
different choices ofAt may result in different network structures betweeandt + At. For
example, we can unroll the DBN in Figurell.1 for 2 time stepsici results in Figurg 1.2{a).
Figure[1.2(d) describes the dependencies among varidhlesessteps, ¢ + At andt + 2A¢.
From the figure, we can see tr@@ also depends OJXZ-OJ-, since the probability influence of
X}, can flow fromX/; andCy; to C7;. Thus, if we choose a new intervall’ = 2At, we will
obtain a different DBN as shown in Figyre 1.2(b).

Finally, DBNs (and discrete-time Markov processes in gaeto not necessarily cor-
respond to processes that are Markovian outside of the sahmmtants of time. Therefore,

there may not be any simple extension of a DBN to the timesd&&tvthe sampled instants.



t t+ At t+ 2At t t+2At

(a) (b)

Figure 1.2: A DBN for a different time interval. (a) UnrolldaBN of friendship and phone
call for 2 time steps. (b) DBN structure for a different tinmegrval.

For example, the transition probabilities of a Markov chaith » states can be represented
using am x n matrix P, where each elemett; in P describes the probability of transition-
ing from state; to statej in each time step fromto ¢ + At. If we further want to include
the Markov behaviors in the middle of each time interwal 1 A¢, we need to use another
transition matrix”’ for the new model. Thus, the transition probabilities frono ¢t + At
under the new model can be calculatedPds< P’. To preserve the Markov property in the
old Markov chain,P’ should satisfy”’ x P’ = P. However, there is not always a real-valued
solution for such?”’.

Since discrete-time models such as DBNs have some limitafod single Markov pro-

cesses suffer from the state space explosion as the numbariables increases, an ideal



solution is to use a continuous-time model that can providéactured representation to

decompose the state space.

Recently, Nodelman et 02] presenteatinuous time Bayesian netwolksT BNS),

which provide a structural representation of continuaoeet finite-state, Markov processes.
A CTBN factorizes a multi-variable Markov process into lbeariables using a graphical
representation. Each variable is modeled as an inhomogsridarkov process whose dy-
namics depend on the current value of a set of variables isyeem. For example, the
friendship and phone-call model can be described using TBNCshown in Figurd_T113.
Since we use a continuous-time model, only four variablesrereded, each of which is
an inhomogeneous Markov process. The dynamics of eachbleuwd@pend on the current
instantiation of a set of other variables in the model. Thiémgendencies are represented
using the arcs in the graph. For instance, the dynamics,; pflepend on the current value
of X;;. By doing this, CTBNs explicitly represent the temporal dgmcs in continuous
time and exploit the dependencies among stochastic vasalsing a structured represen-
tation. Thus, exponential explosion in the representasoavoided, and queries can be
answered using distributions over continuous time. Beeaigthese advantages, CTBNs

have been applied to various real world systems, includimgndn-computer interactions

odelman and Horvitz, 2003], server farm failures [Hechret al.| 2007], robot monitoring

[Ngeta 05], network intrusion detectloln [Xu and Shelt2008], and social network

analysis LEa.n_a.u_d_&_h_eLLIu_Z)O . Kan and Sh ILQ_u_ZOOSIb'etEﬂ the CTBN representa-




Figure 1.3: A CTBN model of friendship and phone call

tion and presented an approach to solve structured contstime Markov decision pro-

cesses.

1.2 Inference in CTBNs

In CTBNSs, a trajectory (or sample) consists of the startiaygs for the system along with
the (real-valued) times at which the variables change, lagid torresponding new values. A
partial trajectory is a trajectory in which some values ansitions are missing for some vari-
ables during some time intervals. An observation (or evigg¢im a CTBN is usually a partial
trajectory. Inference for CTBNs is the task of estimatingtdbutions given some observa-
tions. Inference is very important as it not only helps usarsjueries about distributions,
but it is also involved in parameter estimation when the ole®n data are incomplete. Per-
forming exact inference in a CTBN requires combining all taeiables in the CTBN into a
single Markov process. This method, as discussed preyiosisifers from the exponential

explosion of the state space. Thus, many applications ofN&TIBquire an approximate in-



ference method. One method based on expectation propaiﬂﬁn&zj, 2001] was presented

iniINodelman et al.[200 all_j.a.ua_al L_RJW] extended fttidbelief propagation and pro-

vided a method to adapt the approximation quality. Cohn! ] provided a method

based on mean field variational approximation. All thesehomas depend on complex nu-
merical computations, are hard to implement, and are nagiteed to converge to the true
value in the limit of infinite computing time.

Another approximate inference method is to use a samplasgd algorithm. In CTBNS,
a sample is a trajectory that is consistent with the evide@oeen the evidence, a sampling-
based algorithm generates a set of trajectories by simglaie dynamic system according
to the evidence. Queries about CTBNs are answered usingathpls trajectories. For
example, if we want to know the probability that a variable= x at timet, we check the
value of X att for each sampled trajectory and calculate the ratio of threber of samples
for which X = x to the total number of samples as the approximated probakflampling
has the advantage of being an anytime algorithm. That is anestop at any time during the
computation and obtain an answer. Furthermore, in the biifinite samples (computation
time), it converges to the true answer. Another advantagawipling-based algorithm is that
it is easy to handle any kind of query. Queries such as “theebep value ofX at the time
whenY transitions to valug; for the second time” can be calculated directly using sasjple
which is difficult using the other approximate inference noets mentioned above.

Sampling from dynamic systems is not new. However, most efptevious work has

been in the area of discrete-time systems. Continuoussystems pose different problems.



Any evidence containing a record of the change in a variad$eshzero probability under the

model. Therefore rejection sampling and straightforwédlihood weighting are generally

not viable methods. Ng etlal. [2005] developed a continuous-particle filtering algorithm.

However, it only handles point evidence on binary and teragcrete variables using rejec-

tion sampling, and focuses primarily on the incorporatidewdence from the continuous-

state part of the system. Recen - 'tlal. [2008] pled another sampling algorithm
for CTBNSs using Gibbs sampling. The Gibbs sampling alganittan handle any type of ev-
idence, and it provides an approach to sample from the exetépor distribution given the
evidence. However, the posterior distribution can be abitrary function. Thus, in order to
sample exactly from it, binary search has to be applied aagtsterior distribution has to
be evaluated repeatedly, which may affect the efficienchefigorithm.

In this dissertation, we provide another sampling-basgdrahm for CTBNs using im-
portance sampling. Our importance sampling algorithm gggre weighted samples by nat-
urally simulating the CTBN we are reasoning about. It onlycés the behavior of some
variables according to the upcoming evidence and calaithtecorresponding weight contri-
bution. Queries are answered using these weighted sanydesy the importance sampling
algorithm, we can answer any type of query given any type mfeawce. We also extend the
algorithm to particle filtering and smoothing algorithms.Metropolis-Hastings algorithm
for CTBNs can also be derived based on our algorithm. The rtapoe sampling algorithm
does not depend on complex numeric computations and is easyplement. It can be

applied to many applications where the dependencies amemmples are complicated and



other inference algorithms are difficult to implement. Omaraple of such applications is

social networks.

1.3 Modeling Social Network Dynamics

Social networks are a very important type of continuousetaiynamic system in our daily
life. They represent the relationships (such as friendshipo-authorship) among actors
(such as individuals or companies). They are highly dynamat naturally evolve in contin-
uous time. Understanding the dynamics of the social netwthokvs us to predict, evaluate
and control social processes more accurately. For exainglen help us control the spread
of a disease or predict the reactions of terrorists.

Social networks have been studied for decades. Howevem#jerity of the existing

studies model social networks use static or discrete timeéaiso Static models such as the

p1 model [Holland and Leinhatdt, 1981], the Exponential Randaeraph Model (ERGM, or

p* model) [AD.d.EE.O.D_QLJil_._lQBQ], and the latent space mJJ.dﬂthLaJ., 2002] only focus

on the static properties of social networks and usuallyireghe network to be fully observ-

able. Dynamic properties of social networks cannot be rﬁtéusinf these models. Other

models such as those QLS.a.Lka.La.n.d_ML re [2005]land Gu

works evolve in discrete time steps and study the dynamissahl networks using discrete

7T assume social net-

time models. However, actors in social networks behave dédfgrently. Events in social

networks often happen at an irregular pace. For examplesapenay receive a lot of Face-

10



book posts on the person’s birthday and only receive one oritvthe next month. As we
mentioned in Sectio1l.1, choosing the correct time infésva great challenge.

As social networks evolve asynchronously, a continuomgtimodel can provide more

flexibility and higher fidelity in modeling such networks. ¢aatly, Snijders [2005] provided

an actor-oriented model which considers the whole soctalor evolution as a continuous-
time Markov process. The evolution of the network is modeledctors making decisions
to add or remove a link to maximize a utility function. Thusgch link in the network is
modeled as an inhomogeneous Markov process, whose intelegiends on the structure of
the network and changes over time. Dynamics of the socialorks in this model purely
depend on the topology of the networks. Usually, the charsstic attributes of the actors
and the networks structure (both time-variant) depend ah @sher. For example, people
who have the same interests are likely to become friends rigmtis are likely to influence

each other’s interests. Such effects should be consideheth wodeling social networks.

Snijders et al|[2007] extended the actor-oriented modilemetwork-attribute co-evolution
model which added effects between the network structuretlamactors attributes. These
two social network dynamic models allow us to model the dyicarof social networks in
continuous time and allow the social network dynamics toetiepon the entire structure
of the network and actors attributes. However, there areasmects upon which we can
improve.

First, the parametric estimationlin_Snij em_[J)OS] i.n.d.m_eLaI [2007] was imple-

mented using a forward sampling method. However, this ntettam only handle data that

11



completely specifies all variables at discrete time instaifhe samples generated by their
forward sampling algorithm are not entirely consistenthttie observations and the infor-
mation provided by the observations is only partially usedrdy the learning procedure.
Second, parametric estimation for the network-attribwutesgolution model requires obser-
vations of the network as it evolves (at least three snapstiotlifferent times). Usually,
direct observation of a social network is very expensivee $barceness of the data could
result in an inaccurate estimation of the model.

In this dissertation, we address these two issues by denatingtthe relationship be-
tween social network dynamic models and CTBNs. Our impagaampling algorithm for
CTBNSs can be applied to social network dynamic models witalsmodifications. Using
importance sampling, we can handle asynchronous, partthdaration observations, and
improve the previous parametric estimation methods foratametwork dynamics. We ad-
dress the second issue by noticing the fact that other olisens, such as communication
events among people (emails and instant messages), cast pefteple’s relationships indi-
rectly. More importantly, they are easier to collect. We elep ahidden social network
dynamics modeln which indirect observations such as emails events ampeogle can be

utilized.

12



1.4 Outline and Contribution

In this dissertation, we explore sampling-based approtenmierence algorithms for CTBNs
using importance sampling. We then discuss how to applyethaé&gorithms to real world
applications, such as social network analysis. The reneaiofithe dissertation is structured
as following:

In ChapteiR, we review the background of continuous timekdaprocesses, which is
the basis of both CTBNs and continuous-time social netwgriachics models.

In ChaptefB, we review the background of CTBNs, includirgyiodel definition, exact
inference and approximate inference in CTBNs, and paraenestimation using complete
and partial observations.

In Chaptelllt, we discuss sampling-based approximate mferalgorithms for CTBNs
using importance sampling. We explain our importance sargllgorithm for CTBNSs, and
then extend the algorithm to particle filtering and smoagtatgorithms. We also demonstrate
a Metropolis-Hastings algorithm for CTBNSs.

In Chapteilb, we review continuous-time social network dagita models. We intro-
duce the actor-based models, the network-attribute casgono models and the method of
moments algorithm for parameter estimation in these models

In Chaptefb we show how to apply CTBNs and our importance §amplgorithms to

continuous-time social network dynamic models. We als@igeour hidden social network

13



dynamic model and explain a parametric estimation algaritising our Metropolis-Hastings
sampling algorithm.

Chaptef concludes this dissertation with a summary araigison.

The contributions of this dissertation are representedhiapgfell# and Chapt&l 6. More

specifically, the contributions of this dissertation are:

e We develop an importance sampling algorithm for CTBNs. Tlgergthm can handle
any type of observation and does not depend on complex nacariputations. It can

be easily extended to continuous time systems other tharNSTB

¢ We extend the importance sampling algorithm to particleriitig and smoothing algo-

rithms.

e We present a Metropolis-Hastings algorithm for CTBN basedhe importance sam-

pling algorithm.

e We introduce the CTBN model and our importance samplingréalgo to social net-
work analysis. We adopt the importance sampling algoritbra tontinuous-time so-
cial network dynamic model. The algorithm guarantees thatdamples generated
from continuous-time social network dynamic models arestsient with the observa-

tions, which greatly improves the learning accuracy.

e We design the hidden social network dynamics model. The ialtav us to use
indirect observation data, such as communication eventsgrpeople, to learn the
dynamics of the social network dynamics, which is unobsgheden) all the time.

14



e We develop a Metropolis-Hastings sampling algorithm fa tidden social network

dynamics model. The algorithms can handle both completepaniially observed

data.

e We apply our sampling algorithms and hidden social netwgrkagnics model to sev-
eral real world applications. We demonstrate that socialvok dynamics can be
learned from many indirect observations, which greatleasgts the data types that can

be used in analyzing social network dynamics.

15



Chapter 2

Continuous Time Markov Processes

In this chapter, we provide the background material aboutinaous-time Markov pro-

cesses (se ris_[1997] for a more complete treatment).fildtegive the definition for

a continuous-time, finite-state, homogeneous Markov m®cand then discuss how to rea-

son about continuous-time Markov processes.

2.1 Representation

Let X be a continuous-time, finite-state, homogeneous Markoega® X hasn states
{z1,29,...,2,}. X(¢) is the (finite) state of the system at timeThe collection of random

variables{ X (¢)|t € R*} composes the process. satisfies the Markov assumption. That is,

P(X(t+s)=a;|X(s) =2;, X(r) = z,) = P(x(t + s) = xj|z(s) = x;)

16



Vs, t>0,0<r<sandi,je{l,...,n}
The initial distributionPy = P(x(0)) is a multinomial distribution oven states ofX.
The transient behavior ok is described by the initial distributio®? and the transition

model which is often represented by the intensity matrix

—Qzy  Qrizo " Quyzy,
Qeoxy  —Qao " Qzox,

QX = )
Qepzy Qrpze °°° —Cqzy,

whereg, ., is the intensity with whichX transitions fromz; to z; andg,, = E#i Qoiz;-
The diagonal elements and the off-diagonal elemenjs define the instantaneous tran-

sition probabilities ofX. More precisely,

AI}SI—I}O At = i
- 1 - P(X(t+At) = 2| X () = 25) _ 0“.
At—0 At

The intensity matriXQ x is time invariant. GiverQ x, the transient behavior of can be
described as the followingX stays in state; for an amount of time and transitions to state

x;. t is exponentially distributed with parametgr. That is, the probability density function

17



f(g.,,t) and the corresponding distribution functiéiiq,,, t) for X staying in state; are

F(qy,,t) =1 —exp(—qgt), t=>0.

The expected time of transitioningigq,,. Upon transitioning, the probability thaf tran-

sitions from stater; t0 z; iS 0,0, = o0,/ Qars-

Example 2.1.1 Assume we want to model the behavior of a person’s exerdesesity £ ()
which has three values/(al(E(t)) = {e, = light,e; = medium, e; = heavy}). We could

represent the dynamics éf(¢) using the intensity matrix

—1.8 1.6 0.2

0.5 1.5 =2

If we set the time unit to one month, this means that we expegbdrson changes his
exercise intensity in /2 = 0.5 months if his current intensity is heavy. When the intensity
is changing, with probability.5/2 = 0.25 the new value will be light and with probability

1.5/2 = 0.75 the new value will be medium.

Often times, the dynamics system we are trying to model comtare than one variable.
To model a multi-variable system, we first combine all vaeslinto a single joint variable
by enumerating all possible states of the variables. If yfsesn hasV variablesX; (i =

18



1,..., N), and each variable contaifs states, the total number of states of the joint process
isn = HiNzl S; and the size of the intensity matrix for the joint process iy n. As the

number of variable increases, the size of the intensityimgtows exponentially.

Example 2.1.2 Assume that in the previous example, we also need to corthieleffect of
the weathedV (¢) which has two valuesi{al(W(t)) = {wy = rainy,w; = sunny}). To
model the dynamics of this system, we first list all the ptessidues of the joint variable:
(wo, €9), (wo, €1), (wo, €2), (w1, e0), (w1, e1), (wr, e2). We then write the transition intensity

of each pair of values into the joint intensity matrix.

W€ - =35 07 03 25 0 0 |
woeq 4.4 7.5 0.6 0 25 0
Woes 8.9 1.1 —12.5 0 0 2.5
wieg 0.75 0 0 —-2.55 1.6 0.2
wiey 0 0.75 0 0.55—1.75 0.45
wiez | 0 0 0.75 05 1.5 =275 |

Notice that elements representifig(¢) and E(t) changing simultaneously are all zeros.
This means that we assume any two variables cannot changethie at exactly the same

time. Since we are modeling a continuous-time dynamicsjdta natural assumption.

19



2.2 Likelihood and Sufficient Statistics

Samples from a Markov process are often called trajectoei@sh of which consists of the
starting value of the process and a sequence of events. Fechiga transition that denotes
the new valuer; that variableX changes to at timé The probability or likelihood of the
data thus can be calculated using sufficient statisticseofrijectories.
Suppose we are given a complete trajecioiyenerated from the Markov proce&st).

To calculate the likelihood, we can decompose the trajgdtdo » segments according to
the transition time. We represent each segment as< t;, x;, x;,1 > wWherez; is the value
of X before the transitiony;; is the value after the transition, andis the timeX spends

in stater; before transitioning. The likelihood of a segmeéntan be written as

LX(dz) = (qz; eXp<_qriti> X 8$i$i+1 .

The likelihood of the entire trajectory is the probability of the starting value,, times

the multiplication of the likelihood of each segmént (d;):

Lx(o) = Pg(xo)HLx(di)

= P)%('TO) H qz; eXP(_sztz) X e:pdimd

i=1

irl

We summarize the data using the sufficient statistics:

e T[x], the total amount of tim& spends in state, and

20



e M|z, 2’|, the total number of time& transitions from state to stater’, wherex # «'.

The likelihood of the trajectory can be written as

Lx (o) = P% () H (qym exp(—q.T'[z]) X H Gﬁ,gm’zq) :

rH#x!

T

2.3 Query of Markov Process

Given the intensity matrixQx and the initial distribution”? of a continuous-time homoge-
neous Markov procesk, there are a number of questions we can answer.

Commonly we wish to calculate the conditional probabiltyX (t) = z;| X (s) = zy),
wherez; is the value ofX at timet andz, is the value ofX at an earlier time. If X hasn
states{z, ..., z,}, all the conditional probabilities can be representedgiaim x n matrix
P(X(t)|X(s)), where thei'® row vector is the conditional distribution over the valueXof

at timet given X (s) = x;. P(X(t)|X(s)) can be calculated as

P(X(t)[X(s)) = exp(Qx(t — 5)).

Let Px(t) be a row vector representing the distribution over the \alofeX at timet.

This distribution can be calculated as
Px(t) = P)O( exp(QXt)

21



where the initial distribution?. is represented as a row vector. The functiap() denotes

the matrix exponential, which is defined as following for atmxa():

© Ak
exp(Q) =Y % 2.1)
k=0

For a real matrix of siz€ x 2, the matrix exponential can be calculated exactly as

Q11 Q12 1 | M1 M2
exp( ) = N )
421 Q22 Moy Moz
where
(q11+4g22)/2 1 i 1
myy =€ (ACOSKﬁA) + (Q11 - (JZ?)SInr(ﬁA))
o1
My = 2q126((I11+(I22)/2S|n[‘(§A)
o1
Moy = 2q21€((I11+(I22)/2S|n}'(§A)
(q11+4q12)/2 1 i 1
Moo = € (ACOSK§A) — (qu — Q12)3|nr(§A))
and

A= \/(C]u — ¢22)% + 4q12g2

For general real matrices, the matrix exponential can oalgdiculated numerically.

22



2.4 Summary

Many real world systems evolve naturally in continuous tit@entinuous-time Markov pro-
cess allows us to realistically model and reason about tihgsamic systems using continuous-
time. However, the size of the state space of a continuoos{tarkov process grows expo-
nentially with the number of variables in the system, whicikes this method infeasible for
large systems. One solution for such state space explaosimnuse models with structured
state spaces in which the dynamics of each local variableeaepresented more efficiently.
A Continuous time Bayesian netwo{®TBN) is such a model that decomposes a Markov
process using graphical representation. It allows us toahlagige dynamic systems more
efficiently and reason about these systems in continuows the will discuss the CTBN

model in more detail in the following chapter.

23



Chapter 3

Continuous Time Bayesian Network

As we have discussed in the previous chapter, a continumesMarkov process suffers from
state space explosion when handling large dynamic systAmsfructured representation is

needed to deal with systems with many variables. In thistenawe desribe theontinuous

time Bayesian networkETBNSs), which were first introduced hy Nodelman et al. [2D02
CTBNSs use a graphical representation to describe multalsbe continuous-time stochastic

processes, which can model real world dynamic systemsaesifigi

3.1 Structured Process Representation

In order to decompose a multi-variable dynamic system, wedluce aconditional intensity
matrix (CIM) to describe the dynamics of local variables in a system. Xebe all the
variables of the dynamic system we are trying to model. Xet X be one variable in the
system andJ C X be a set of other variables. The conditional intensity mafYi s for

24



variable X is defined as a set of intensity matrid®s|,,, one for each instantiation of the
variable selU. The evolution ofX depends instantaneously on the values of the variables in
U. Using a CIM, we can model each local variable as an inhomagenMarkov process,

whose intensities are a function of the current values of afsether variables.

Example 3.1.1 Let us consider the dynamic system described in Exampl@. Aristead of

using a single Markov process to represent the whole systentan model the dynamics
of each local variable separately by utilizing the depemnele@among the variables. For
example, itis natural to stipulate that the exercise inigrdepends on the weather condition.

Therefore, the dynamics of the exercise intensity can baitdesl using two CIMs.

1.0 0.7 0.3 18 1.6 0.2
QEjw, = 44  —5.0 0.6 Qrjw, = 0.55 —1.0 0.45
8.9 1.1 —10.0 0.5 15 —2.0

The behavior of variablgZ(t) is now represented as an inhomogeneous Markov process,
whose intensities depend on the current valuéldt). WhenlW (t) = wy, the behavior of

E(t) is described usin@ .., WhenlV (t) = w;, it is described usin@ g/, -

3.2 The CTBN Model

Using CIMs, we can explore the dependencies among variabtésodel each local variable
as an inhomogeneous Markov process. Thus, we can represeultiavariable dynamic

system using a structured model, in which relations amoni@bies can be described using

25



Exercise

>( Calorie Intake

BodyWeight

Figure 3.1: CTBN Example: Weight Control Effect

a directed graph. Each node in the graph represents a \awdalol each arc between two

nodes represents the dependency between those two variable

3.2.1 Model Definition

Definition 3.2.1 [Nn_dﬂma.n_aLJl. 2002] Aontinuous time Bayesian netwaX over X

consists of two components: amitial distribution P, specified as a Bayesian netwask

over X, and acontinuous transition modedpecified using a directed (possibly cyclic) graph
G whose nodes ar& € X. LetU y denote the parents of in G. Each variableX € X is

associated with a conditional intensity matrQy v, -

Example 3.2.2 Assume we want to model the behavior of a person controlliagbbdy

weight. When the person is overweight, he may exercise madosé the excess weight.

26



Increasing exercise intensity tends to increase his apgetvhich will increase his daily
calorie intake. Both exercise intensity and calorie intakatribute to his body weight. Fur-
thermore, his exercise intensity also depends on the we&heh a dynamic system contains
four variables: body weight, exercise, calorie intake, avehther. Each variable changes in
continuous time and its changing rate depends on the cuvae of some other variables.
We can use a CTBN to represent such behavior. The depensehtiese four variables
are depicted using a graphical structure, as shown in Fig@ife The quantitative transient
dynamics for each variable are represented using CIMs.sLatsume all the four variables
are binary. LetB(t) be the person’s body weightWal(B(t)) = {by = normal,b; =
overweight}), E(t) be the exercise intensity ¢l(E(t) = {ey = light, e; = heavy}), C(t)
be his daily calorie intake Val(C(t) = {cy = low, c; = high}), andW(t) be the weather
(Val(W(t) = {wy = rainy, w; = sunny}). The conditional intensity matrices for the four

variables can be specified as

—0.5 0.5
Qw Qw =
0.5 —=0.5
—0.1 0.1 —0.3 0.3
QE\wo,bo = QE\wl,bo =
2 —2 1 —1
QE|W,B - - - -
—0.5 0.5 —1 1
QE\wo,bl = QE\wl,bl
0.5 =05 0.1 —-0.1

27



—0.2 0.2 —1 1
QC|E QC\eo = QC\el =
1 -1 0.2 =02
—0.2 0.2 —0.1 0.1
QB|80,CO = QB\el,cg =
0.8 —0.8 1 —1
Qpec - - - -
—1 1 —0.2 0.2
QB|60,01 = QB\el,cl
0.1 —0.1 0.6 —-0.6

Notice that unlike Bayesian networks, CTBN models allowesyd he transient behavior
of each local variable is controlled by the current valuetsfparents. If the person is doing
light exercise and his calorie intake is low, the dynamickisfbody weight are determined
by the intensity matriXQ g, If the time unit is one month, we expect his weight will go
back to normal in1 /0.8 = 1.25 months if he is currently overweight, doing light exercise,

and controlling his daily calorie intake.

3.2.2 Conditional Independencies

By using the graphical model, CTBNs not only provide a suied representation language
for multi-variable Markov processes, but also describeititependencies (and dependen-
cies) among variables. Since a CTBN represents contintiogseynamic systems, the in-

dependencies specified by a CTBN are between distributieeisentire trajectories of the

28



variables. Similar to a Bayesian Network, each variabJen a CTBN is separated from all
the other variables by its Markov blanket. The Markov blardfevariable X; is defined as
the parents ofX;, the children ofX;, and the children’s parents. In a CTBN, is indepen-

dent of all the other variables in the CTBN given the entiegeictory of the Markov blanket

of a variableX;.

Example 3.2.31In the CTBN model showed in FigureB.1, variablg)’s Markov blanket is
B(t) and E(t). ThereforeC'(t) andWV (t) are separated by3(¢) and E/(¢). That is, given the

entire trajectory ofB(t) and E(t), C(t) andW (t) are independent.

3.2.3 Joint Markov Process

Although each node in a CTBN model represents an inhomogesnigarkov process, the
behavior of the entire CTBN model still represents a singlsmbgeneous Markov process.

The intensity matrixQ for this joint Markov process is generated by combiningladl CIMs

in the CTBN model together, which is calleimalgamationNodelman et gl., 2002]. A

basic assumption of CTBNSs is that two variables cannot ifiansat exactly the same time.
Therefore, all the elements in the joint intensity matriattineflect two variables changing
simutaneously should be zeros. If each variab)én the CTBNAN hasn; states, the number
of states of the joint Markov processiis= [[ n; andQ is ann x n matrix. We generate the

joint intensity matrixQ by three steps.

e Leti andj be any pair of states in the joint Markov process where the@nly one
variable whose value is different between them. Kdbe that different variable and

29



be the set of parents of. Letu be the instantiation oU in statei andj. The value

of the off-diagonal elemeny; in Q is set to be the corresponding intensity in the CIM

QX\u-

¢ All the other off-diagonal elements are zero since two \@esa cannot transition at

exactly the same time in a CTBN.

e The diagonal elements are computed to make each row sumao zer

Example 3.2.4 For CTBN model in Figur€3l1, we can amalgamate all the CIMd fomm

a homogeneous continuous-time Markov process. The joinkdwgrocess has 16 states:
x1 = (wo, €9, Co, bo), T2 = (w1, €y, co,bo), x3 = (wo, €1, o, bo), - ., T16 = (w1,€1,¢1,b1).
Therefore, the intensity matrix for the joint Markov proges of sizel6 x 16. The value
of each off-diagonal element for which only one variableueak different between any two
states is set to be the corresponding intensity in the CiMhaf variable. For example, the
value of they,, ., represents changing from state, ey, ¢, by) to state(wy, e1, co, by). We set
it to be 0.1 according to the conditional intensity mat@,.,, »,. All the other off-diagonal

elements are set to be zeroes. The resulting matrix is

30



woeocobo - -1 0.5
w1epcobo 0.5 —1.2
woe1cobo 2 0
wielcobo 0 1
woepc1bo 1 0
wiegc1bo 0 1
woe1c1bg 0 0
wieyc1bg 0 0
woepcoby 0.8 0
wiepcoby 0 0.8
woelcoby 0 0
wielcoby 0 0
woegc1by 0 0
wiepc1by 0 0
woeyc1by 0 0
wierc1by i 0 0

01 0
0 0.3
-3.6 0.5
0.5 —2.6
0 0
0 0
02 0
0 0.2
0 0
0 0
1 0
0 1
0 0
0 0
0 0
0 0

02 0
0 0.2
0 0
0 0
—-2.6 0.5
0.5 —2.8
2 0
0 1
0 0
0 0
0 0
0 0
0.1 0
0 0.1
0 0
0 0

0 0
0 0
1 0
0 1
0.1 0
0 0.3
-2.9 0.5
0.5 -1.9
0 0
0 0
0 0
0 0
0 0
0 0
06 0
0 0.6

05 05 0 02 0
0.5 -25 0 1 0 0.2
0 -3 05 0 0
0.1 05 -26 0 0
0 0 0 -21 0.5
1 0 0 0.5 —2.6
0 02 0 05 0
0 0 02 0 0.1

0 0
0 0
0 0
0 0
0 0
0 0
02 0
0 0.2
0 0
0 0
1 0
0 1
05 0
0 1
-1.8 0.5
0.5 —1.4

As we include more variables in this system, the size of tkeesity matrix grows expo-

nentially with the number of variables.

3.3 Sufficient Statistics and Likelihood

The probability density over trajectories of a set of variablesX described by a CTBN

belongs to the exponential family. Therefore, similar kelihood of a single Markov process

in SectioZ.P, the distribution of a CTBN can be describaeims of the sufficient statistics

of o [Nodelman et

20

3]. In a CTBN, each variablec X is conditioned on its parent

setU. We can define the sufficient statistics of a CTBN as

e T'[x|u], the amount of timeX = x while Ux = u, and

31



e M|z, 2'|u], the number of transitions fromto 2’ while Ux = u.

If we let M [z|u] = )__, M|z, 2'|u], the likelihood of each local variabl¥ is

Ly (T[X|Ux], M[X|Ux]) HH(fﬁf'“ exp(— g Telu]) T 04 "”) (3.1)

z' T

The probability density of trajectory is

Py(0) = Px (o) [ Lx(T[X[Ux], M[X|Ux)) (3.2)

XeX

where P% (o) is the probability of the starting values of the variablesrajectoryo. Since
the initial distribution of a CTBN is specified using a Bay@siNetworkB of X, P% (o) is
the product of the conditional probability of each variainlés.

The likelihood also decomposes by time. That is, the liladith of a trajectory on0, T')
is equal to the likelihood based only on sufficient statsstrom time0 to time ¢ multiplied

by the likelihood based only on sufficient statistics fromit to timeT".

3.4 Inference in CTBNs

Given a CTBN model, we would like to use it to answer queriggditioned on observations.
Or in many situations, we would like to estimate the paransatéa CTBN model based on

some partially observed evidence. In both cases, we neestfiarm inference in CTBNS.

32



3.4.1 Evidence and Queries

Evidence for a CTBN is usually a partial trajectory, in whigbme values or transitions are
missing for some variables during some time intervals. &rae two common types of
observations: point evidence and continuous evidencent lRReidence represents the ob-
servation of the value of some variables at a particular fims¢éant. Continuous evidence
provides the behavior of some variables throughout anvatét,, ¢,). For instancez = 1
during the interval2,3.5), orz = 1 from¢ = 2 tot = 3 and thenz transitions tar = 0 at

t = 3 and stays in that state until= 5. We definez|t; : t5) to be the behavior of variabl&

on the intervalt,, t2), x[t; : to] to be the behavior ok on the intervalt,, 5], andz (¢, : to]

to be the behavior ok on the interval ¢y, t,].

Queries can ask about the marginal distribution of somealsées at a particular time,
such as the distribution of andy att = 2, or the timing of a transition, such as the distri-
bution over the time thaj transitions fromy = 1 to y = 2 for the first time in the interval
[1,4). In learning (especially when employing expectation-mexation), we might query
the expected sufficient statistics of a CTBN conditionedame evidence, which include the
expected total amount of time that a variable spends in a,stat the expected total number
of times that a variable transitions from one state to anaébete under certain conditions.
For example, we might want to know the total amount of time tha= 0 throughout the
entire interval, or the number of times thatransitions froml to 2 during the time interval

2,3) wheny = 0.

33



3.4.2 Exact Inference in CTBNs

A CTBN can be viewed as a homogeneous Markov process witlge jaint intensity matrix
amalgamated from the CIMs of the CTBN. Exact inference in 88Tcan be performed
by generating a single joint intensity matrix over the enstate space of the CTBN and
running the forward-backward algorithm on the joint intiéysnatrix of the homogeneous

Markov process. We review this method here, but a more campleatment can be found

inNodelman et al[[2002].

Assume that we have a partially observed trajectoof a CTBNN from 0to7'. We can
divide the evidence into N intervals|t;, ;1) (i = 0,..., N — 1) according to the observed
transition times. That is, each interval contains a coristaservation of the CTBN, and
t; is the time that a variable begins being observed, stopglmserved, or is observed to
transition. We set, = 0 andty = 7.

To perform exact inference, we first generate the intensérimQ for the joint homoge-
neous Markov process using the amalgamation method dedantSectiofi3.213. We then
incorporate the evidence infQ as following.

We reduce the joint intensity matr® to Q, for each intervalt;, ¢;,1) by zeroing out
the rows and columns df) which represent states that are inconsistent with the acile
Additionally, let Q; ; be the matrixQ with all elements zeroed out except the off-diagonal
elements that represent the intensities of transitioniognfnon-zero rows iQ); to non-zero
columns inQ;. If evidence blocks andj differs only in which variables are observed (no

transition is observed between them), tl@y; is the identity matrix instead.

34



exp(Qi(ti+1 — t;)) represents the transition matrix for interval, ¢;.,) andQ; ;1 cor-
responds to the transition probability density between ¢aasecutive intervals at tinte, ;.
We can use the forward-backward algorithm for Markov preesgo answer queries.

We define the forward and backward probability veciarsand3, as

oy = p(Xm U[Qt})

B, = p(a[t,T)|Xt)-

whereoy,, , ) andoy, . represent the trajectory during intenigl ¢;] and|t;, ;) respectively.
a; andg, each have one element for each state of the system.
Let o be the initial distribution”?. over the state at time 0 an@}. be a vector of ones.

The forward and backward distribution vectors for eachrivdibcan be calculated recursively:

o, = oy exp(Q;(tivs — ) Qi

By, = Qi—riexp(Qiltiys —4:))By,,, -

The distribution over the state of the CTBN at titne [t;,¢;,,) given the evidencey, 1

can be computed as

P(X;y = k,007) = a, exp(Qi(t — ;) Apr exp(Qi(tivs — 1))By,,, (3.3)

35



whereA,; ; is ann x n matrix of zeros except for a single one in positiog. Other queries
can be similarly computed.

Sufficient statistics of data are often used to calculatbgndities regarding the data and
estimate the parameters of the model. When the given datalyspartially observed, we
can use inference to calculate tbepected sufficient statistic&iven a partially observed
trajectoryo, we can divide the trajectory into intervals as above andutate the expected
sufficient statistics during each intenjal, ¢;,,) as following.

The expected total amount of time that the joint Markov psscgpends in stageduring

interval[t;, ;1) given the evidence is:

é / it+1 Qy, eXp(Qi(t — ti))Aj,j exp(QZ-(tHl — t))ﬁtiJrldt’ (34)

where(C' is the normalization constant to guarantee that the suromatfithe total time the
process spends on each state during intetyal ) ist; ;1 — t;.

The expected number of times that the joint Markov procemssitions from statg to
statek and was not observed doing so is:

tit1
Gt

c o, exp(Qi(t — 1;)) Ak exp(Qi(tiv: — 1))B,,, dl (3.5)

For details of computing the expected sufficient statistigsCTBN, se¢ Nodelman etlal.

[2005b]

36



3.4.3 Approximate Inference in CTBN

As discussed in the previous section, exact inference inBNCiBquires generating a single
joint intensity matrix over the entire state space and datmg the exponential of the matrix
(EquatiorZ1l). As the number of variables increases, tteedithe entire state space grows
exponentially. Exact inference is intractable for largéwueks. Therefore, approximate

inference method is used. Several approximate inferergmittims have been developed.

Generally, they can be categorized into three tygagectation propagatio[LAinKa, 2001]

approachegnean field variationahpproaches, and sampling approaches.

Since a CTBN model uses a graphical representation, infererethods based on mes-

sage passing can be applied. Nodelmanlet al

=

2005a] inteatlan approximate inference

method based oexpectation propagationThe algorithm partitions the evidence trajectory
into segments according to the transitions of the evideBoesach segment, marginal distri-
butions of local variables can be calculated using the faivieckward algorithm described

in Section(3.4P. Messages (marginal distributions @ids) of each segment are passed

among the local variables. The accuracy of éx@ectation propagatioalgorithm can be

increased by refining the length of the segments. Sarie 1] extended it to full belief

propagation and provided a method to adapt the approximgtiality.

An inference algorithm based on mean field was introduceddhnCt al. [2009]. Given
a CTBN with n variables and observations, the algorithm approximatespttsterior of
the process using independent inhomogeneous Markov processes. Each intesraogs

Markov process is represented by a family of functions. Tinéerence in the given CTBN

37



can be posed as an optimization problem, which is to find thetfon of each inhomoge-
neous Markov process to maximize the free energy. The opditioin can be performed by
numerically solving a set of ordinary differential equaisdor each inhomogeneous Markov
process iteratively.

Another way to perform approximate inference in CTBNSs is $e sampling. Sampling
has several advantages. Usually, it is easy to implementiagad not require complex nu-
meric computations. It is an anytime algorithm: we can stogmg time and use the samples

we have obtained to compute the answer.

Ng et al. [2005] developed a continuous-time particle fifigralgorithm. However, it

only handles point evidence on binary and ternary discrat@bles using rejection sampling,
and focuses primarily on the incorporation of evidence ftbm continuous-state part of the

system.

El-Hay et al. [2008] provided another sampling algorithm @I'BNs using Gibbs sam-

pling. The algorithm starts from an arbitrary trajectoratlis consistent with the evidence.
Then, in each iteration, it randomly picks one varialleand samples an entire trajectory
for that variable by fixing the trajectory of all the other iables. Since onlyX is not fixed,
the conditioned cumulative distributiofi(¢) that X stays in one state less tharand the
state transition probabilities can be calculated exaalpgistandard forward and backward
propagation within the Markov blanket 6f. The Gibbs sampling algorithm can handle any
type of evidence and it provides an approach to sample frenexiact posterior distribution

given the evidence. However, the posterior distributiof) can be an arbitrarily complex

38



function. To sample exactly from it, binary search has to fyeliad andF'(¢) is repeatedly
evaluated, which may affect the efficiency of the algorithm.

A different sampling-based approach using importance samgour work) was first

presented i ton [2008]. The algorithm gereveggghted samples to approxi-

mate the expectation of a function of a trajectory. In Chelifeve will discuss the detailed

algorithm.

3.5 CTBN Parameter Estimation

If we know the graphical structure of a CTBN, the parameténe Conditional intensity
matrices) of the model can be estimated using a set of tajestD = {0y, 09,...,0,}.
When the datasdb is complete, where each trajectaryis a complete set of state tran-

sitions and the times at which they occurred, the parameterde learned by maximizing

the log-likelihood of the dataset [Nodelman et lal., 2003jcévding to Equation3l1 ald 8.2,

the log-likelihood can be written as the sum of the log-lilkebd for each local variable. By

maximizing the log-likelihoods in Equatidn-8.1, the paraens can be derived as

Mlzla]
Tlzfu] *

Mz, 2'|u]
M{z|u]

éxx’|u = (36)

Qzju =

L4

The expectation maximization (EM) algorithrln [Dempsterletd977] can be used to

find the maximum likelihood parametels [Nodelman =taJﬂL)0Nhen the dataset is in-

complete. The EM algorithm begins with an arbitrary iniparameter assignment, and alter-

39



natively repeats the expectation step and maximizatignuetél convergence. In the expec-
tation step, for each trajectory € D, the expected sufficient statistids|z|u], M|z, 2’|u]
andT'[x|u] are computed using exact inference. In the maximizatiop, stew parameters
are computed according to Equationl3.6 as if the expectditisut statistics were the true
sufficient statistics.

The expected sufficient statistics can be calculated usigpgrderence algorithms (exact

inference or approximate inference). When a sampling &lgaoris used, this is called the

Monte Carlo EM |[Wei and Tanner, 1990] algorithm.

3.6 Summary

A CTBN provides a structured representation to model larggadhic systems. It allows us
to model a dynamic system in continuous time. Thereforet aflaomplex dynamic sys-
tems, for example social networks, can be naturally modes#nlgy CTBNs. Inference for a
CTBN is the task of estimating the distribution over traggtds given a partially observed
evidence. It is used in both answering queries about digtdbs and calculating expected
sufficient statistics to estimate parameters of a CTBN whenobservation data is incom-
plete. Performing exact inference in a CTBN requires casitng a joint intensity matrix
for the entire system and computing the exponential of thiirpavhich is often intractable.
Thus, approximate inference methods need to be appliedmy situations. However, many

existing approximate inference methods for CTBNs dependamnplex numeric computa-

40



tions. In the following chapter, we will introduce our sanmgj algorithms for CTBNs based
on importance sampling, which only require simple caldalsd and are very easy to imple-

ment.

41



Chapter 4

Importance Sampling for CTBNSs

As we described in the previous chapter, exact inference@TBN can be performed by
generating a single joint intensity matrix over the entiae space. As the number of states
is exponential in the number of the nodes in the network,ap@oach is infeasible when the
network size is large. Approximate inference algorithrheyéfore, are often used. However,
a lot of existing approximate algorithms for CTBNs dependcomplex numeric computa-
tions. They are often very hard to implement.

In this chapter, we provide a sampling based algorithm foBN3 using importance
sampling. The algorithm generates a trajectory by samghegransition time and transi-
tion state naturally from exponential and multinomial disitions, which is very easy to
implement. We extend the importance sampling algorithrmattigle filtering and smoothing
algorithms. We also derive a Metropolis-Hastings algonittor CTBN inference based on

the importance sampling algorithm.

42



4.1 Forward Sampling

Queries that are not conditioned on evidence can be answgreghdomly sampling many
trajectories and looking at the fraction that match the guédore formally, if we have a
CTBN N we generate a set of particldd = {o[1],...,c[M]} where each particle is a

sampled trajectory. Wit we can estimate the expectation of any functdsy computing

Bulg) = 55 > glolm]) (a.1)

For example, lety = 1{z(5) = z,}, wherel{expr} is 1 if expr is true and returns O
otherwise. Then we could use the above formula to estifgte:(5) = x;). Or the function
g(o) might count the total number of times th&ttransitions fromz; to =, while its parent
U has valueu,, allowing us to estimate the expected sufficient statisfia:, z2|u;]. The
algorithm for sampling a trajectory is shown in Figlirel4.lor Bach variableX € X, it
maintainsz(t) — the state ofX at timet — and Timg X') — the next potential transition
time for X. The algorithm adds transitions one at a time, advanctit@ythe next earliest
variable transition. When a variahlé (or one of its parents) undergoes a transitiime X )
is resampled from the new exponential waiting time distiou We useuy (¢) to represent
the instantiation to parents of at timet.

If we want to obtain a conditional probability of a query givevidence, the situation
is more complicated. We might try to usejection sampling forward sample to generate

possible trajectories, and then simply reject the onesdteinconsistent with our evidence.

43



Procedure CTBN-Sampl@enq)
1.t— 0,00
2. For each variabl& € X
Choose state(0) according toBX‘pa X)-

Loop:

3. For each variabl& such thaflimg X) is undefined:
ChooseAt for next X transition from an exponential with parametgr) . ,
DefineTimg X ) « t + At

4. LetX = argminyex[TimegX)]

5. If TimgX) > tengreturn o

6. Updatet — Timeg X))

7. Choosex(t), the next value ofX, from the multinomial with paramete, ;) ju ., ().
Add (X « z(t),t) too.
UndefineTimeg X'), andTimgY") for all variablesy” for which X € Uy.

Figure 4.1: Forward sampling semantics for a CTBN

The remaining trajectories are sampled from the posterstridution given the evidence, and
can be used to estimate probabilities as in Equdfion 4.1.ederythis approach is entirely
impractical in our setting, as in any setting involving arsetvation of a continuous quantity
— in our case, time. In particular, suppose we observe dhatansitions fromz; to z, at
time ¢. The probability of sampling a trajectory in which that ts#tion occurs at precisely
that time is zero. Thus, if we have evidence about transtiaith probability 1, none of our

sampled trajectories will be relevant.

4.2 Importance Sampling in CTBNs

A more practical approach to sampling in the presence ofezxdd is importance sampling

[I:Lﬁ_LELb_QJg 1995]. In this section, we introduce an imgooce sampling algorithm for

CTBNSs.

44



In importance sampling, we generate samples from a propageabution”’ which guar-
antees that our sampled trajectories will conform to oudemcee. We must weight our
samples to correct for the fact that we are drawing them fférimstead of the target distri-

bution Py, defined by the CTBN. In particular, i is a sample fromP’ we set its weight to

be
_ Py(o,e)
w(o) = Plo) 4.2)
In normalized importance sampling, we draw a set of i.i.agl@sD = {o][1],...,0[M]}

from the proposal distribution, and estimate the condél@xpectation of a function given

evidencee as

1 M

Exlg | e] = W > glofm]yw(alm]) (4.3)

m=1
wherelV is the sum of the weights.

This estimator is consistent if the supportffis a superset of the support 8f/(-|e). In
general E is biased and the bias decease©#&/~!). The variance of the estimator also
decreases ag(M1!).

For our algorithm, we base the proposal distribution on tirevérd sampling algorithm.
As we are sampling a trajectory, we occasionally depart ftoenregular forward sampling
algorithm and “force” the behavior of one or more variableghsure consistency with the

evidence.

45



4.2.1 Simple Evidence

The simplest query involves evidence over some subset @dblasV C X for the to-
tal length of the trajectory. We force only the behavior o tariablesV' and there are
no choices about how to do that. In particular, we use th@oilg proposal distribution:
forward sample the behavior of variablds € (X \ V') inserting the known transitions at
known times for variables iV as determined by the evidence. As there are no choices in
our forcing, the likelihood of drawing from the proposal distribution is just the likelihood
contribution of forward sampling the behavior of the vateghX € (X \ V), in the context
of the total behavior of the system.

According to Sectiof313¢[t; : t) can be summarized by the sufficient statistics over
X on the intervallt,, t;). Let EX(x[tl : 15)) be a partial likelihood contribution function,
computed by plugging the sufficient statisticsadf; : ¢5) into Equation3Il. The partial

contribution function can be defined over a collection oémalsZ as

xlty @ to)ez

Returning to our simple evidence above,igek ..., 7,_1 < 7, be all the transition times
in oy 1y, 70 = 0 andr,,; = T'. The likelihood of drawingr from the target distributio®,

is

Ly(o) = Hix(fb’[ﬂ‘ P Tit1))



Let L'y (z[t; : t5)) be the corresponding probability density for our samplingcgdure.
Since we force the values and transitions of variable¥iaccording to the evidence, the
probability that we sample an intervalr; : 7;,.1) for X € V from proposal distribution’

is always 1. Therefore, the likelihood of drawiagrom the proposal distributio®’ is

To compute the proper weight(c) we substitute in Equatidn4.2, and get

w(o) =

Py (o, e) _ HXEXHz oLX( [7i : Tit1))
P HXe (X\V) Hz oLX( z[1; : Tig1))

()
H Tz+1>)

=0

mI:l

Therefore, the weight (o) is the likelihood contribution of all the variables ¥i. This algo-

rithm exactly corresponds tkelihood weightingn Bayesian networks [Shachter and Peot,

198¢ ,ﬂug_a.n_d_c_haLL__LE)SQ]. Intuitively, this makes semesaurse we can account for all

the evidence by simply assigning the observed trajecttoiése observed variables.

4.2.2 General Evidence

Now, consider a general evidence patteyin which we have time instants where variables

become observed or unobserved. How can we force our trajetidoe consistent witle?

a7



Suppose there is a set of variables which have evidenceriagiatt,. We cannot simply
force a transition at timeé. to make the variables consistent with the evidesicd the set
contains more than one variable, the sample would have preisimultaneous transitions,
an event whose likelihood is zero.

Instead, we look ahead for each variable we sample. If theecustate of the variable
does not agree with the upcoming evidence, we force the meRplked transition time to
fall before the time of the conflicting evidence. To do this sample from a truncated
exponential distribution instead of the full exponentiadtdbution. In particular, if we are
currently at timet and there is conflicting evidence fof at timet, > t, we sample from
an exponential distribution with the samevalue as the normal sampling procedure, but
where the sample fafA¢ (the time to the next transition) is required to be less than .
The probability density of sampling\¢ from this truncated exponential @%
whereg is the relevant intensity for the current stateof(the diagonal element @ x|u
corresponding to the current state.j.

To calculate the weight (o), we partitions into two pieces. Let. be the collection for
all variablesX € X of intervalsz|t; : t;) where the behavior ok is set by the evidence.

Let o, be the complement ef, containing the collection of intervals of unobserved betav

for all variables. By applying Equatidn4.2, we have

48



(o) (o)
- éx(x[n- ) o l:lX(CC[Tz L Tit1))
ol :1;{1)608 L' (x[r; : Tig1)) zln :1;{1)606 L' (x[r; : Tig1))

_ H %/X(x[n Tit1)) o H Ly(z[ri:m1))  (4.9)
Ly (@lri : 7)) x[Ti : Tiy1)eo.

Based on the distribution we sampled for transition timehef variable in each step, we

can further partitior, into three pieces:

e 0, be the collection for all variable¥ € X of intervalsz|t; : t,) where the transition

time is sampled from an exponential distribution.

e o0, be the collection for all variable¥ € X of intervalsz[t; : t2) where the transition

time is sampled from a truncated exponential distributiod the variable is involved

in the next transition.

e o, be the collection for all variableX” € X of intervalsz[t; : t) where the transi-
tion time is sampled from a truncated exponential distidoutind the variable is not

involved in the next transition.

49



Therefore, we can rewrite Equatibnl4.4 as

w(o) = H Lx(z[ri : 7i11)) % H Lx(z[ri : 7i41))

LlX('T[Ti D Tig1))

Example 4.2.1 Assume that we are given a CTBN with two binary variableandY. X

has two states, andz;. Y has two stateg, andy;. We have the observation that is

xy ininterval [t1, t2) and(ts, T'), as shown in Figurg 4.Z2(g). To answer queries based on the
evidence, we use the method above to sample trajectorigsirdif.2(0)) shows one of the
sampled trajectories. To calculate the weight of the tregeg we partition the trajectory

into four categories (as shown in Figyre 4.3(c) and Figur&(d]), and apply Equation4.5.

According to Equatio4]5, each time we add a new transitiotihé¢ trajectory, we ad-
vance time from to ¢ + At¢. For each variable we must update the weight of the trajectory
to reflect the likelihood ratio for|t : ¢ + At] based on the distribution we use to sample
the “next time” and the transition variable we select. Eaathsvariable can be considered
separately as their times are sampled independently.

For any variabler whose value is given in the evidence during the intefual+ At), as
we discussed above, the contribution to the trajectory tagyjust L (z[t : t + At)). For
any variable-intervat[t : ¢t + At) € 0,5, whose “next time” was sampled from an exponen-

tial distribution, L (z[7; : 7i41)) = L (z[r; : 7:41)) and the ratio is 1.

50



X1 —_— _—
Yo
Y1
0 ot tg T
@
X0
X1
Yo
Y1
0 ot tg T
(b)
X 1 L
X, 1 .
Vo |
Y1 |
h U © 3 b T T L Tg
(©)
xg %4 G U T
le ! Osn' Oy 1 0gy Ogn | Op
yol Ogp,
Y1 Osn! Osni Osn 1 Osn Osn Osn Osn
h T © T U T T 17 T3
(d)

Figure 4.2: Example of calculating weight contribution.) Evidence of a CTBN. (b) A
sampled trajectory agreeing with the evidence. (c). Ramiitg of the trajectory according
to the evidence and the transitions. equalsz|rs : 74) andx[r; : 75) (d) Partitioning of the
trajectory based on the different sampling situations.

51



Now, we consider segment$ : t + At) € o, andz[t : t + At) € o,. The behavior of
the variables in these segments are forced due to upcomidgree.

For variableX thatz[t: t + At) € o4, the variable’s “next time” is sampled from a
truncated exponential distribution and it is part of the trteansition. The weight must be
multiplied by the probability density of sampling the trém in Py, divided by the prob-
ability density in the sampling algorithm. The former is aqpenential distribution and the
latter is the same exponential distribution, truncatededess thar, — ¢. The ratio of these
two probabilities isl — exp(—q(t. — t)), wheregq is the relevant intensity.

Otherwisex[t : t + At) € o4, the next time for the variable was sampled from a trun-

cated exponential but was longer than. In this case, the ratio of the probabilities of a

1—exp(—q(te—t))

sample being greater thakt is Texp(—qlie——AD) "

Note that whenmAt is small (relative to
t. — t, the time to the next evidence point for this variable), taoris almostl. So, while
the trajectory’s weight is multiplied by this ratio for eyetransition for every variable that
does not agree with the evidence, it does not overly redueeréiight of the entire trajectory.
The algorithm for CTBN importance sampling is shown in Fejdt3. To more easily

describe the evidence, we define a few helper functions:

e'd(t) is the value ofX at timet according to the evidence, or undefinedifhas no

evidence at.

el"®(¢) is the first time after whene'd(t) is defined.

52



Procedure CTBN-Importance-Samleng e)
1.t—0,0 —0, w1
2. For each variabl& € X
If e43'(0) defined,

setz(0) «— e@(0), *
Setw — w - 07(¢) pa, o) i
Else choose state(0) according tcﬂi‘pas(x)
Loop:
3. For eachX € X such thaflimg(X) is undefined:
If e%@(t) is defined, set\t — e§™(t) — ¢ *

Elseife'd(t.) is defined where, = ei™e(¢), x(t) # e(t.),
chooseAt from an exponential distribution with
parameter, 1)y (1) 9iVeNnAt < (t. —t). *

Else choosé\t from an exponential w/ paramy ¢)jux ()

DefineTimg X ) «— t + At

4. LetX = argminxex [Timg X)]
5. If TimgX) > teng

w «— Update-WeightX, w, ¢, tend) *
return (o, w)
Else *
w «— Update-WeightX, w, ¢, Timg X)) *
6. Updatet — Timg X))
7. 1f e§09(t) # t or e'@(t) is defined A
If e2!(¢) is defined, set(t) «— ed(t) *

Else choose(t), the next value ofX, from a
multinomial with parameted, ;) ju (1)
Add (X — z(t),t) too.
UndefineTimeg X') andTimegY") for all variablesY’
forwhichX € Uy
Else *
UndefineTimeg X ). *

Procedure Update-WeightY, w, t1, t2)

1. For eachX € X such thab‘g?'(t) is defined fort € [t1,t2):
w«— w- Lx(l'[tl : tg))

2. For eachX € X such thate‘;?'(te) is defined,
wheret, = e(t;), andz(t1) # €@ (t.):
fFX=Y,wew (1- eXp(_Qw(n)Iu;)((n)(t@ —t1)))

Elsew «— 1w - =P Gy ep et
1—exp(—qu(t1)|uy (¢1) (te—t2))

3.return w

Figure 4.3: Importance sampling for CTBNs. Changes fronuféfL1 are noted with aster-
isks.

53



eSMd(¢) is the first time after or equal towhene'?(t) changes value or becomes unde-

fined.

Note thate"(t) = ¢+ when there is point evidence @atwhent is the end of an interval of
evidence, and when there is a transition in the evidencenattti

In Figurel43B, the line numbers follow those given in the fardisampling algorithm with
new or changed lines marked with an asteriBkag X ) might be set to the end of an interval
of evidence which is not a transition time but simply a timeewlwe need to resample a
next potential transition. This means that we will not ugdatvith a new transition every
time through the loop. The algorithm differs from the fordd@ampling procedure as follows.
Step 2 now accounts for evidence at the beginning of thecti@jg (using standard likelihood
weighting for Bayesian networks). In Step 3, we drawfrom the truncated exponential if
the current value disagrees with upcoming evidence. If tireeat evidence includes this
variable, At is set to the duration of such evidence. Step 5 updates thghtgeusing the
procedureUpdate-Weight Finally, Step 7 now deals with variables that are just leguthe

evidence set.

4.2.3 Predictive Lookahead

The algorithm in Figuré&4l3 draws the next state for a vaediim the same distribution as
the forward sampling algorithm. This may cause a variablgdnsition several times in a
short interval before evidence as the variable “searchedihtl a way to transition into the
evidence. Thus, we may generate many unlikely samples,mpake algorithm inefficient.

54



We can help mitigate this problem by trying to force the Vialéainto a state that will lead to
the evidence.

When sampling the next state for variable at timet, instead of sampling from the
multinomial according t@,)u, (), We would like to sample from the distribution of the
next state conditioned on the upcoming evidence. Supfoisan stater; at timet, and the
next evidence foX is stater;, att.. Assuming the parents of do not change beforg and
ignoring evidence over the children of, the distribution of the state o att¢ given only

the evidence can be calculated using Equdiiah 3.3:

1

P(Xt-i-At = .Z'j|X[t ot + At) = Xy, Xte = xk) = E(sJTQX eXp(QX(te — t))(Sk = p%]

whered; is the vector of zeros, except for a one in positjoVe can therefore select our new

state according to the distribution B’f(XHAt\X[t :t+ At) = x;, Xy, = x;) and, assuming
[ux (t

statez; is selected, multiply the weight by;—]) to account for the difference between

the target and sampling distributions.

4.3 Particle Filtering

The algorithm in Figur€4]3 allows us to generate a singjedtary and its weight, given the
evidence. To apply this algorithm to the task of online iefexe in a dynamic system, we can

generate multiple trajectories in parallel, advancinggtiimrward as evidence is obtained.

55



The resulting algorithm is an instance of sequential imgore sampling, and therefore
suffers from its characteristic flaw: As the trajectory lémgcreases, the distribution of the
importance weights gets increasingly skewed, with mosbwirtgmce weights converging to
zero exponentially quickly. Thus, the number of “relevasdimples gets increasingly small,

and the estimates provided by the set of samples quicklyrbeaoeaningless. A family

of methods, commonly known as sequential Monte Carlo otigdarfiltering | l.,

001], have been proposed in the setting of discrete-timegsises to address this flaw. At

a high level, these methods re-apportion our samples tosfeffort on the more relevant
samples — those with higher weight.

The application of this idea to our setting introduces soni&lsties because different
samples are not generally synchronized. We could pick a tiexed run the algorithm in
Figure[43B withte,q = ¢ SO that samples are synchronized.atWe would re-apportion the
weights and continue each trajectory from its state fitst settingTime X') to be undefined
for all X. However, choosing the proper synchronization titris a non-trivial problem
which may depend on the evidence and the speed the systemegvol

Instead of synchronizing all the particles by the time, wealégn particles by the number
of transitions. If we let; be thei*" transition time X; be the value o from¢t,_; tot;, t,., be
the sequence of transition timg and X, .,, be the sequence of values®f, (i = 1,...,n),

the following recursion holds.

56



Procedure CTBN-Particle-Filtering{ X}, wi}i—1.. x, tend, €)
1.k—0,W;~—1,N,— N
2. Fori + 1to N: Pa}, « i, w' < 1/N
Loop:
3. For each i such thaf < tenq:
(Xllc+1vt2+1vwllc+1) — Z_ Z_
Sample-Segmeti; “* ¢, ", w', tong €)
If ¢}, > tend
Nremain — Nr - 1,
Wi = Wy —wj iy
4.k —k+1
5 1f N, =0
return { X7, t¢  wh  Pal Yot Nm=1.n
wheren, is the number of transitions of thé& particle
6. CalculateN, of all incomplete particles
7.1 Nojr < Nor
SamplePa;, according tow;,
w' — W; x 1/N,
Else
w' «— wi, Pal «— Pal_,

Figure 4.4: Particle Filtering for CTBNs

57




P(X[O : tn)) :P<X1:n7t1:n7 e[O:tn))

:P(Xlzn—h tl:n—la 6[0:tn,1))P(Xn|Xn—l)P(tna 6[tn,1,tn)|tn—la Xn)

The weighted approximation of this probability is given by

P(X[0:t,)) ~ Zw(Xi[O 21,))0(X[0: t,), X0 : t,))

i=1

whereX ‘[0 : t,,) is thei'" sample andy(X[0 : t,,)) is the normalized weight of th&'sample.
According to Equatiof 415, the weight can be updated afteryevansition step. The weight

update equation can be shown as

w(X0 : 1)) o w(X0 : tnr))

L (X [ty : 1))

Thus, to sample multiple trajectories in parallel, we agpg/CTBN importance sampling
algorithm to each trajectory until a transition occurs. Void the degeneracy of the weights,
we resample the particles when the estimated effective lwme@ ;= m is below a
thresholdVy,,.. This procedure is similar to the regular particle filteredgorithm except that
all particles are not synchronized by time but the numberasfditions. To answer queries in

the time interval0, ), we propagate the particles until all of their last tramsis are greater

thanT'.

58



Figure[43 shows the algorithm for generatiNgtrajectories from 0 td” in a CTBN. It
assumes that the initial values and the weights have alreedy sampled. The procedure
Sample-Segmeltops from line 3 to 7 in Figure-l.3 until a transition occueturns the tran-
sition time and variables value, and updates the correspgnekight for that segment. Note
that we are approximating the distributiét{ X ..., t:.,, €[o.t,,)) for all possiblen. Therefore,
we only propagate and re-apportion weights for particled Have not yet reached tinfe

Particles that have been sampled pastre left untouched.

4.4 Particle Smoothing

Although the resampling step in the patrticle filtering algon reduces the skew of the
weights, it leads to another problem: the diversity of thaetrtories is also reduced since
particles with higher weights are likely to be duplicatedltiple times in the resampling

step. Many trajectories share the same ancestor after teanfy procedure. A Monte

Carlo smoothing algorithm using backward simulation addes this problem [Godsill etlal.,

004].

The smoothing algorithm for discrete-time systems geesriaajectories usingy weighted
particles{z}, w;} from the patrticle filtering algorithm. It starts with the piates at timeT,
moves backward one step each iteration, and samples d@axtaording to the product of its
weight and the probability of it transitioning to the preugly sampled particle. Specifically,

in the first step, it samples; from particless?. at timeT" with probability w?.. In the back-

59



ward smoothing steps it samplesaccording towy, ,, = w; f(Ti11]2;), wheref (T4 |x}) is
the probability that the particle transitions from stateto 7,,,. The resulting trajectory set
is an approximation oP(x1.7|y,.r) wherey,.r is the observation.

This idea can be used in our setting with some modificationger@he filtered particles

{X;, .t w. }, we need to sample both variable values and transition tineaeh step

m;?

when we move backward. There are two main differences frenaldporithm irn.Godsill et &

[2004]. First, there are fewer thak particles that can be used at the beginning steps of the

backward smoothing since the trajectories do not have gxhetsame number of transitions.
And second, not all particles at stegan be considered as candidates to move backward. A
particle{ X’ i w!} is avalid candidate as the predecessof 8y, 1, f,..1 } only if (1) ¢, <

tni1, (2) the values of\? and)z'nﬂ differ in only one variable (thus a single transition is

possible), and (33, 7 .., contains no transitions.

)
Figure[4®b shows the smoothing algorithm which generategjectory from the filtering
particles. We apply the algorithiW times to sampléV trajectories. These equally weighted
trajectories can be used to approximate the distribuft¢X, 1)|e). Generating one tra-
jectory with this smoothing process requires consideriih¢hea particles at each step. The

running time of samplingV trajectories using particle smoothing is on the ordeNofimes

of that of particle filtering.

60



Procedure CTBN-Particle-Smoothidg X", , ¢, ,w!, }, tens €)
t1=1...Nm;=1...M,
l.o— 10
2. Choosé: with probabilityw,”
3.setY = Xy, 5 My, t —t}
Loop:
4oy, 6 Y
5. If o is complete
return o
6. Forj — 1to N
w’, « Check-Weightty’, £, X7_, , #}_,,wl_,)
7. Choose with probability w,
8.S<—S—1,Y<—Xf,t<—tg

Procedure Check-WeightX, ¢, X, ts, w;)
1. If ¢ < ¢, oreg, ) contains a transition, or

the value ofX and X, do not differ by only one variable¢

return O
2' U[tsﬂf) “— XS) U(t) «— X
3.w — ws - Lx (o, 1))
4. return w

v

L

Figure 4.5: Particle Smoothing for CTBNs

61



4.5 Markov Chain Monte Carlo for CTBNSs

As we discussed above, importance sampling has the prolfiatitte distribution of the
importance weights gets increasingly skewed as the lenfgtiheotrajectory increases. An
alternative method to solve this problenMsirkov chain Monte Carlo (MCMC)Yhe MCMC
method generates a sequence of samples by running a cacefufitructed Markov chain for
a long time. The Markov chain is constructed so that suceessimples in the sequence are
drawn from distributions that gets closer and closer to #nget distributionr.

In particular, assume we want to generate samples from attdistributions over vari-
ablesX with state spac& al(X ). We construct a Markov chain in which each state of the
chain is an instantiation X, and thus the state space of the Markov chain is all the possi-
ble instantiations ofX. The transition mode¥ (x — z’) is designed so that the stationary
distribution of the Markov chain is the target distribution We simulate the Markov chain
as follows. We start the Markov chain with a random generatate. Then at each step,
we generate the next state by picking a variallec X randomly, forgetting the current
value of X;, fixing the values of the rest of the variables, and samplirgiew value ofX;
according to the transition probabiliy. Therefore, in each step, we generate a sample of
X from the Markov chain. If we run the Markov chain for a long énthe state distribution
gets closer and closer to the stationary distribution, Wiscthe target distributiom. Then

we can consider that samples we generate from the Markown enaigenerated from.

62



In a CTBN, each sample is a trajectory over all the variablethe CTBN. To apply
MCMC method, we need to construct a Markov chain in which estate represents a possi-
ble trajectory of the CTBN. Thus, a state transition in the'kéa chain consists of removing
the entire trajectory of one variable and replacing it witheavly sampled one. Specifically,
suppose we want use MCMC algorithm to sample trajectoras 8t CTBNA with n vari-
ablesX = (X;, Xs,...,X,) given the evidence. We construct a Markov chain whose
state space is all the possible trajectories\othat are consistent with the evideneeWe
start the Markov chain with an arbitrary trajectory that @ansistent with the evidence. In
each step, the sampler randomly picks one variah|dixes the trajectories of the other vari-
ablesY = {X;,..., X,1, Xi11,..., X, } as evidence, and samples the entire trajectory of
X; according to the transition mod&l(c — o¢’), whereo is the current state of the MCMC
sampler (trajectory of the CTBN) and is the newly generated MCMC state.

Different choices of the transition modéglof the Markov chain result in different MCMC

algorithms. In this section, we introduce a Gibbs samplilggprithm for CTBNs due to

El-Hay et al. [20_0]8] and a Metropolis-Hastings algorithnséd on our importance sampling

algorithm for CTBNSs.

45.1 Gibbs Sampling

El-Hay et al. [20_0]8] recently provided a Markov Chain Montarld (MCMC) procedure

which used a Gibbs sampler to generate samples from therpodestribution given the

evidence. Gibbs sampling defines the transition probgldlito be the posterior distribution

63



of the selected variabl&; given the rest of the trajectory and eviderceéviore precisely, let
ox, be the trajectory of\; in o, o’ be the trajectory of\; in o', andoy be the trajectory of

the rest of the variables. The transition model is defined as

T(0—0')=T((ox,,0v) = (d%,,0v)) = P(ok,|oy,e) (4.6)

To generate the entire trajectory &f; from the posterior distributio®(c" |0y, e), the
states and transitions of; need to be sampled in those intervals thatis not observed
according to the evidence. The trajectory in each unobsganterval of X; can be generated
by alternatively sampling a transition tinde and a new state from the posterior distribution
givene and the trajectories of the other variablés

Assume we are sampling the trajectory ®ffor the interval[0, 7], and X;(0) = x,
X;(T) = xp. The first transition timeA¢ is sampled by inverse transform sampling: first
draw¢ from the|0, 1] uniform distribution and seht = F~!(¢), whereF—1(¢) is the inverse
of the conditional cumulative distribution functidhi(¢) that X; stays in state, for a time

less thart:

F(t) =1— Pr(Xi(0: ] = 20| X:(0) = 20, Xi(T) = 1, V[0 : T])

64



Pr(X;(0:t] = x0|X;(0) = zo, Xi(T') = 2r,Y][0:T]) can be decomposed using the

Markov property of the process:

Pr(X,(0+ 1] = 20| X,(0) = 20, X,(T) = 2. Y[0 : 7)) = 2ol

/BZEO (0)

where

a(t) = Pr(X;(0:t] =z, Y[0 : T)| X;(0) = z0, Y)

Be(t) = Pr(Xy(T) = xp, Y (t: T)|X;(t) = z,Y(t))

a(t) and3,(t) can be calculated using a slightly modified version of thedsad forward-
backward algorithm described in Section314.2. Using tlee thaat X; is independent of all
the other components given the entire trajectory of its Marklanket, the computation of
a(t) andj3(t) can be limited taX; and its Markov blanket (the parents &f, the children of
X;, and the children’s parents).

Since the conditional cumulative distribution functiéiit) can be arbitrarily complex,
the inverse functiod”~1(¢) can not be solved analytically. Findidy that satisfied’(At) =
¢ is performed using a two-step searching method: first findrtteeval |7, 7,1 ] that satisfies
F(m) < & < F(m41), Wherer, are the transition points of the Markov blanketsf. Then

At is found by performing ati step binary search on the interval, 75 1].

65



The transition probability thak’; transitions fromz(©) to a new state: can be calculated

similarly:

Goo Palt)
Pr(X;(tT) =2|X;(0: t) = x(o)’y(() :T]) = > X~TY >
fo?émo q(L'OZ"'L" ﬁxl (t)

The Gibbs sampling algorithm can handle any type of evidendee sampled trajec-
tories are guaranteed to be consistent with the evidencevetAsr, sampling the transition
time At requires using a binary search algorithm and repeatedlypating the conditional

cumulative distribution functio’(¢), which may require longer running time.

4.5.2 Metropolis-Hastings Algorithm

Alternatively, we can use the Metropolis-Hastings aldortwhich allows us define the tran-
sition model in a more general way. Unlike the Gibbs sampéilggprithm, the Metropolis-
Hastings algorithm does not require the transition distidn of the Markov chain to be the
posterior distributionP(c'y |0y, e). Instead, it uses a proposal distributidf as the transi-
tion model. In each step, we do not simply accept the new stagenerated by the proposal
distribution. We either reject it and stay at the old stater accept it with acceptance prob-
ability A(c — ¢'). The acceptance probability is defined as

(0" )T9 (0" — o)

A(c — ') =min |1, () T%0 = o)

(4.7)

66



Now, in each step when we pick a variabie to sample, instead of sampling the trajec-
tory of X; from P(o’ |0y, e), we can use our importance sampling algorithm considering
e and the trajectory of all the other variables as evidencet ) we choose the transition
model as the proposal distribution defined by the importaaoepling algorithm. Therefore,
we have

TQ(O'/ — a) = P/(US(JUUX,L-?eX ), (48)

7

whereo’y is the new trajectory we sampled fafi; using the importance sampling algorithm,
Ouy, is the trajectory of the parents o&f; andey; is the evidence oX;.

Using EquatioiiZl8, we can calculate the acceptance £ ((;’,':(f)) as the following:

(4.9)

(
(OJ) PN(US{z" eXx; O-UXi) P/(UXi UUxi ) eXi) PN(UX,” €x; UUxi)

(U) P/(USQ ‘O-UXZ- ) eXi) PN(UXi7 ex; O-UX,L-> PN<O'3(Z-7 ex;

Ouy, )

. . Ppr(o'y ex;louy ) . . 0 .
According to EquatiofZl 225 17 i the weight contributions (o', ) of variable

P/(U’XZ_|0'UXZ_ 7eXi) i

X; when we use importance sampling algorithm to sampleconsideringe and the trajec-

Py (ox,.ex; |0'UXZ_ )

.P,(OXi |UUXZ, 7eX,L')

tory of all the other variables af as evidence is the weight contribution of

X; as ifox, were sampled using importance sampling algorithm. We d@eit@sw(oy, ).

67



Then Equatiof 419 can be written as

(o) T90" — o) Lyn(o) w(dl,) ' Lx, (o)
"o =) ~ Lnlo) wlox) Lx(7) (419
_Ly(o) w(ok,)
Ly(o) w(ox,)’

whereL(-) is the likelihood of the whole CTBNL x, (-) is the likelihood contribution of;
andLy () is the likelihood contribution of all variables excelst.
Replacing the acceptance ratio in Equafion 4.7 with Equ#fid0, the acceptance prob-

ability of the Metropolis-Hastings algorithm for CTBNSs is

Ly (') w(aéci)} _ (4.11)

Ly (+) is the product of the likelihood contributiahy (-) for eachX € Y, which can be
calculated using Equatidn 3.1. The weight contributier x,) andw(c’.,) are calculated
according to Equation4.5. Our Metropolis-Hastings santgpélgorithm for CTBNs can be
described as follows. We start an arbitrary trajectory teatonsistent with the evidenee
Each step, we randomly pick a variable. We remove the trajectory of; from the current
trajectoryc and generate a new trajectaryby using our importance sampling algorithm to
sample trajectory foX;, fixing all the other variables as evidence. We calculateatteep-

tance ratio according to Equatibn4.10. If the ratio is lathan 1, we accept’. Otherwise,

accepts’ with probability equal to the acceptance ratio, or rejgcind keepr.

68



4.6 Experimental Results

In this section, we report on the performance of our algamittn synthetic networks and a
network built from a real dataset of people’s life historié¢e tested our algorithm’s accuracy
for the task of inference and parameter estimation. We atsopare our algorithms with

other approximate inference algorithms for CTBNs: the rodtbased on the expectation

propagation in_Saria et al. [2007] and the method based ohgZbmpling in_El-Hay et al.

[2008].
All the algorithms we used in the experiments were impleraéint the same code base to
make fair comparisons. We tried our best to optimize all théec The implementations are

general so that they can be applied to any CTBN model. Ourdmphtation of expectation

propagation is adapted from thatlof Saria etlal. [2007] wheevkind enough to share their

code.

4.6.1 Networks

In our experiments, different types of network structuresewsed: the drug effect network

odelman et all, 2002], a chain-structured network, aedHPS network [Nodelman etlal.,

005b]. All the networks are at the upper size limit for theexinference algorithm so that

we can compare our result to the true value.
Drug Effect Network: The drug effect network is a toy model of the effect of a pain-

relief medicine. It has 8 (5 binary and 3 ternary) variabl€ke structure of the network is

69



_

Figure 4.6: Drug Effect Network

’

Concentratio

shown in Figuré4l6. At = 0 the person is not hungry, is not eating, has an empty stomach
and is not drowsy. He has joint pain due to the falling baresimeressure and takes the drug
to alleviate the pain.

Chain Structured Network: The chain network contains five nod&s, . .., X5, where
X, is the parent ofX;,; for : < 5. Each node has five states, . . ., s4. X, (usually) cycles
in two loops: sg — s; — s3 — spandsy; — sy — s4 — sg. Each node stays at its
current state if it matches its parents and otherwise ttiansi to its parent’s state with a high

probability. Each variable starts in statg

70



More specifically, the intensity matrix of is

Qx, = 0.01

—2.02

0.01

1 1 0.01 0.01 |
-2.03 0.01 2 0.01
0.01 -2.03 0.01 2 )
0.01 0.01 =203 0.01
0.01 0.01 0.01 -2.03

and for all other nodes, the off-diagonal elements of therisity matrices are given by

Qs;,silu=s; =

0.1 ifi+# jandj #k,

10 ifi#jandj = k.

BHPS Network: This network was learned from the British Household Panel/&u

(BHPS) lE&RS_RﬁmmhﬁﬂuLe_Qu_Mmm_mmﬁ.Ja ge,l 208&jset. The dataset pro-

vides information about British citizens. The data areextid yearly by asking thousands

of households questions such as household organisatigripyment, income, wealth and

health. Similar t

Nodelman et

a

[20

5b], we keep a smdllo$evariables so that exact

inference could be applied. We chose four variables: emfilyary: student, employed,

unemployed), children (ternary: 0, 1, 2+), married (binargt married, married), and smok-

ing (binary: non-smoker, smoker), and we assumed there iddeh variable (binary) for

each of those four variables. We trained the network on 8&&dtories of people’s life

71



Figure 4.7: British Household Panel Survey Network

histories. We applied the structural EM algorithm_in Nodatnet al. [2005b] and learned

the structure of the network shown in Figlrel4.7. We themestiéd the parameters of the
network using the EM algorithm and exact inference. We aersihe learned model as the

true BHPS network model for these experiments.

4.6.2 Evaluation Method

We evaluated the performance of the approximate inferelgmgithms in two tasks: the in-
ference task of answering queries given evidence and thamggtask of parametric learning
with partially observed data.

In the inference task, each evidence is a partially obseinagelctory of the CTBN net-
work. The evidence is generated using two methods. The fieshodl is to set it manually.
The second is to generate a trajectory using the forward Eagnalgorithm and randomly
remove some parts of the sampled trajectory. For the lateerepeated the following proce-

72



duren times: for each variable, we randomly removed the infororatf the trajectory from
tstot, + ~T, whereT is the total length of the trajectory, is randomly sampled from the
[0, 7" — ~T'] uniform distribution andy < 1. After we run the removing proceduretimes,
there are at most~ duration of information missing for each variable. In alhgparisons,
this procedure was applied once and the same evidence wastgiall algorithms.

In our experiments, we set our query to be one of three tyesexpected total amount
of time a variableX stays on some state, the expected total number of times that a variable
transitions from state; to stater;, or the distribution of variable at time

For each query, we ran the sampling algorithms with diffesample sizes)/. For each
sample size, we ran the experiméntimes. We calculated our query according to Equation
B2 and compared the result to the true value calculatedj#siact inference. We used two
metrics: the relative biaé%, wherewv,, is the query value of sampling algorithm with
sample sizel/, andv* is the true value; and the relative standard deviafignwhereo, is
the standard deviation from the true value when sample six£. iFor each sample size, we
also recorded the average running time of each experiment and uség to evaluate the
efficiency of the algorithm.

In the learning task, we used the sampling algorithms taoregé the parameters of a

CTBN network given some partially observed data. Monte €EM LALeLa.D.dlaﬂm 1990]

was applied in this task: In each iteration, we used the sagphsed algorithm to estimate

the expected sufficient statistics given the incompleta datl used Equati®énB.6 to compute

the parameters.

73



The training data were generated by sampling trajector@s the true model and ran-
domly removing some portion of the information as describbdve. We sampled another
set of trajectories from the true model as the testing dawc&ltulated the log-likelihood of

the testing data under the learned model to evaluate theihggaccuracy.

4.6.3 Experimental Results: Inference Task

In this section, we evaluate the performance of our impagaampling based algorithms in

answering queries and compare with the EP algorithin_i il [200/] and the Gibbs

sampling algorithm in_El-Hay et al. [2008].

Comparison of Importance Sampling and Predictive Lookahed

We first tested the importance sampling algorithm and thdiptige lookahead modification
using the drug effect network. We set the observed evideorée:= [0, 1) the stomach is
empty, ont = [0.5,1.2) the barometer is falling, and an= [1.5,2.5) he is drowsy. Our
query is the expected total amount of time that he has no it on|0,2.5). (The true
value is 0.1093). We ran the two algorithms with sample siaésfrom 5 to 90000. For
each sample size, we ran the algorithins= 1000 times.

The results are shown in Figure ¥.8. Both algorithms achileeecorrect result when the
sample size is large. The standard deviation decreasest afO(ﬁ) (shown by the thin
solid line). The sampling algorithm with prediction achesvower standard deviation than

the non-prediction version.

74



10°

10 : . ‘ : :
== -non-predict Feo - --non-predict
—predict - N — predict
] _ -1/2
g oM ")
3
2 [a}
m B
g S0
5] o
o %]
@ o
=
g
[J]
x
10— : : 102 : :
10° 10° 10* 10° 10° 10° 10 10°
Number of Samples Number of Samples

Figure 4.8: Relative bias and standard deviation of sargphith and without predictive
lookahead.

Importance Sampling, Particle Filtering and Smoothing

We then used the chain network to evaluate the efficiencyefrtiportance sampling, par-
ticle filtering, and smoothing algorithms. We assumed thdy o, was observed in this
experiment. We used four different evidences. The first sreesimple evidence: only part
of the behavior ofX, is observed: on1,1.7), Xy = s3, and on[2,2.5), X, = sy. For
the other three, we used a complex evidence: the behavidr, a$ fully observed during
the interval|0, T"), whereT = 3,6,9. This is done by forward sampling a trajectory from
0 to T" and keeping only the information aboit;. Our query is the marginal distribution
P(X5(%)lejor)). Note that this is the most difficult case for the importanaspling algo-
rithm since the chain network is nearly deterministic. Weoreled the average running time
and KL-divergence between the estimated and true disiibsitfor each sample size across

N = 300 trials.

75



0.1

10

KL-Divergence
=
oI
o

!
4
3

=
o

=== Filtering
— Smoothing
—=— |mportance Sampling|

10

KL-Divergence

10

Figure 4.9: Time-efficiency comparison of particle filtegjrsmoothing and importance sam-

pling

-0.8|

10°
Runnina Time. seconds

(a) Simple evidencel( = 3)

=== Filtering
— Smoothing
—=— Importance Sampling

10°
Runnina Time. seconds

(c) Complex evidencel( = 6)

=== Filtering ‘
0.1
10 — Smoothing
—a— |mportance Sampling
(0]
210
(0]
2
(]
2
[a)
é 10—0.3
10f0.5
10° 10°
Runnina Time. seconds
(b) Complex evidencel( = 3)
‘ --- Filfering
— Smoothing
—=— |mportance Sampling
[}
Q
c
[
jo)
5]
2
[a)
4
<

76

10°
Runnina Time. seconds

(d) Complex evidencel( = 9)



Figure[4® shows the efficiency of the three algorithms. lgure[£9(a), we used the
simple evidence. In Figuie_4.9 (b)-(d), we used the evidemitle X, fully observed and
T = 3,6, 9 respectively. In all four cases, the patrticle filtering antbsthing algorithms both
outperform the importance sampling algorithm when the darsige is small (small running
time). For simple evidence (Figufe_#.9(a)), the importasampling algorithm achieves
comparable performance when the sample size is large. Wigeevidence is complicated
(Figurel4® (b)-(d)), the error of importance sampling i even we use very large sample
sizes. When the trajectory is short, the particle filteringoathm is slightly better than
the particle smoothing algorithm. This is because the iiiltealgorithm can generate more
samples than the smoothing algorithm with the same runmmg tHowever, as the trajectory
length increases, the particle smoothing algorithm oditpers the filtering algorithm due to

particle diversity problems.

Comparison of Importance Sampling and EP

We also compared our three sampling algorithms to the appete inference algorithm

based on expectation propagation.in Saria et al. [2007]. ideat use their adaptive splitting

method (for reasons we explain below). Even without the adapplitting, their method still

differs from that of_Nodelman et al. [2005a], in that it allevesynchronous propagation of
messages along time.
We used the same evidence as in Sedfion}4.6.3 on the drug eéfieeork and answered

two queries: the total amount of time that the concentraisdow and the total amount of

77



-- -Filtering ‘ ‘ -- -Fhltering
— Smoothing —Smoothing

o ||===Importance Sampling | —=—|mportance Sampling
“““ CTBN-EP

10

Relative Bias
Relative Bias

10 10° 10 10 1 10
Running Time, seconds Running Time, seconds
(a) Concentration (b) Joint pain

Figure 4.10: Comparison to expectation propagation: Draghdrk

time the person has no joint pain. For the EP algorithm, we tiirsd segmentations that
were split at the evidence. We then gradually decreasedrttesihterval of the segments
to 0.15. The results of accuracy with respect to running taree shown in Figur€Z4.10.
The importance sampling algorithm and the particle filtgradgorithm outperforms the EP
algorithm in answering both queries. Among the samplingelbaalgorithms, the importance
sampling algorithm performs the best and the smoothingrdlgo is the worst. This is

not surprising given that most of the nodes are binary. Ahdeansition time, the sampled
trajectory has no choice as to the next state. Thereforepnimg (or filtering) has less effect
as there is no need to intelligently select the next stateveer, the extra computation time
for resampling and backward simulation makes the filtering amoothing algorithm less

efficient.

As mentioned above, we did not employ the adaptive splittimejhod ofl_Saria et

[2007]. It would not have changed our results much. Ther®@fst points in Figuré4.10

78



correspond to the minimum number of splits. (They are asdaspossible.) The right-
most points of the Figure_4.110 correspond to many fine slitg, are about as accurate as
possible, and we can see that the accuracy has flattenedamwthiie the horizontal widths
of the EP curves would have been shortened (by allowing fb#tter accuracy in less time),
the vertical spread would have been approximately the sameeither plot of Figuré4.310

would this have made a large difference in the comparisopsit@ampling method.

Comparison of Importance Sampling and Gibbs Sampling

We compared our importance sampling algorithm to the Gilamspding algorithm as dis-

cussed in_El-Hay et all [2008]. We used three CTBN network elgdthe drug effect net-

work, the BHPS network, and the chain structured network.

For each network, we randomly generated evidence using riteegure described in
Sectio46R. We set = 4 andy = 0.2. Thus, at most 80% of the information is missing
for each variable.

For the importance sampling algorithm, we chose the sanmgpéelg from 10 to 500000.
For the Gibbs sampling algorithm, we chose the sample &izeom 10 to 5000. We ran
the experiments for each sample si¥e= 100 times and recorded the average running time
for each algorithm. For the Gibbs sampling algorithm, wet fies 100 “burn-in” iterations
for each sample size before we sampled trajectories frormdah®ler. The time spent on the

“burn-in” iterations was not included in the final runningie.

79



10

10

-=-Gibbs Sampiing -=-Gibbs Sampiing

- —Importance Sampling - —Importance Sampling
8 i)
© IS
810 ] 10
B B
] 3
8 8
n n

-2 -2
210 2107
k& g
] [J]
o4 X

-3 -3

10 : : 10 : ‘
107 10° 10° 107 10° 10°
Running Time, seconds Running Time, seconds
(a) Query of Time (b) Query of Transition

Figure 4.11: Comparison to Gibbs sampling: drug networkteNaurn-in time for Gibbs
Sampling is not included (3.94 seconds on average).

For the drug effect network, the evidence trajectory begirtsmet = 0 and ends at time
t = 5. We asked two queries: the expected total amount of timeéhsop’s stomach is half
full, and the expected number of times that the person’s abbnchanges from empty to half
full.

Using enough running time (sample size), we observed thatdigorithms could answer
the queries accurately (with a relative bias below 0.1%) d@acreasing of the relative stan-
dard deviation with respect to the running time of the twooalklhms are shown in Figure
HT11. The average “burn-in” time for the Gibbs sampler iswt®94 seconds. From the
figure, we can see that importance sampling outperforms thbsGampling in answering
both queries.

For the BHPS network, we set the evidence from 0 tot = 50 (years). We asked
similar queries: the expected total amount of time a pesemployment status is as a

student and the expected number of times that he becomegswdplWe chose the same

80



10° 10°

--Gibb§ Sampling --Gibbs‘ Sampling

- —Importance Sampling - — Importance Sampling
Re] o
S kS
5 1074 E 104
10 Q10
B B
3 3
g 8
) n

2 -2
.GZJ 10 "¢ _g 10 ¢
k& ks
[J] [}
4 4

_3 -3

10 : : 10 : :
1072 10° 10° 10* 107 10° 10° 10
Running Time, seconds Running Time, seconds
(a) Query of Time (b) Query of Transition

Figure 4.12: Comparison to Gibbs Sampling: BHPS networkteNbwirn-in time for Gibbs
Sampling is not included (30.88 seconds on average).

sample sizes as on drug effect network and ran each samplévVsiz 100 times. Figure
.12 shows the result of the decreasing of the standardté@viaf the two algorithms. The
average “burn-in” time for Gibbs sampling algorithm in tleiperiment is 30.88 seconds.

We achieved similar result as the experiments with drugcefietwork. The importance
sampling algorithm outperformed the Gibbs sampling atbamiin answering the query of
time. The performances on the query of transitions are dthessame.

In both networks, importance sampling outperformed Gilams@ing in three of the four
cases, even when the running time on “burn-in” iterations wat considered. To achieve
the same accuracy and standard deviation, Gibbs sampgjogtaim requires fewer samples.
This is because for each variable, Gibbs sampling sampbes fine true posterior distribu-
tion given the evidence and its Markov blanket. However, @arg from the true posterior

distribution is computational costly, since it requirepeatedly computing the conditional

81



10

10

\+Gibbs Sampiing ‘ -=-Gibbs Sampiing
- —Importance Sampling - _\/\ —Importance Sampling
o RS
.g % .
3 ] 10 ¢
B B
S 104 S
8 g
o 3,
H g0
k& g
Q [}
o4 X

-2 -3

10 : : 10 : :
107 10° 10° 107 10° 10°
Running Time, seconds Running Time, seconds
(a) Query of Time (b) Query of Transition

Figure 4.13: Comparison to Gibbs sampling: chain networkteNourn-in time for Gibbs
Sampling is not included (11.42 seconds on average).

cumulative distribution function. Using the same amountiok, importance sampling can
sample far more trajectories, which outperforms Gibbs dengp

We last compared these two algorithms using the chain n&tWidre evidence trajectory
begins at timg = 0 and ends at timeé = 5. We set the queries to be the expected total
amount of timeX, stays in state; and the expected number of times th&f transitions
from s, to s;. Figure[4.IB shows the result ov&r = 100 runs. The average “burn-in” time
for the Gibbs sampling algorithm in this experiment is 11sé2onds.

Gibbs sampling achieved a better performance in this emygris. The result is not sur-
prising. As we have mentioned before, the chain structustdiork is nearly deterministic,
and it is the hardest case for the importance sampling dkgori We further examined the
randomly generated evidence. The only observed stat€,aa s,, which makes this exper-
iment even harder for the importance sampling algorithmweleer, it is a very easy case

for the Gibbs sampling algorithm since it is nearly deternstin and is structurally simple.

82



(There are only at most one parent and one child for each hédibough importance sam-
pling can generate many more samples in the same period ef timost of these samples are

trajectories with very small weights.

4.6.4 Task in Parametric Estimation

In this section, we evaluate the performance of our impagaampling algorithm on para-
metric estimation and compare to the Gibbs sampling algarit

We used the drug effect network for this experiment. We sathpicreasing numbers
of trajectories of 5 time lengths. To hide part of the trapegt we did the following: In
each iteration, for each variable we randomly selected a tinmdow of 0.5 time lengths and
removed the content in that window. We repeated this untitivepped 50% of the content
of the trajectory. We used these incomplete trajectoriesuadraining data. We sampled
another 200 trajectories with the same length to be oumigsiata.

To estimate the parameters of the CTBN network, we followesl EM algorithm in

Nodelman et al.[[2005b]. When calculating the expected @efft statistics, importance
sampling and Gibbs sampling were used. Therefore, theliket! in the E-step was cal-
culated approximately. In our experiment, we fixed the totanber of iterations for the
EM algorithm. In each iteration, we compared the calculditegdlihood to the likelihood in
the previous iteration. If the likelihood decreased, wetkép parameters in the previous

iteration.

83



Log-likelihood

’ —Importance Sampling I
. - --Gibbs Sampling

2 3 4 5 6
Number of Training Trajectoies

Figure 4.14: Learning results for drug effect network

We chose the initial parameters for the EM algorithm by sangpthe diagonal elements
of the conditional intensity matrices from the Gamma disttion with parameter§0.5, 1)
and sampling the transition probabilities from a Dirichdettribution. We randomly sampled
5 models as the initial parameters for the EM algorithm. Facheinitial parameter set,
we ran the EM algorithm 10 times. We evaluated the learnimyi@cy by calculating the
average log-likelihood of the testing data on the 50 learmegd/orks. To compare the running
efficiency of the two sampling-based algorithm, we fixed thialtamount of time for the
sampler to generate samples in each EM iteration. For thessbmpling algorithm, we
dropped the first 50 trajectories as “burn-in” iterationgyUfe[4.1# shows the results as we
increased the number of training trajectories from 1 to 6e &mount of time for sampling in
each EM iteration was set to be 8 seconds. The number of Ekties was fixed to be 15.

Both algorithms obtain higher log-likelihood on the tegtidata when we increase the

number of training trajectories. The importance samplilgpathm achieved better estima-

84



tion than the Gibbs sampling algorithm, especially whenrtbeber of training data was

small.

Discussion

From the results, we can see that our importance sampliragitdgy performs well in both
inference and learning tasks. When the sample size is latgelgorithm achieves the cor-
rect value in the inference experiments. As for the efficyamiche algorithm, our importance
sampling outperforms both EP and Gibbs Sampling in mostegttperiments.

Our importance sampling algorithm did not perform very wallthe experiment with
the chain network. As all the variables are highly corredatethe chain network, choosing
a proposal distribution that only consider the upcomingadhesingle sampled variable is
insufficient. An alternative solution is to use MCMC methoHswever, in our experiments,
we found that Gibbs sampling is very computationally expensThus, in real world appli-
cations such as social networks, where network size is lysuaty large and the network
structure is complex, we use Metropolis-Hastings algatito lower the computation cost.

We will discuss this in Chaptét 6.

4.7 Conclusion

We have presented an approximate inference algorithm withvariations based on impor-
tance sampling. We naturally extended the algorithm to setigl Monte Carlo methods
such as particle filtering and smoothing in CTBNs. A Metrogpdlastings algorithms for

85



CTBNs was also developed based on the importance sampgogtam. We applied our
sampling algorithm to synthetic networks and a networkwetifrom real data. We evalu-
ated the efficiency of our algorithms and compared to othpr@apmate inference algorithms
based on expectation propagation and Gibbs sampling. Quoriance sampling algorithm
outperforms both in most of the experiments.

The networks used in our work are at the upper size limit faat)computation. For
example, calculating the expected sufficient statistidhefchain structured network given
evidence takes more than two days using exact inferences, @pproximate inference meth-
ods are critical for tracking, predicting, and learning ontinuous time Bayesian networks
for real applications. Our importance sampling based algois are fast, simple to imple-
ment and can be used to calculate the expected value of actydniof a trajectory, including
the expected sufficient statistics necessary for expectatiaximization for parameter esti-

mation with missing data.

86



Chapter 5

Continuous-Time Social Network

Dynamic Model

In the previous two chapters, we introduced the CTBN moddl@mr sampling-based ap-
proximate inference algorithms for CTBNs using importaseenpling. CTBNs provide a
representation language to model large dynamic systemgpactiy and to explore depen-
dencies among variables in the systems. Our importancelsangigorithms allow us to

perform inference in a dynamic system even when it is large@mplicated. Social net-
works are one such important type of dynamic systems in oly bii@. In this chapter, we

first review several sociology models for social network aymcs. In the next chapter, we
then demonstrate that these models can be viewed as CTBNsuamdportance sampling

algorithms can be used as the basis to estimate the pararétaese models.

87



5.1 Background

A social network models the relationships (such as friemqshco-authorship) among actors
(such as individuals or companies). The relationships @naators can be represented using
a network with/V nodes, each representing an actor, wh€res number of actors. An arc
from nodei to node;j represents a tie or relationship from actdo actor;. At any time, the
status of the tie from an acteto another actoy can be represented using a binary variable
Y;; with Val(Y;;) = {0,1}. Therefore, the structure of the entire network can be dlesdr
using ann x n adjacency matrix” = (Y;;). The dependencies among the actors in a social
network are complex. Understanding these dependenciebatprus in many areas. For
example, when recommending a new game to a user on Facebkery useful to know
whether the person’s friends are also interested in the gdingan also help us control the
spread of a disease or predict the reactions of terrorigterefore, there has been a surge of

studies on analyzing social networks in recent years.

5.2 Social Network Dynamic Models

Usually, social networks are not static but evolve in cambins time. The dynamic infor-
mation is very important when modeling social networks. ldwar, much of the past work
focuses on building probabilistic models of social netvgousing static network snapshot

data.

88



5.2.1 Static Social Network Models

One of the widely used models is the exponential random gfaptily, which was first

proposed as thg, model li:lnlland.a.u.d.LﬂuhmIdL.‘lJSl] and was further devetbimto the

exponential random graph model (ERGM pdmodel) I 9]. The ERGM

defines the logarithm of the probability of a complete son&tvork structure to be a linear

combination of some structural features of the network. ésalizations of ERGM called

curved exponential family models are presented in Huntd#andcock![2006] which use

non-linear parametrizations of the network structure piulities.

1%

Another popular model is the latent space model [Hoff 02], which assumes that

each actor has a position in an unobserved “social space.’pidbability of the presence or
absence of a link between two actors depends on their posiiiothe latent space. It also
assumes that the probability of the link is conditionallgépendent of all the other links in
the system given the unobserved positions of the two actaference is performed using
maximum likelihood and a Bayesian framework.

These works described above only focus on the static priepest social networks. So-
cial networks, however, always evolve over time. It is there important to study the dy-
namics of social networks. Indeed, more and more work emgésghe evolution of social

networks.

89



5.2.2 Discrete-time Model

Some work extends the previous static social network moietd/namic social network
models using discrete-time models.

A class of hidden temporal exponential random graph modelSRGMs) was proposed

by ﬁu.o_el.al [2007], which is an extension of ERGMs for maughetworks evolving over

discrete time steps. The network topology is considere@ta latent process and is assumed
to be conditionally independent given the topology of thevyus time step. The observed
attributes of all the nodes of the network at time stegge conditionally independent of all
others given the network topology and some time-invaridobg features. Learning and

inference on htEMGRs can be performed using sampling dlgus.

Sarkar and Moore [2005] extended the latent space mo i&LﬁLEﬁ.ﬁl] 2002] into a dy-

namic system that captures the changing of friendships;iwduie similar to hidden Markov
chains. It assumes that the position of each individual camenin discrete time steps ac-
cording to a transition model. The model further makes adastechMarkov assumption that
the position of an actor in the latent space at time conditionally independent of all past
positions given the position at the previous time step. Tiheeoved graph dtis condition-
ally independent of all other positions and graphs giverptb&tions at. Inference can be

performed by running the standard forward-backward atgorion the model.

Liben-Nowell and Kleinbefrg [2003] provided a link predmti method that tries to pre-

dict new links of the network based purely on the social nekvetructure. Given a snapshot

of a social network, the prediction method calculates a eotion weight score of each pair

90



of nodes in the network. A new link is predicted between thie glanodes with the highest
score. The score is based on the structure of the observednketuch as the shortest path
distance of the two nodes or the number of neighbors shardaeaiyvo nodes.

These discrete-time models capture the dynamics of soefadarks and are able to make
predictions on the changing of the network. However, saugivorks always evolve asyn-
chronously since there is no global coordination of the ictés we discussed in previous
chapters, discrete-time models have several limitationenwhandling these asynchronous
dynamic systems. In many cases, a continuous-time modgbrosde more flexibility in

modeling the dynamics of social networks.

5.2.3 Continuous-time Models

The idea of using continuous-time model is not new. Early el®duch as the reciprocity

model can be found in_Wasserman [1979]. The reciprocity rhodesiders the link pair
(Yi;,Y;;) between any two actorsand j in a network as a homogeneous continuous-time
Markov process with four states (00, 01, 10, 11). It furthexkes the dyad independence
assumption that each pair ¢¥;;,Y;;) is independent of all the other links in the network.
Therefore, the network as a whole is also a homogeneousncants-time Markov process
which includes many independent processes.

Another early model is the popularity modeliuﬂa:.:..ar]rr.a.tﬂllg It also models each

link pair (Y;;, Y;;) as an independent continuous-time Markov process. Howthetransi-

tion intensity of each Markov process depends on the numiitacoming links of the actor

91



that the transition link points to. Thus, the intensity o€ledarkov process is time variant
and the state of popular actors who have more incoming lirdkg change faster.

These models are computationally efficient because of thd dydependence assump-
tion. But the assumption also limits the ability of the motielrepresent some common
properties of the social network, such as transitivity. tgké has higher probability of creat-
ing a friendship with actoy if i's friends also knowj.)

Usually, the evolution of each link between any two actoss @alepends on the link status
of other actors. Therefore, a more general model for the ahyesof social networks should

allow link change probabilities to also depend on the entgewvork structure. The actor-

oriented modell[Snijders, 2005], an extension of the redjy model, is such a model. In

this model, the evolution of the entire network is still mmteas a homogeneous continuous-
time Markov process. However each link variable is modekdrainhomogeneous Markov
process. The probability that a link changes can depend ererlire network structure.
The evolution of the network is modeled as the actors makexjsibns to add or remove
links to maximize a utility function. The model can be sintathusing the forward sam-

pling method, and the method of momeVILE_LB.QAALma.n_a.Dﬂ_S.tumH%] is used to estimate

parameters. An alternative Bayesian based parameteraggiimmethod is implemented in

Koskinen and Snijders [2007].

One important factor we should consider is the characteratributes of actors. The
characteristic attributes of the actors and the networkiscture (both time-variant) may

depend on each other. For example, people who have the saéenesis are likely to be-

92



come friends and friends are likely to influence each othietsrests. Such effects should

be considered when modeling the social netwarks. Snijdeak [2007] extended the actor-

oriented model to the network-attribute co-evolution madeich added effects between the

network structure and the actors’ attributes. SteglicH.§2806] showed an application of

this model. They studied the dynamics of a friendship netweonsidering attributes of ac-
tors, such as alcohol consumption. We will give detailetbiditiction of the network-attribute

co-evolution model in the following sections.

5.3 Network-attribute Co-evolution Model

There are two types of variables in the network-attributeegolution model: the evolving
pair-wise relationships among th€ actors and thgf > 1 discrete-valued attribuﬂs)f
each actor. The number of actors is fixed during the entiregee. At any time, the
ties can be described as a directed graph, which is repexbdipt anN x N adjacency
matrix Y'(¢), whereY;;(t) represents the relation directed from acidio actorj (i,j €
{1,...,N}). Y;;(t) = 1if there is a tie from actof to j andY;;(t) = 0 otherwise. Self
relations are not considered in the network. The actorsibaties att can be represented
by H integer vectorsZ,(t) of size N, whereZ,;(t) denotes the value of actoon attribute
h. Therefore, the network-attribute co-evolution is modelesing the stochastic process

X(t) = (Y(t), Zi(t), ..., Zu(t)).

ISnijders et &1.[[2007] call the attributes of the actors ‘@ebrs.” We call them “attributes” to avoid confu-
sion with the dynamic behavior of the model.

93



The network-attribute co-evolution model assumes thaptbheessX (¢) is a continuous-
time Markov process. The evolution of the network is modeledictors making decisions
to maximize their satisfaction with the network: an actorynghoose to add or remove an
outgoing tie, or change the value of one attribute in ordefafgproximately and locally)
maximize a utility function. At any time, given the current stat& (¢), the decisions made
by the actors are conditionally independent.

Itis further assumed that when making a decision, the aetooaly change one outgoing
tie or change one attribute value. Because of the contintimesnature, no two events may
occur at exactly the same time. Thus, at any time, only oner aegtn add or remove an
outgoing tie or increase or decrease one value unit of aibatitx For each actof, the
times between two network changes and between two attrdmdisions are exponentially
distributed with parameters’ and\{¢, called rate functions. Usually, they are assumed to be
constant values.

At a transition point, the actor chooses to add or remove totieaximize the value of
the network utility functionf!" (5", y(i, j), z) + €, or to change the value of an attribute
to maximize the attribute utility functiorf* (3%, y, z,(i,0)) + €*, where f(6™, y (i, j), z)
andf (6% vy, zn(1,0)) are the objective functions for network and attribute decis respec-
tively. y andz are the current states of the network and attribuigs. ;) denotes the state
of the network after the tie from to j changes.z, (i, d) denotes the state of the attribute
after actori changes the attribute, by 6, wheres € {—1, +1}. Both objective functions are

modeled as a weighted sum of effects (features) that depetitedopology of the network

94



and the attribute values. The functions have the form

6 Y,z Zﬁkszk Y,z

wheres;;(y, z) is an effect that expresses a property of the network streietad the attribute

values from the view of actaor and L is the number of effects the actor considers.

Example 5.3.1 We can define the utility functions as follows. For the nekwdility func-
tion, assume that the evolution of the network structureeddp on two effects’ (y, z) and
sh(y, z). Lets? (y, z) be the “density effect,” defined as the number of out-goieg from
i. Letsl(y, z) be the “reciprocity effect,” defined as the number of recigated links tai.
For the attribute utility function, we assume it depends lom ‘attribute tendency” and the
“similarity effect” of actor i. The “attribute tendency” is defined as the current attridut

value ofi. The “similarity effect” is defined by a similarity functiohen the utility function

(A" y(i, ), z) and f(8%, y, zx (i, 0)) are

[1(B" y(i, j), =) =67 Zyw + B3 Zymyﬂ
F2(8% 9, 200, 0) =Bz + 5 Y ijsimy
wheresim;; = 1 — |z, — 2z;,|/ Range(z;,) is the attribute similarity between actoignd ;.

If 37 = =2, betal = 1.5, By = 0.5, and3$ = 1, this means that when making decision to

change the status of a link, actors unlikely to randomly create a relatiowf < 0, discour-

95



aging dense network) and is likely to create reciprocateshextions §5 > 0, encouraging
reciprocated links). The actor has a preference for highueatf attributeZ;, (5 > 0, en-
couraging higher value of,), and the actor tends to change the attribute to be simildriso

friends (3 > 0, encouraging similarity).

¢" ande® are random noises. Following Snijders €t al. [2007], theysat to be Gumbel

distributions with mean 0 and scale parameter 1. Then thmsitran probability of actor

changing the tie tg and actor changing the value of, by § are

e y0.0),2)
) = (75 y(0 1) 2) &Y

)
exp(f{(6%, y, z1(i,0)))
)

P(zy(i,0)|y, z) = Sosexp(fe(6e,y, zn(i,

: (5.2)
)
Given the rate functions and the transition probabilittes, intensity matrix of the con-

tinuous Markov procesX () can be written as

;

NPy )y 2) it & = (y(i, ), 2)

AiP(zn(i,0)|y, 2) if & = (y,2,(i,0))

i = (5.3)
—> A+ ifz=a

0 otherwise.

\

When there are no observations, we can generate trajectioneX (¢) using standard

forward sampling method for continuous-time Markov preess

96



Since the network-attribute model is an extension of theramtientated model, the actor-
oriented model can be considered as a special case of therkehttribute model where
the evolution of a social network only depends on the strnectd the network and no ac-
tor attributes are considered. Thus, we only need the ratetiftn \? and utility function
(6™, y(i, j), z) to model the dynamics of a social network under the actarved model.
The dynamics of the entire social network are still a cordimttime Markov process. The

intensity matrix of the process is

Gee=9q—> .\ if 2 = (5.4)

0 otherwise.

5.4 Parameter Estimation

Snijders et al.[[2007] assume that observations are onlilaé@ at discrete time points

t; <ty <---<ty,whereM > 3. The parameters = (A", \*, 5", 5*) are estimated based

on M network observationg(t,), . . ., y(ty,) and attribute observationst, ), . . ., z(ty,). Pa-

rameters are estimated using the method of moments ( bh, 1985].

MoM estimates the parameters such that the expected valisesne statisticd (y, z)

under the estimated parameter are equal to the observedsvallihe statistics used by

Snijders et al.[[2007] for each parameter are as follows.

97



Parametet D(y, z)

A" > i Yii(tm—1) — yij (tm)]
At 2 i |#ni(tm—1) = zni(tm)|
B 22 S (Y (tm), 2(tm-1))
By 22 S5 (Y (tm), 2(tm))

Their estimation algorithm uses the Newton-Raphson megading with random pa-
rameters. In each iteration, parameters are updated sohhaixpected statisticB(y, z)
listed above equal the statistics of observation data. Kpedatation of the statistic values
are calculated using forward sampling between two consexctime pointst,, andt,,
without considering the observations.

MoM estimates the parameters using some statistics of theradtions data, which im-
plies that there should not be missing values inth@etwork observationg(t), . .., y(ta)

and attribute observationst, ), . . ., z(ty;). However, in real applications, missing values in

observation data are inevitable. [In_Snijders [2005], nekwabservations are completed by

simply replacing missing values with ZerCLHujsman_a.ugIMl IMJB] only set missing

values to be zero in the first network observation so thatédvsampling algorithm can be

performed. To estimate parameters, only observationsatteavailable at two consecutive

time points are used, which means that a lot of useful inféionas discarded.

98



5.5 Summary

Social networks usually evolve in continuous time. The eoteented model and the network-
attribute co-evolution model provide approaches to moldeldynamics of social networks
naturally using continuous-time Markov processes. Albke, é¢volution of social networks
is allowed to depend on the entire network structure. Funioee, the network-attribute
co-evolution model includes the influence of the dynamighattes of actors in the model.
These two models give us more flexibility when modeling theaiyics of social networks.

However, there are several limitations in these two mod@idy some sufficient statistics
of the evidence are considered when estimating the parasne&damples generated to esti-
mate the parameters do not fully agree with the evidencegctwimay affect the estimation
accuracy. Second, fully observed network structure anibateé values at each observation
point are required when calculating the sufficient statsstf observation data. However,
missing values in observation data are very common in reahkoetwork applications. Fi-
nally, these two models assume that direct observatiorreaiétwork structure are available
at M > 3 time points. Collecting this type of social network data é&wexpensive, which
may take several years. These facts limit the range of snetalork data to which these two
models can be applied.

One solution for these problem is to view the actor-orienteatel and the network-
attribute co-evolution model as CTBNSs, since they all tteatdynamic systems as continuous-

time Markov processes. Algorithms in CTBNs then can be athpt social network dy-

99



namic models, which we will discuss in details in the nextptea This allows us to deal

with general evidence patterns.

100



Chapter 6

Learning Social Network Dynamics

In the previous chapter, we introduced the actor-orientedehand the network-attribute co-
evolution model. These two social network models providapsroaches to model the dy-
namics of social networks in continuous time, where thewgiah of each tie in the network
may depend on the entire structure of the network. The nétatiribute co-evolution model
further allows the impact of actor’s characteristic atiitds to be considered when studying
the evolution of social networks. However, since the laagralgorithm in these models only
uses forward sampling, estimation accuracy may be affeétisd, only evenly-spaced, fully
observed network snapshots data can be handled using tiégaining algorithms.

In this chapter, we will show that these two models can be &ttas CTBNs. Therefore,
our importance sampling algorithm for CTBNs can be adapi¢ldse social network models
to develop a maximum likelihood estimation algorithm. Rermore, using CTBN models,

we present a hidden social network dynamics model in whidirest observations such as

101



emails events among people can be utilized. The Metroptdistings algorithm developed
in Chaptefl can be applied as the basis for parameter egtima@hus, we not only improve
upon previous parameter estimation methods for social er&t@ynamics, but also extend

their range to deal with more flexible data sources.

6.1 Sampling for Learning Social Networks

The method of moments (MoM) parameter estimation meth }_chm_éts_aLaI [2007] only

uses some sufficient statistics of the observation data. p&sngenerated during the esti-
mation procedure do not fully agree with the observatiortsictv may affect the estimation
accuracy. Additionally, calculating the true statisti€¥y, z), requires that, at each obser-
vation point, all the network and attribute values are fudlyserved. Thus, it is hard for
MoM estimation to handle observation data with missing &alar evidence about durations,
common in real applications.

Since the network-attribute co-evolution model assumasttie entire stat& (¢) of the
social network is a continuous-time Markov process, we @ailyeconvert it to a CTBN, and
apply the importance sampling algorithm to the convertedieho The samples generated
by importance sampling algorithm are consistent with theeotmations, and we can apply

maximum likelihood estimation.

102



6.1.1 Importance Sampling for Network-attribute Co-evoluion Model

Given the current instantiatiofy, z) of the whole system, the conditional intensity matrix

I1y.= for link variabley;;(t) can be extracted from Equatipnlb.3:

NPl NE
(— . (6.1)

ijly,z
n Pl n Pl

whereP}; = P(y(i,j)|y;; = k. y, z) for k = {0,1}. The conditional intensity matrig;,, .
for attribute variableZ,,;(t) can be extracted similarly.

The transition probabilities depend on the utility funciso whose values depend on the
current instantiation of the entire system. Independeraieong variables only hold for par-
ticular assignments to certain other variables (analogow®ntext sensitive independence
for Bayesian networks). For example, if the network utifitjction’s features include the
attribute similarity to connected actors, then the dynamidink Y;; can potentially depend
on all Z, but at any given instant, only depends on thgséor whichY;;,, = 1. If any one of
these linksy;;, changes, the independencies betwggmand{Z; } will change. However, the

independencies are fixed between any two consecutive ticarsi Therefore, this dynamic

CTBN structure prevents efficient use of other approximal8R inference algorithms like

expectation propagation [Saria et al., 2007]. We couldwfiyd Gibbs sampling algorithm of

El-Hay et al. ], but it must calculate the true postedensity between every two con-

103



secutive transitions which can be arbitrarily complex. $hng from the posterior density
involves binary search. As we have shown in Chalgter 4, itig gemputational costly.
Using the converted CTBN model, we can apply the importaacepting algorithm for

the model. This also allows for general evidence pattergeitd complete snapshots.

6.1.2 Maximum Likelihood Estimation

The importance sampling algorithm can generate weightegbkss that fully agree with the
observations. The log-likelihood of the samples can beutaled using Equation3.1 and
Equatio4B. Therefore, we can use maximum likelihoodwestion to learn the parameters

a = (A", A%, 3", 3*). Since the data are partially observed, we employ the MoratidoC

expectation maximization (MCEM) algorithrn_[Wei and TannE290]. For this application

of EM, the steps are as follows.

Expectation Step: Using the current parameters, apply the importance sagjalin
gorithm to generaten weighted samples. Calculate the sufficient statistics &edldg-
likelihood of the samples.

Maximization Step: Update parameters, using the sufficient statistics antikeghood
as if they came from the complete data. Rate paramafeasd\? are set to bé/"[:] /T and

M*[i]/T respectively, wheréd/"[:] and M/“[i] are the number of link changes and attribute

changes for actoi, respectively. We use conjugate gradient asdent [Preds 8082] to

estimate the weight parametets and 5* since they cannot be solved analytically from the

log-likelihood function.

104



Notice that the rate parameters and the weight parametersecapdated separately. To
increase the accuracy, we divide the EM iterations into taapk so that the two sets of
parameters are estimated alternatingly. Specifically,acheEM iteration, we first fix the
current parameters for the weight parameters, estimateatieeparameters by conducting
the above two steps. We then update the rate parametersefix #ind estimate the weight
parameters using the above two steps.

The rate parameters are calculated using the expected maifrtbensitions of the model.
Since the time intervals between transitions are sampl@d the exponential distribution
with the current intensity rate, it is difficult to sample a trajectory with a slower rate. @h
algorithm tends to add additional transitions to get thgetiary to agree with the evidence.)
Therefore, if the initial rate parameter is larger than tluetvalue, it is unlikely that the EM
algorithm will converge to the true rate with a reasonablmbar of samples. To avoid this,
instead of sampling transitions using the current intgngitve sample transitions from the
exponential and truncated exponential distribution wittensityq/2. We adjust the sample

weights accordingly.

6.2 Hidden Social Network Dynamics Model

The network-attribute co-evolution model assumes thatatljecency matrix’(¢) can be
observedV/ > 3 times. Observation of network structure for each actor atkected using

survey or interview instruments, which sometimes takeesdwears. It is very expensive

105



even obtaining one complete observation of the network. é¥&@y communication events
among people, such as emails, instant messages, and pHisnareaeasier to collect. We
can fully observe these events continuously with lower.cblse occurrence of such an event
depends on the connection status between the actors iavolVris, although they may not
be as accurate, these events indirectly reflect the rekdtipe among people. In such model,
the network itself is unobserved (hidden) all the time. W ttés model the hidden social

network dynamics model.

6.2.1 Model Definition

Let Y (¢) be the network ofV actors, which evolves in continuous time in the same way as
in the network-attribute co-evolution model. (We do not sider the attribute variables, but
adding them to the model is straight-forward.) l&ft) be the observations (such as emails
or phone calls) among th¥ actors.O(t) can be fully or partially observed &5(¢) evolves.
0;;(t) € O(t) (i,5 = 1,..., N, i # j) is the observation of communication directed from
to actorj. We assume that the dynamics(@f;(¢) depend only ory;;(¢) andY;(t). Thus,
the dynamics of each observation variablg(¢) can be described using four conditional
intensity matrice@;’f&jzwji:l (k,l € {0,1}), each of which corresponds to a staté’pf¢)
andY;(t). We further assume that all the event variables share the satrof parameters.
That is,Vi, j, thati # 7, Q;?;.’&j:k,yﬁ:l = gﬁ;j:k%i:l.

Therefore, the hidden social network dynamic model costano sets of variables: the

network variabled’(¢) and the observation8(¢). The evolution of the network variables is

106



the same as in the network-attribute co-evolution modedlefiends on the network raié
and the utility functionf™. The dynamics of each observation variablg(t) depend only on
the state of link variable¥;;(¢) andY};(¢). According to the Markov properties of CTBNS,

0;,;(t) is independent of all the other variables given the entajettory ofY;;(t) andYj;(t).

Example 6.2.1 One of the commonly observed social events is mobile phdisearaong
people. Currently, almost everyone uses mobile phonesastgle phone calls usually
indirectly reflect the relationships among people, thoughhpps not exactly. For example,
not every person one calls is a friend, but most phone traffieiween friends.

Most of the time, a mobile phone is in a standby state. Whemsmpevants to commu-
nicate with his friend using a mobile phone, one of the thiefohg three situations may

happen.

e The person calls his friend and has a conversation.
e The person sends a text message to his friend.

e The person calls his friend but his friend misses that call.

Therefore, we can describe the dynamics of a mobile phomg tise following conditional
intensity matrix

—qp " oaq gy | standby

@ —qu 0 0 in-call

obs _

ij|Yij=k, Y=l —
00 0 —o0 0 text message
00 0 0 —o0 missed call




g5, ¢ and ¢iiss are the intensities of a person making a successful calilisgra
message and making a no-answer call respectivgly= ¢ + ¢;,°? + ¢7*** is the intensity
that a mobile phone leaves the standby stgfeis the intensity of a mobile phone leaving
the conversation state. When a conversation is ended, thdenphone can only go back to
the standby state. The intensities of changing from coatiers state to text message state
or missed call state are zeroes. Text message and missearealll instantaneous events.
There should be no duration for these two states. The caoredipg intensities are set to be

infinities.

6.2.2 Metropolis-Hastings Sampling Algorithm

Due to the large number of variables in the hidden social agkwdynamic model, exact
inference is intractable. Since the model can be naturaltyerted to a CTBN, we can apply
the importance sampling algorithm to the converted modewéler, because only (¢)’s
children are observed, the trajectory ¥{t¢) would be sampled blindly with no guidance
from the evidence. Any incorrectly sampled variable can ethle entire trajectory be highly
unlikely. Given the large sample space fo(t), the importance sampler generates many
trajectories with very small weights.

An alternative method is to use the Metropolis-Hastings@igm described in Section
H52. Unlike importance sampling algorithm, the Metrapdiastings algorithm evaluates

the newly sampled trajectory in each iteration. A trajectory with low probability is like

108



to be rejected according to the acceptance probabllity — ¢'). Therefore, the Metropolis-
Hastings algorithm guides the sampling toward more likedyetctories.

Notice that in the hidden social network dynamic model, estedervation variable; ;(¢)
is independent of all the other variables given the entagettory ofY;;(¢) andY;;(¢). Given
the entire trajectory of;;(t) andYj;(t), queries abou®;;(¢) can be calculated using exact
inference. According to the Metropolis-Hastings alganththe sampling procedure starts
with an arbitrary trajectory when samplifig(¢). Then in each iteration, the sampler ran-
domly picks a variabl&’;(¢) and replaces the entire trajectory}yf(¢) using the importance
sampling algorithm, fixing the rest of the trajectory as ewvide. If the acceptance ratio of
the new sampled trajectory is larger than a random numpsampled from &0, 1] uniform
distribution, the new trajectory is accepted. Otherwike,dld trajectory is kept.

Let o be the trajectory from the previous iteration, arfdbe the sampled trajectory in
the current iteration. Lef’ be the target distribution given by the model aRfl be the
proposal distribution used by the importance samplingritlygm. We need to calculate the

acceptance ratio of the sampled trajecterin the Metropolis-Hastings algorithnio, ¢’') =

P(a’)P'(o]o’)
P(o)P'(o'|o) *

We defineoy to be the trajectory oY (¢) in o, oy;; to be the trajectory of;(t) in o and

0y, to be the trajectory of (t) exceptYy;(t). We definesp andoy,; similarly. If Y;; is the

109



variable to be resampled, according to the Markov propedfeCTBNSs, we have

P(oy)P(ooloy) P'(oy|oy,00)
P(oy)P(ooloy) P'(oy|oy,00)

Ploy, lo/v;;)
_P(O-g/) P(Uoij7aoji Ug’iyayjz') Pl(gé’z‘j‘o/yij) P(UYiJ O-/Yij>
P(UY) P(Uoij7goji UYz‘pUin) M P(Ug/ O-/Y/L'j)
(ov;;lo/v,;) Y
:L(U;YM_) P(oo, Ugfw_, oy,,) P(oo,, Ugfw_, oy;,) w(ogfij) 6.2)
L(U/Yij) P(Uoij Y5 O-in) P(Uoji Y5 O-in) w(UYij) .

whereL(-) is the partial likelihood function and(-) is the weight contribution of the variable
in the importance sampling algorithm.

If the proposal distribution is as described in Chapteréyy, ) andw (o}, ) in Equation
B2 are 1 since there is no evidencejn(t). If another proposal distribution is used, the

weight contribution should be adjusted accordingly.

If the behavior ofO(t) is completely observed? (oo,

oy, 0y;,) can be represented

using likelihood ofO;; givenoy;; andoy,,. Then the acceptance ratio is

) = L(o)y;,) L(oo,
L(U/Yij) L(O-Oij

0y,,+ 0v;) L(oo,,

0Yij> O-in) L(Uoji

o}, 0v,) wloh,)

OYijs O-in) w<UYij>

(6.3)

If O(t) is partially observed, we can calculatgoo,,|oy;;, ov,;) as follows. Assume
that we are sampling trajectories from time O to tiffie O;;(¢) is observed on intervals

[tk, tr + Atk] (k=1,...,m), Wheretkﬂ >t + Atg, t; > 0, andt,, + At,,, < T. LetO‘gU

110



be the observed trajectory 6f;; on interval(t, t;, + At,]. Using Markov property, we have

P(oo,lov,, 0v,) = [ [ awlOs(te)] x (o, lov,,, 0v,.) X Bk[Os(tx + At)],

k

WhereL(o—aj oy, o,,) is the partial likelihood of ,,» and the vectors,, and/j; are defined

component-wise as

agli] = P(Oyj(tx) = i|Oij(ti—1 + Aty_1), 0v;;, 0v;,)

Bilt] = P(Oij(tk41)| 03 (te + Aty) =1, 0v,,, 0v;,) -

ay and g, can be calculated using the standard forward-backwardritigo described in

Sectio3ZDP.

6.2.3 Parameter Estimation

The parameters can be estimated using the Monte Carlo EMithligiodescribed in Section
BT12. In the expectation step, we use the Metropolis-Hgstalgorithm to generate equally
weighted samples. In the maximization step, we update trapeters alternatingly. Calcu-

lating A™ and 3" is the same as described in Secfion 8.1.2. According to EmIai8, the

111



conditional intensity matrix for observation varia ffnj:k y;i=1 CAN be estimated as

> izj Mo, [0lYij =k, Y = 1]

obs
@ = (6.4)
|Yij=Fk,Yji=l Zi;ﬁj TOZ']' [O‘Ej =k, Y;Z = l]
o Sy VolodlVy =Y =1 65
PR N Mo, JolYy = kY = 1] |

where Mo, [00'|Y;; = k,Y); = [] is the number of time§);; transitions from state to o'
whenY;; = k andYy; = [, To,;[o|Yi; = k,Y}; = [] is the total amount of timé&);; stays in
stateo whenY;; = k andY); = [, Mo, [o|Y;; = k.Y = 1] =, Mo,;[00'|Y}; = k, Y} = 1],
aNdqsey, i viimt = ooy mvimt X Qo —k.v;imt-

WhenO(t) is only partially observed, the expectation of the suffitistatistics above

can be calculated using exact inference described in S€8HD2.

6.3 Experimental Results

We evaluate the learning algorithm using importance sargpdin both synthetic data and
real sociological data. We compare the result to the metthotgoonents (MoM) learning al-
gorithm. We also evaluate our learning algorithm using MCihe hidden social network

dynamics model on a real dataset of emails.

112



6.3.1 Network-attribute Co-evolution Model
Synthetic Dataset

We first built a synthetic social network with 10 people ane dime-variant attribute for
each person. We assume the rates are homogeneous acrdss péoponsider three effects
on the network change rule (features): the density effeginfmer of outgoing links), the
reciprocity effect (number of reciprocated links) and thtilaute-related similarity. The
attribute utility function considers two effects: tendgrand similarity. The utility functions
are therefore

f(6"y,z) = Z (B1vij + By vijysi + B5yijsimy;)

J

Fi0 g, 2) = B+ 55 ) yysimyg (6.6)

wheresim,;; = 1—|z;,—z;|/Range(z) is the attribute similarity between actarand;. These

are the same effects or features as.in Snijders|et al. [200@ ket 5}, By, 53) = (—1,1.5,1)

and(ps¢, 53) = (0.1, 1) to generate the synthetic data. Rate parameters for theorietmd

attributes were both set to be 0.5.

We also implemented the MoM learning algorithmLin_Snijddrale[2007] and com-

pared the result to our important sampling method. Note thatlearning algorithm in

Snijders et all[2007] can only deal with evenly-spacedyfulbserved point evidence. There-

fore, for a comparison, the observation dataset was gestelgt sampling a full trajectory

113



but only recording the values at regular intervalsXaf We randomly sampled another 100
full trajectories as testing data.

Learning accuracy was tested by calculating the log-litad of the testing trajectories
under the estimated models. Figlrel6.1 shows the resultdifferent amounts of data and
different values ofA¢. We usedt00 samples and averaged acrdssins (although the values
were very stable across runs).

Our algorithm outperforms MoM almost all the time. Its aaey is much higher than
the MoM when the number of observation is small. Since sasngémerated by our algo-
rithm fully agree with the observations, they provide mocewate information about the
system, which is valuable when observation data are limgden the time interval is rel-
atively small and there are enough observation data, owritthign can accurately estimate
the model. AsAt increases, the estimation accuracy drops. The expectedltatween
transitions for any given variable istime units. Therefore, whent = 8, it is difficult to
estimate the number of changes in the network between digars, thus explaining the

poor performance of both algorithms.

Real Social Data Example

We then applied our algorithm to the “50 girls data” from ffeenage Friends and Lifestyle

)

Study[Michell and Amos| 1997]. The dataset measures the changasatwork of 50 school

girls, along with time-variant attributes such as smokimdpits and alcohol consumption.

The data contains three observations spaced one year dpdlris paper, we concentrate

114



|
w

o
a1
o

—-3250¢

Log-likelihood

—2800//—

2

-3500

! 10

10
Number of Observations

At =1

-2500

-3350; .

Log-likelihood

-4150! !

2

-5000

10" 10
Number of Observations

At =4

-2800

|
N

[(e]
o
o

Log-likelihood

|
w

o
o
o

—EM
===MoM
True LLH

-3100

10
Number of Observations
At =8

Figure 6.1: Log-likelihood of testing data as a functiontod humber of training data inter-

vals.

115



Network Parameters Attribute Parameters
A" | Rate/Actor| 0.019 || A* | Rate/Actor| 0.004
By | Density |—-2.39 || 7| Tendency| 0.14
4% | Reciprocity| 2.15 || 8 | Similarity | 1.17
By | Similarity | 0.53

Figure 6.2: Estimated parameters for the 50 girls dataset.

on exploring the effect between the network and the leveladteol consumption. Alcohol

consumption was measured by self-reported questions omla snging from 1 (never)

to 5 (more than once a week). We consider the same effectsi@sa as in the previous
experiment. That is, the utility functions have the samenfatras Equatiof 8.6. The true
parameters are obviously unknown.

Since this model describes the dynamics of all the links betwany two actors in the
network and the alcohol attribute for every actor, the madeitains 2500 variables; 50 have
5 values and the remainder are binary. No existing exactenfee algorithm can handle
a system with so many variables. We ran the EM algorithm with Metropolis-Hastings
algorithm on this model using 400 samples. The estimateahpaters are shown in Figure
2. The time unit was one day. We can see that, on averagedanstreconsiders her
friendships every one to two months, and a student’'s alcobnsumption level remains
unchanged for approximately 8 months. Paramggendicates that students tend to change
their attributes so that they will be similar to their friendlrhe network parametef® show
that people strongly prefer to build reciprocated conmetiand they are unlikely to build

a connection with someone arbitrary. These parameters ss=sunable and roughly match

the rates found by Snijders et al. [2007].

116



6.3.2 Hidden Social Network Dynamics Model

To evaluate the hidden social network dynamic model, we tsedeal world datasets: the

Enron email dataset[Shetty and Adibi, 2004] and the reatitying dataset[Eagle and Pentl

006].

Enron Dataset

The Enron email dataset contains emails from 151 employateglen 1998 and 2002. Email
events are considered as the observation variable in trgehidocial network dynamic
model, which are fully observed in the Enron email datasesudlly, this type of obser-
vation is just a set of instantaneous events. There is nte“star this kind of variable. We
use “toggle variables” to model such variables as a contiattome Markov process. That

is, each variabl®);;(t) is a binary variable containing two indistinguishable esat, ando; .

nd,

The intensities with which the variable transitions in bsthates are required to be the same.

The instantaneous event is represented as the variablengipetween states. That is, the

intensity matrix forO;;(t) is

obs obs
—dyy ]
obs o
i Yij=h, V=l =
obs obs
A1 —qp

wherek, [ € {0, 1}.

117



¢2%* in the conditional intensity matrix a;; can be estimated as

o — >oizj Moy loolYiy =k, Yy =1+ 3, Mo [o1]Yy; = k, Yy =]
M Y Tolo0lYi = kY = 0+ To, oYy =k, Y =1

We preprocessed the data as follows: We only chose emaitsirs@901 since most
of the emails were sent in that year. We removed emails whesdes and recipient were
the same. Emails that were sent to many recipients were lygyerieral notices such as a
reminder of a presentation at certain time and not indieativa working relationship. If the
number of recipients in an email is larger than a threshglde filtered out that email. In our
experiment, we set. be 5. For the rest of the emails which were sent to multiplgrents,
we treated them as multiple single-recipient e-mails andoanly jittered the sent times. We
took the intersection of people who sent at least 100 emmra2001 and people who received
at least 100 emails in 2001 as the set of the actors in our méahedils among these actors
were used as our observation. After this process, we olitaandataset containing 6738
emails for 31 people. We set the time unit to be one day in tpeement.

We considered four effects on the network utility functigdhe density effect, the reci-

procity effect, the activity effect, and the popularityext. Therefore, the utility function is

J

(8" y) = Z(ﬁ?yij + B3Yijvji + 05 Yis Z Yik + B1Yij Z Ykj) - (6.7)
k k

We ran Monte Carlo EM using the Metropolis-Hastings sampliéh 400 samples for

each iteration. We took one sample for every 1000 steps of MMCBEfore starting the EM

118



obs

A" | Rate/Actor| 0.031 kU ay

B Density |—2.362 0,0 | 0.002
B33 | Reciprocity| 1.210 0,1] 0.023
By | Activity 0.115 1,0 ] 0.296
Gy | Popularity | 0.119 1,1 | 0.604

Figure 6.3: Estimated parameters for the Enron dataset

iterations, we sampled 10000 samples as the “burn-in”titara. In each EM iteration, we
used the last trajectory in previous iteration as our ihgample and used 1000 samples as
the “burn-in” iterations. We randomly picked the initialnpaneters for the model and ran the
EM algorithm 5 times. All the 5 runs had very similar resulfge took the average for each
parameter as our learned parameters. The learned pararaetdisted in Figuregl.3.

We can see that, on average, a person considers changingimgvoelationship about
every month. When choosing the connection to change, trsopeas very unlikely to build
a random connectiod{* = —2.1) and prefers to build reciprocated connectioffs & 1.5).
These results are very similar to what we learned from thedgii8 dataset.” The popularity
and activity of an actor has a positive effect’(and 5} are multiplied by the number of
connections to or from an actor, so they can be smaller tjaand still have similar impact).
On average, a persohwill send an email to another perséhabout every 3 days if there is
a connection from4 to B. If there is a reciprocated connectia#,will send an email ta3
at least every 2 days. If there is no connection frdrto B, it is unlikely thatA will send an
email to B.

We used the learned parameters as the true parameters ofottd. nStarting with a

random trajectory, we ran our MCMC algorithm for 1,000,0Qufh in” iterations. Then

119



we drew a sample every 1000 iterations. We repeated thi$ wetisampled 1000 tra-
jectories. Using the 1000 trajectories, we calculated tlubability P(Y;;(t) = 1), for

i,j € {1,...,31}, i # j. Figure[&3 shows the network structures as matrices aé thre
different times throughout the year. Darker spots reprebayher connection probability.
We consider a connection as static if the probabifttyy;;(¢) = 1) is larger than 0.95 at alll
three time points. Figulle 6.4{d) shows all the static link®ag the actors. Since the Enron
dataset represents working groups changing over one yearawsee that the three matrices
are different, showing that the links among people are dyoanocesses, but there are some

stable connections.

Reality Mining Dataset

The reality mining dataset contains mobile phone usagenrdton for 97 people from June
2004 to May 2005. The information includes call logs, blaghodevices in proximity, cell

phone locations, application usage, and more. The datasetaollected by installing soft-
ware in the participants’ cellphones. The participantsanadtfrom MIT. A majority of them

are from the MIT Media Laboratory. The remaining are incogstudents at the MIT Sloan
Business School. In our experiment, we only used the call kg our observations. We
modeled the dynamics of the observation variable (phone oéleach participant) as de-
scribed in Example&Ee.2.1. We use the same utility functiomasquatiol&.]7. Since each
participant could start and stop using the data collectadtware at anytime, the call log for

each participant was only partially observed.

120



|
] ] ]
) . " - ] ] EE
[ ] ]
EE "u ]
. - ']
|
e . " . .'l ] ] ]
. ] " == . ]
"a " EE -.I " . " - o
i n " - | [ |
(a) Apr. 11 (b) Jul. 20
|
] :I
] ]
- - EE
. | ey
|
n "m
" o= N
-'- = == .
] -.. . ] - |
- - e .
(c) Oct. 28 (d) Static

Figure 6.4: Enron adjacency matrix at different times.

121



A" | Rate/Actor 0.0010
B Density —3.3254
B33 | Reciprocity 2.7963

2 | Activity 0.0881
Gy | Popularity 0.1382

Figure 6.5: Parameters of utility function for reality nmgi dataset

We preprocessed the dataset as the following. Since calidag only be identified using
phone number identifiers, we only chose those who have a palishe number identifier
from the 97 participants. For phone numbers whose ownemsargsted as participants, we
chose those who were contacted by at least three of theeseleatticipants, which gave us 13
actors whose identification is unknown. In total, there &@&ors in our model, 25 of which
are from the MIT Sloan Business School, 54 from the MIT Med&bl.and 13 unknown
actors. We selected all the call logs among these 92 actdneamve duplications (a phone-
call may be recorded twice, on both the caller's and callpb@nes). The observation data
contains 6488 events. We set the time unit to be one hoursretperiment.

We started the Metropolis-Hastings sampler with a randogelgerated trajectory and
discarded the first 50000 samples as “burn in” samples. Tihesgch EM iteration, we used
50000 samples to estimate the parameters of the rate fundtfe sampled 50000 samples,
keeping only one out of every ten samples, to estimate thdittonal intensity matrix of
the observation variable. For the parameters of the ufilityction, we estimated them by
sampling 50000 trajectories and took one for every 200 sesaf@uring each EM iteration,
we sampled another 20000 samples as “burn in” iterationstaveéhe MCEM algorithms 5

times. Each run was started with random parameters.

122



The estimated parameters of utility function are shown guFé[€5. On average, each
actor would change a relationship about every 40 days. Thea&ed parameters of the
utility function are similar to those in Enron dataset. Heeg in this model, people are
less likely to create a random tigj( = —3.3254) and are more likely to form reciprocated
connections 8y = 2.7963). People prefer the “popularity effect/sf = 0.1382) more than
the “activity effect” (37 = 0.0881) in this model.

The conditional intensity matrices of the observationafle are shown in Figute®.6. If
there is a reciprocated link between actoand B, A will try to contact B about every 3 or
4 days. About 20 percent of the timé,will send a text message, and A will call directly
the remaining 80 percent of the time. On average, each ceatien lasts for 5 minutes. If
there is only a single linkd — B betweenA and B, A contactsB about every 10 days on
average. If there is no connection betwetand B, they almost never call each other.

Similar to the experiment on the Enron dataset, we used ttimaed parameters as
the true parameters of the model and calculated the praotyabi(Y;;(t) = 1), fori,j =
1,...,92, 7 # j using the Metropolis-Hastings sampling algorithm. We sl 0000
trajectories to estimate the probability. Adjacency ntasi of the network at different time
are shown in Figure8.7. Figuke 6.7(d) shows the static coines in this model.

In the matrices, actors are aligned according to their ifleations. The first 13 rows
(and columns) represent actors whose identification araami. The next 25 rows represent
students from the MIT Sloan Business School and the last\wd represent people from the

MIT Media Lab. The three matrices are different. We can satttiere are some stable links

123



k.l i
[ —0.3094 x 1075 0.0074 x 1079 0.2998 x 10=% 0.0022 x 1077 |
977.5440 —977.5440 0 0
0,0
00 0 —00 0
i o0 0 0 —00 |
[ —0.1723 x 1073 0.1232 x 1073 0.0144 x 1073 0.0347 x 1073 ]
977.8032 —977.8032 0 0
0,1
00 0 —00 0
i 00 0 0 —00 |
—0.0960  0.0792  0.0144 0.0024
999.5496 —999.5496 0 0
1,0
00 0 —00 0
00 0 0 —00
—0.3000  0.2088  0.0624 0.0288
287.3160 —287.3160 0 0
1,1
00 0 —00 0
00 0 0 —00

Figure 6.6: Conditional intensity matrix of reality miningtaset. (Time unit is one day)

124



? Sloan

Media Lab

| ‘e ' . .
| 1 - L
P« " L I
Il- - -
LI | L I
At T L T o
- - n ST i .
-, s Ay
-
1
- I-
1
1 . -

(a) Aug-19-2004

(b) Nov-17-2004
FR . T

(c) Feb-15-2005

(d) Static

Figure 6.7: Reality mining adjacency matrix at differemés.

125




in the network. However, we also observe many relationshgmge with time, which shows
that the network structure is dynamic. Most of the links desin the diagonal boxes in the
figure. This is very reasonable since people usually onletigs with people within their

community. This to some extent verifies the correctness pbfradel.

6.4 Conclusion

We provide a sampling-based learning algorithm for cordimstime social network models
and provide results for a model with 2500 variables. We aéseetbp a hidden social network
dynamics model in which indirect observation of the netwoak be used, and we develop
an MCMC sampling algorithm for it. Our method is simple andyeto implement. The

idea of the algorithm is general and can be easily extendeth& continuous-time systems.
For social networks, we provide a learning method that isebéhan the previous method
of moments estimation, particularly when data is scarcefamon occurrence in sociology
studies). We demonstrate results on learning a dynamialsoetwork with approximately

9000 variables from indirect observations. These two adeamgreatly extend the types of

social dynamic data that can be analyzed.

126



Chapter 7

Conclusion

Continuous time Bayesian networks (CTBNSs) allow us to malj@lamic systems in con-
tinuous time. Their structured representation also allawdo exploit the independencies
among the variables of a dynamic system. However, exaatenée in CTBNSs is often in-
tractable for large systems. Therefore, an approximagtrenice algorithm is needed in many
applications.

In this dissertation, we have presented an approximateeinée algorithm for CTBNs
using importance sampling. Our algorithm generates wejlsamples by naturally sim-
ulating the CTBN we are reasoning about. The approximateeggpion of any function
of the trajectory can be calculated using these weightedokessn We naturally extended
the algorithm to sequential Monte Carlo methods, such ascfeafiltering and smoothing.
A Metropolis-Hastings algorithm for CTBNs was also devadpased on the importance

sampling algorithm.

127



We then applied CTBN models and our approximate inferengerihm to learn social
network dynamics. We argued that a number of sociology nsddelsocial network dynam-
ics can be viewed as time-variant CTBNs. Therefore, our mgmze sampling algorithm can
be used to develop a maximum likelihood estimation algoritiive also proposed the hidden
social network dynamic model, which allows indirect obsgions of social networks. Our
experiments on real world data, such as emails and phohégalamong people, showed
that our model learned social network dynamics effectively

As we can see from Chaptér 4, the networks used in our expetinage already at the
limit size for exact inference method. Real world applioas, such as the social networks
we dealt with in Chaptdil 6, often contain thousands of véembThus, approximate infer-
ence approaches are very important for reasoning aboutndgreystems. The algorithms
that we developed using importance sampling provide anlsinvpy to reason about com-
plex dynamic systems. Our algorithms differ from other @ponmate inference approaches
for CTBNS in a number of key ways. In our algorithms, samples generated by natu-
rally simulating the dynamic system we are reasoning ab®hus, our algorithm does not
depend on complex numeric computations. The transitioegifor variables are sampled
from regular exponential distributions in our algorithmhieh can be done in constant time.
Our importance sampling based algorithms are fast and sitopimplement. They can be
used to calculate the expected value of any function of adtajy, including the expected
sufficient statistics that are necessary for expectatiamtmization for parameter estimation

with missing data. The idea of our importance sampling dllgor is general; it can be ex-

128



tended to other continuous-time dynamic systems. Besm@alsietwork dynamic models,

as demonstrated in the present dissertation, the idea dadlgarithm has also been applied

D

to inference in a continuous-time probabilistic programgilianguage [Pfeffar, 2009].

For social networks, our learning method not only achiewvetselp estimation accuracy
than previous methods but also can deal with data with aryitobservations (including
duration observations and missing observations), whicimgossible for previous social
network estimation methods. In addition, our hidden saweivork dynamic model utilizes
social events among people as indirect observations to sanial network dynamics. Since
missing observations and asynchronous observations ayeceenmon in social network
data, our model allows more types of social dynamic data tanadyzed.

The proposal distribution we used in our importance sangpéifgorithm is based on
forward sampling algorithm. We only “force” the behaviortbe variable we are sampling
according to its upcoming evidence. The advantage of thapgsal distribution is that it
is very fast and easy to implement. However, only considgetire upcoming evidence of
the sampled variable sometimes is misleading. This is éspetrue when the correlation
among variables are strong. We can obtain a better propasgebdtion by considering the
evidence of both the variable itself and those in its Marktanket. However, this involves
more variables which requires more complex computatiomsghvresults in longer running
times. It would be very intriguing to find a method to balanlse tomputation complexity

and the goodness of the proposal distribution.

129



Bibliography

Carolyn J. Anderson, Stanley Wasserman, and Bradley CroAgbt primer: logit models
for social networksSocial Networks21:37—-66, January 1999.

K.O. Bowman and L.R. Shenton. Method of momeiiscyclopedia of Statistical Scienges
5:467-473, 1985.

Ido Cohn, Tal El-Hay, Nir Friedman, and Raz Kupferman. Meaitdfvariational approxi-
mation for continuous-time Bayesian networks.RAroceedings of the Twenty-Fifth Con-
ference on Uncertainty in Artificial Intelligenc009.

Thomas Dean and Keiji Kanazawa. A model for reasoning abexsigience and causation.
Computational Intelligences(3):142—-150, 1989.

A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likeldebfrom incomplete data
via the EM algorithm.Journal of the Royal Statistical Society 8:1-38, 1977.

Arnaud Doucet, Nando de Freitas, and Neil Gordon, editSexjuential Monte Carlo Meth-
ods in Practice Springer-Verlag Telos, 2001.

Nathan Eagle and Alex Sandy Pentland. Reality mining: sgnsbmplex social systems.
Personal Ubiquitous Computindg0(4):255-268, 2006.

Tal El-Hay, Nir Friedman, and Raz Kupferman. Gibbs sampiméactorized continuous-
time Markov processes. IRroceedings of the Twenty-Fourth Conference on Uncestaint
in Artificial Intelligence pages 169-178, 2008.

ESRC Research Centre on Micro-social Change. British Hmidganel survey. Computer
Data File and Associated Documentation. http://www.essex.ac.uk/bhps, 2003. Colch-
ester: The Data Archive.

Yu Fan and Christian R. Shelton. Sampling for approximaference in continuous time
Bayesian networks. liProceedings of the Tenth International Symposium on Adific
Intelligence and Mathematic2008.

Yu Fan and Christian R. Shelton. Learning continuous-tiowad network dynamics. In
Proceedings of the Twenty-Fifth International ConfereanéJncertainty in Artificial In-
telligence 20009.

130


http://www.iser.essex.ac.uk/bhps

Robert M. Fung and Kuo-Chu Chang. Weighing and integratiigemce for stochastic
simulation in Bayesian networks. Proceedings of the Fifth Annual Conference on Un-
certainty in Artificial Intelligencepages 209-220, 1989.

S. Godsill, A. Doucet, and M. West. Monte Carlo smoothing fion-linear time series.
Journal of the American Statistical Associatj@9:156—168, 2004.

Fan Guo, Steve Hanneke, Wenjie Fu, and Eric Xing. Recoveengporally rewiring net-
works: A model-based approach. Pmoceedings of the 24th International Conference on
Machine Learningpages 321-328, 2007.

Ralf Herbrich, Thore Graepel, and Brendan Murphy. Strietistom failure. InProceed-
ings of the 2nd USENIX workshop on Tackling computer syspeoidems with machine
learning techniquegages 1-6. USENIX Association, 2007.

Tim Hesterberg. Weighted average importance sampling efehdive mixture distributions.
Technometrics37(2):185-194, 1995.

Peter D. Hoff, Adrian E. Raftery, and Mark S. Handcock. Latgpace approaches to so-
cial network analysis.Journal of the American Statistical Associatjd@:1090-1098,
December 2002.

Paul W. Holland and Samuel Leinhardt. An exponential familgrobability distributions for
directed graphsJournal of the American Statistical Associatjaf6(373):33-50, March
1981.

Mark Huisman and Christian Steglich. Treatment of non-oesg in longitudinal network
studies.Social Networks20:297-308, October 2008.

David R. Hunter and Mark S. Handcock. Inference in curvedesntial family models for
networks.Journal of Computational Graphical Statistics5:565-583, September 2006.

Kin Fai Kan and Christian R. Shelton. Solving structuredtocarous-time Markov decision
processes. IRroceedings of the Tenth International Symposium on Adifiotelligence
and Mathematics2008.

Johan H. Koskinen and Tom A.B. Snijders. Bayesian inferéocdynamic social network
data.Journal of Statistical Planning and Inferenck37:3930-3938, 2007.

David Liben-Nowell and Jon Kleinberg. The link predictioroplem for social networks.
In CIKM '03: Proceedings of the twelfth international confece on Information and
knowledge managemeiptages 556-559, 2003.

Lynn Michell and Amanda Amos. Teenage friends and lifestgledy dataset.
http://stat.gamma.rug.nl/sniders/s50data.htm, 1997.

131


http://stat.gamma.rug.nl/snijders/s50data.htm

Thomas P. Minka. Expectation propagation for approximaageBian inference. IRro-
ceedings of the Seventeenth Conference on Uncertaintytifickat Intelligence pages
362-369, 2001.

Brenda Ng, Avi Pfeffer, and Richard Dearden. Continuoustparticle filtering. InPro-
ceedings of the Nineteenth International Joint ConferasrcArtificial Intelligence pages
1360-1365, 2005.

Uri Nodelman and Eric Horvitz. Continuous time Bayesianwaks for inferring users’
presence and activities with extensions for modeling araduation. Technical Report
MSR-TR-2003-97, Microsoft Research, December 2003.

Uri Nodelman, Christian R. Shelton, and Daphne Koller. @uardus time Bayesian net-
works. InProceedings of the Eighteenth International Conferenc&oecertainty in Arti-
ficial Intelligence pages 378-387, 2002.

Uri Nodelman, Christian R. Shelton, and Daphne Koller. bé&sg continuous time Bayesian
networks. InProceedings of the Nineteenth International Conferencé&Joeertainty in
Artificial Intelligence pages 451-458, 2003.

Uri Nodelman, Daphne Koller, and Christian R. Shelton. Etaton propagation for contin-
uous time Bayesian networks. Rtoceedings of the Twenty-First International Conference
on Uncertainty in Artificial Intelligencepages 431-440, 2005a.

Uri Nodelman, Christian R. Shelton, and Daphne Koller. Etggon maximization and
complex duration distributions for continuous time Bagesnetworks. IrProceedings of
the Twenty-First International Conference on UncertaimArtificial Intelligence pages
421-430, 2005b.

J. R. Norris.Markov Chains Cambridge University Press, 1997.
Judea PearlProbabilistic Reasoning in Intelligent SystenMorgan Kauffman, 1988.

Avi Pfeffer. Ctppl: A continuous time probabilistic progreming language. li®Proceedings
of the 21st International Joint Conference on Artificialdiigence pages 1943-1950,
2009.

William H. Press, Saul A. Teukolsky, William T. Vetterlingnd Brian P. FlannerfNumerical
Recipes in CCambridge University Press, second edition, 1992.

Suchi Saria, Uri Nodelman, and Daphne Koller. Reasoningetight time granularity. In
Proceedings of the Twenty-third Conference on Uncertamii, pages 421-430, 2007.

Purnamrita Sarkar and Andrew W. Moore. Dynamic social neétvwanalysis using latent
space modelsSIGKDD Explor. News].7(2):31-40, 2005.

132



Ross D. Shachter and Mark A. Peot. Simulation approachestergl probabilistic inference
on belief networks. IrfProceedings of the Fifth International Conference on Utaiety
in Artificial Intelligence pages 221-234, 1989.

Jitesh Shetty and Jafar Adibi. The Enron email dataset databchema and brief statistical
report, 2004, http://www.IsI.eduadibli/Enron/Enron.htm.

Tom A.B. Snijders.Models for Longitudinal Network Datahapter 11. Cambridge Univ.
Press, New York, 2005.

Tom A.B. Snijders, Christian E.G. Steglich, and Michael 8emberger. Modeling the co-
evolution of networks and behavior. Llongitudinal models in the behavioral and related
scienceschapter 4. Lawrence Erlbaum, 2007.

Christian Steglich, Tom A. B. Snijders, and Patrich West. pfmg SIENA: An illustra-
tive analysis of the co-evolution of adolescents’ frierigsetworks, taste in music, and
alcohol consumptionMethodology2:48-56, 2006.

Stanley Wasserman. A stochastic model for directed grajthstransition rates determined
by reciprocity. In K. Schuessler, edit@pciological Methodologyages 392—-412. Jossy-
Bass, 1979.

Stanley Wasserman. Analyzing social networks as stoahasicesseslournal of the Amer-
ican Statistical Associatiqry5:280-294, 1980.

Greg C. G. Wei and Martin A. Tanner. A Monte Carlo implemeiatabf the EM algorithm
and the poor man’s data augmentation algorithithsAm. Stat. Assp85(411):699-704,
1990.

Jing Xu and Christian R. Shelton. Continuous time Bayeseiwarks for host level network
intrusion detection. Ifturopean Conference on Machine Learnipgges 613-627, 2008.

133


http://www.isi.edu/~adibi/Enron/Enron.htm

Appendix A

Background Materials

A.1 Markov Chain Monte Carlo

Let X be a vector of random variables with state speeé( X ). Let = be a distribution over

X . To estimate the expectation of a functipfX)

E[f(X)] = / f(@)n(x)da, (A1)

the Markov chain Monte Carlo method generates a sequencangflesz’) € Val(X),
t = 1,...,n by constructing a Markov chain and running it for a long tiniehe Markov

chain is constructed such that its stationary distribuigthe desired distribution(X).

134



Then Equatiof /All can be approximated by

A.1.1 Markov Chain

Let {X©@ xX® X®@ 1 be asequence of random variables such that at each time,
the distribution of the next stat& ') depends only on the current staXé?. That is, given
the current stat&X ), the next stat&X “*V) is independent of the past stafeX ¥, ..., X (=1},
We denote this distribution é6(X® — X*Y). The sequence is called a Markov chain.
The distribution7 is called the transition model of the chain. We assume Thé time-
invariant.

Assume thatX V), the state at = 0, is from some initial distributior?® (X ). The

distribution of the state at each stes
PUD(X D) = /) = /p(t)(X(t) =x)T (x — =')dz.

A finite-state Markov chain is called an ergodic chain if #hexistst such that for any
statex andx’, PW(X® = z) > 0. If we let an ergodic Markov chain run for a long time,

it converges to a unique stationary distribution which deesdepend oX (V). In particular,

135



let »(X) be the stationary distribution of the Markov chaif{.X ) satisfies
WX =)= [oX ~)T (@~ )iz, (A2)
If a Markov chain7 and a distributionr satisfy the following
m(@)T (v — z') = ()T (z' — x), (A.3)
thenr and7 satisfy EquatioRl/ARR2, since

/ ()T (x — o' )dx = / (") T (2 — x)dx
xzeVal(X) zcVal(X)
= W(m’)/ T (x' — x)dx
xzeVal(X)

= 7(a').
EquatiorTAB is called the detailed balance equation.

A.1.2 MCMC Sampler

EquationCA:B shows us one way to generate a sequence of dapgesamples from a dis-
tribution 7. The samples are generated through a Markov chain haviag its stationary

distribution. This is called Markov chain Monte Carlo (MCNC

136



Specifically, suppose we would like to generate samples &danget distributionr (X).
We define a Markov chain via the state spacé/ef(X ). For each pair of states, ' €
Val(X), we construct the transition modél of the Markov chain such that Equatibn’/A.3 is
satisfied. If we run the Markov chain for a long time, the disition of the state sequence
approaches to the desired distribution

Given the initial state distributio®) (X') and the transition moddr, the MCMC sam-

pling procedure can be described as follows.
1. Samplex® from P©) (X).
2. Repeat the followingyV times:
Samplex™ from T (z® — X).
3. Returnz®, ... ™.

Typically, the initial samples are not completely valid Aase the Markov Chain has not
converged. Samples at the beginning iterations of a MCMCamenusually thrown away.
These initial samples are called “burn-in” samples.

Different choices of the transition modélof the Markov chain result in different MCMC
algorithms. We introduce the Gibbs sampling algorithm drelMetropolis-Hastings algo-

rithm in the following two sections.

137



A.1.3 Gibbs Sampling Algorithm

Suppose we can decompaXeinto d component$ Xy, ..., X;). The Gibbs sampler defines
the transition probability of the Markov chain to be the citiethal distributionz(X;| X _,),
where X _; represents all the variables (X, . . ., X;) exceptX;. That is, in each iteration,
the Gibbs sampler only changes the value of one componentix@slthe values of other
variables as evidence.

Formally, we describe the Gibbs sampler as follows. £ét = (w@, e :cff)) be the

value of X at iterationt. Let m(_tz be the values of all the componentstaxceptX;. At

iterationt + 1, we do the following steps:
e Randomly picki from (1, ..., d) with probability 1/d.

o Sampler!"™ from 7 (X;| X _; = ")), while leaving all the other variables unchanged.

Thatis, letz""™ = ).

2

It can be shown that at every step, the detailed balance ttomés satisfied.

w1z, )@V |2Y) = () r (@ |2 ) () |2Y)

—1

=r(2{", ) (2" =)

A.1.4 Metropolis-Hastings Sampling Algorithm

The Gibbs sampling algorithm requires sampling from theditional distributionr (X;| X _;).
However, in many applications, samples cannot be genefededr(X;| X _;) efficiently.

138



The Metropolis-Hastings algorithm provides a more genesay to construct the Markov
chain with the desired stationary distribution.

Unlike the Gibbs sampler, the Metropolis-Hastings aldontgenerates the next-state
samples using a proposal distributi@i¥?, where7® defines a distribution over possible
successor states inal( X ). The Metropolis-Hastings sampler starts with a randonestagt
x® be the state at iteration In each iteration, the Metropolis-Hastings algorithmfpens

the following two steps:
e Samplex’ from the proposal distributiof @ (z*) — x').

e Drawu from the uniform distribution1(0, 1) and update

'  ifu< Az — )
(t+1)

xY  otherwise

where the acceptance probabilityfz — ') is defined as

m(x)T9(x' — x)
m(x)T9(x — o)

A(x — ') =min |1,

For any stater £ «/, the transition model” for the Metropolis-Hastings algorithm is

()T (x' — x)

T(x—x)= TQ(m — z')min |1, (@) Tz — o)

139



Hence,

m(x)T (x — ') =n(x)T?(z — 2')min |1,

=min [r(z/)T9 (' — z),n(x)T%(x — )] ,

which is a symmetric function ik andx’. Thus, the detailed balance condition is satisfied.

If X can be decomposed intbcomponent§ Xy, ..., X,), it is often more convenient
and computationally efficient to update one component a.tilmaexgt) denote the value of
X, at iterationt. Let m(_tz be the values of the remaining variables. In each iteratm,
pick a componenk;, fix the value of all the other components, and updgteccording to
its proposal distributiorQ; (X;|z\”, ). We accept the new sampled stateof X; with

probability

A((@?,2Y)) — (2}, 2

i =1

®)

—1

)) =min |1,

Notice that if we pick the proposal distributiap; to bew(X,-|m(_tZ), we accept the new
state ofX; with probability 1 in each iteration, which is just the Gibksmpling algorithm.

Thus, the Gibbs sampling algorithm is a special case of thiedgdelis-Hastings algorithm.

140



A.2 Expectation Maximization

The expectation maximization (EM) aIgoritth.[.[lempsLeﬂx: BO7T] is an iterative opti-

mization method to estimate the parameters of probalgilistidels in the presence of miss-

ing or hidden data. Letbe the parameter of the probabilistic model we are tryingtmeate.
Let X denote the observed incomplete data. Yedenote an assignment to the unobserved
variables. The EM algorithm finds the parametésuch that the posterior probability 6f

given the datak’ is maximized. That is,
0" = argmax ; PO,Y|X). (A.4)

Notice that maximizing Equatidn_A.4 is equivalent to maximg the logarithm of the

joint distribution
0" = arg max log P(A, X) = arg max logZP(é, V,X) (A.5)
Yy

sinceP (0, X) < P(0|X) and the logarithm function is monotonically increasing.

We can rewrite the logarithm of the joint distribution as

08 P(6.) =105 Y~ P(0.7. %) = 1oz Y- (0 ZE25,
y

141



whereq’()) is an arbitrary probability distribution ovey. Using Jensens inequal]lywe

have

P0,Y,X)
q'(Y)
P0,Y,X)
q"(Y)

log P(6,X) =log > ¢"()) (A.6)
y

> d'(V)log
Yy

We can see that Equati@n A.6 provides a lower bounddgi® (0, X'). The idea behind
the EM algorithm is to start with some initial paramet€y and alternatingly compute the
lower bound in Equatio’/Al6 and compute! that maximizes the bound. The EM algorithm
will eventually converge to a local maximut of the objective function, provided that the
lower bound improves at each iteration.

Maximizing this lower bound with respect td gives
¢ (Y)=P0",X). (A.7)

This is called the expectation step (or E-step), which mékedound tight. Having the op-
timal lower bound, we then maximize it with respecttdReplacing;’()) with P()|6*, X)

in EquatiofAY, we have

LJensens inequality states that, for any concave fungtion, p; f (z;) > f(>_, piz;) where}", p; = 1.

142



P,y X)
g ¢' (V) log 70 (A.8)

=Y PO, X)1og P(0,Y,X) = > P(V|0', X)log P(V|6', X)
y y
=" P8, X)log P(Y, X|6)P ZP Yo', X)log P(V)6", X)
Yy
=" PYIF", X)log P(V, X[0) + > P(V|6", X)log P(0)
Yy Yy
=) PIE, X)log P(V|0, X)
Yy

:Ep(y|9t7)() [log P(y, X|9)] + log P(Q) — Ep(y|9t7)() [P(y|6’t, X)]

The first term in Equatioli’Al8 is the expected log-likelih@ddomplete data with respect
to P(Y|6", X). The second term is the logarithm of the prior distributiéparameter). The
last term is the entropy adP()’|#*, X'). Since the last term does not dependlpmaximizing
EquatiorTAB with respedt is equivalent to maximizing only the first two terms. Thust ou

maximization problem can be written as

6t = arg max Epyjot x)[log P(Y, X|0)] + log P(6) (A.9)

= arg max Q(0]0") + log P()

whereQ(0|0") = Ep(yjer,xy[log P(Y, X|0)]. This is called the maximization step (or M-

step).

143



The EM procedure can be summarized as follows:
1. Initialize 8©) randomly or based on some prior knowledge.

2. lteratively improve the estimate 6fby alternating the following two steps until con-

vergence.

E-Step: CalculateEp(yg: x)[log P(Y, X|6)].

M-Step: 0! = arg max, Q(0]0%) + log P(0)

In the E-step, we need to calculate the log-likelihood ofdkpected complete data. In
many situations, the likelihood of the data can be calcdlatng sufficient statistics. For
example, in the exponential family of models such as cowtiisiime Bayesian networks, the
likelihood of the data is represented using sufficient stias as shown in Equati¢n8.1 and
B2. Therefore, it is equivalent to calculating the expécgfficient statistics in the E-step.

In the M-step, the optimization incorporates the prior misition of the parametef.

EquatiorZAD can be rewritten as

9t+1 = arg meax Ep(y|9t7)() [log P(y, X|9)] + log P(Q)

= argmax Ep(yjor,x)[log P(V, X|0) P (6)]

i POy, X)
— sxgmgx Eporo 108 00 )

= argmax Ep(yjg,x) [log P(0]Y, X)],

144



which means that it is a maximum a posteriori (MAP) estinatid we assume that evety

is equally probable, the M-step is equivalent to
9t+1

= arg mGaX EP(y\Gt,X) [IOgP(yv X|9)] )

which is a maximum likelihood estimation.

145



	List of Figures
	Introduction
	Continuous Time Bayesian Networks
	Inference in CTBNs
	Modeling Social Network Dynamics
	Outline and Contribution

	Continuous Time Markov Processes
	Representation
	Likelihood and Sufficient Statistics
	Query of Markov Process
	Summary

	Continuous Time Bayesian Network
	Structured Process Representation
	The CTBN Model
	Model Definition
	Conditional Independencies
	Joint Markov Process

	Sufficient Statistics and Likelihood
	Inference in CTBNs
	Evidence and Queries
	Exact Inference in CTBNs
	Approximate Inference in CTBN

	CTBN Parameter Estimation
	Summary

	Importance Sampling for CTBNs
	Forward Sampling
	Importance Sampling in CTBNs
	Simple Evidence
	General Evidence
	Predictive Lookahead

	Particle Filtering
	Particle Smoothing
	Markov Chain Monte Carlo for CTBNs
	Gibbs Sampling
	Metropolis-Hastings Algorithm

	Experimental Results
	Networks
	Evaluation Method
	Experimental Results: Inference Task
	Task in Parametric Estimation

	Conclusion

	Continuous-Time Social Network Dynamic Model
	Background
	Social Network Dynamic Models
	Static Social Network Models
	Discrete-time Model
	Continuous-time Models

	Network-attribute Co-evolution Model
	Parameter Estimation
	Summary

	Learning Social Network Dynamics
	Sampling for Learning Social Networks
	Importance Sampling for Network-attribute Co-evolution Model
	Maximum Likelihood Estimation

	Hidden Social Network Dynamics Model
	Model Definition
	Metropolis-Hastings Sampling Algorithm
	Parameter Estimation

	Experimental Results
	Network-attribute Co-evolution Model
	Hidden Social Network Dynamics Model

	Conclusion

	Conclusion
	Bibliography
	Background Materials
	Markov Chain Monte Carlo
	Markov Chain
	MCMC Sampler
	Gibbs Sampling Algorithm
	Metropolis-Hastings Sampling Algorithm

	Expectation Maximization


