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Abstract. Chess endgame tables encode perfect information to inform heuris-
tic search and permit error-free play once the root position is within them. We
introduce a new approach to their minimization, and demonstrate better probe
performance than the state-of-the-art.
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1 Introduction

Chess play has been studied for over a century, decades before computing science it-
self existed as a discipline [41,24,31,38,25,5,27,8]. Today, machines are substantially
stronger Chess players than top human experts, and the same can be said regarding
many other similar traditional human games.

1.1 Game-theoretic error-free endgame play

A Chess endgame table (EGT) is a precomputed, known-correct source of information
about Chess endgame positions. The first Chess EGTs were computed by Ströhlein [36];
seven-piece EGTs were first computed by Zakharov et al. [40] on the Lomonosov super-
computer, using tens of tebibytes. Chess engines that reach such pre-tabulated positions
from within their heuristic searches can propagate back an exact score, which can be
used either to improve on-line game play or to improve the accuracy and efficiency of
off-line reinforcement learning [32] via endgame table rescoring [21].

1.2 State-of-the-art Chess endgame data compression

Syzygy [22] EGTs are predominantly used at present because they are more compact
than any widely-available alternative, while also being acceptably efficient to query.
Syzygy has coverage for positions where en passant is possible, but has no data for
where some castling right exists. By design, Syzygy stores misleading values for po-
sitions containing legal captures that achieve better compression: correct querying of
them requires the concomitant use of a capture-based quiescence search and minimax-
ing the resulting values. We use (an updated version of) Fathom [13] to provide these
capabilities.

For each material balance (the set of pieces remaining, for each player) covered,
Syzygy includes both a win-draw-loss (WDL) table, and a distance-to-zeroing-move
(DTZ) table. WDL alone is sufficient to avoid entering a game-theoretically-suboptimal
position and to determine the result of a game, as has been previously achieved in
Checkers [30], so we do not consider DTZ further.
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1.3 Approach

A Chess EGT may be viewed as a partial function that maps a subset of Chess positions
to game-theoretic outcomes. We employ two-level logic minimization to represent this
function in a compact form. Binary decision diagrams [7] have been used for a related
purpose in domains such as Connect Four [12]. In Section 2, we review two-level logic
minimization, and explain how we encode Chess positions as logic bits. We discuss the
experiments we undertake in Section 3, and summarize our contributions in Section 4.

2 Two-level logic minimization

Consider a partial function P : {0, 1}n → {0, 1}m. An equivalent total function T :
{0, 1}n → {0, 1, X}m exists, where an output of X indicates that we do not care
which truth value is assigned to that output. The straightforward tabular representation
of T would always contain 2n rows. For succinctness, we use a matrix representation
M : {0, 1, X}n → {0, 1, X}m of P , where an input of X indicates that the row is
applicable regardless of the instantiated truth value of that input. Thus, a single row of
matrix M with k inputs set to X is equivalent to specifying the 2k compatible rows of
the tabular representation of T .

The union of the input vectors where any of the outputs is assigned to either 1, 0, or
X is considered to be part of the ON-cover (or F , for function), the OFF-cover (or R,
for reverse), or the DC-cover (or D, for “don’t care”), respectively. Each such cover is
the sum of clauses; each clause (or “cube”) is the product of individual inputs.

Definition 1. Two-level logic minimization is the task of, having been provided with
some matrix M that is consistent with P , identifying a matrix M ′ that is also consistent
with P whose covers of interest have minimum cardinality.

We first discuss a few important algorithms from the electronic design automa-
tion (EDA) literature; see Coudert [9] for coverage of additional historically-important
techniques. We then describe the mapping from Chess endgame table data to {0, 1, X}-
vectors and how to employ logic minimization in this context.

2.1 MINI

The MINI logic minimizer [20] introduced the heuristic approach of iteratively improv-
ing cover cardinality via repeated cube expansion and reduction.

Positional cube notation As with one-hot encodings used in machine learning, posi-
tional cube notation (PCN) maps each specific value of an input variable to a different
bit. Doing so permits efficient cube operations to be performed via bitwise logical oper-
ators. A multiple-valued input variable over the domain {ant, bee, cat} could be mapped
as: ant → 100; bee → 010; cat → 001. In contrast to a one-hot encoding, 111 is also
valid PCN, representing “do not care”. For each binary input variable v, PCN reduces
to a bit pair v̄v: 0 → 10; 1 → 01; X → 11.
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Distance-one merging Hong et al. [20] report using merging two cubes that disagree
on only a single variable for “computational advantage”, as in these three examples:

before 0X01100 100X010 X011001
0X11100 10XX010 X0X1001

after 0XX1100 10XX010 X0X1001

MINI iterates over each such input variable once, updating the sorted ordering of
M ′ prior to processing each variable to ensure that the clauses are ordered to permit all
potential merges involving that variable via a linear scan through the product clauses.

Expansion Distance-one merging is a particular form of cube expansion, which is the
process of enlarging a cube so that it (hopefully) includes as many as possible of the
minimum product terms, or minterms, of M ′ that must be covered, while avoiding cov-
ering any product terms that must not be covered (the collection of which constitutes
the blocking cover). Any cube that is completely covered by another may be discarded,
thereby reducing the cardinality of M ′.

Reduction Once expansion has occurred, many cubes that partially overlap may cover
the same minterms. Cube reduction is the process of shrinking a cube while ensuring
that it continues to cover all minterms not already covered by any other cube. This can
allow the cube to later grow in a different direction for better overall minimization.

2.2 ESPRESSO

Irredundancy (Introduced by Brayton et al. [6]) While expansion alone can eliminate
many cubes, it does not eliminate any cube that does not end up completely encom-
passed by a single other cube. The irredundancy pass within ESPRESSO’s expansion-
irredundancy-reduction main loop exists to prioritize the cardinality minimization of
M ′ via the detection and removal of such cubes that are nonetheless redundant with
respect to multiple other cubes in advance of performing any reduction that could cause
an available opportunity for cube removal to be forfeited.

Distance-one merging Like MINI, the ESPRESSO implementation used does support
the ability to apply distance-one merging across multiple variables of the ON-cover in
sequence. Though this capability is not enabled by default, the espresso(1) manual
page suggests its use.

2.3 Pupik

Pupik [15,16] is based on processing ternary trees that represent Boolean functions
[14]. It repeatedly performs single-variable absorption and complementation to com-
bine cubes. We observe that a single distance-one merge encompasses both of those
operations, and that the full procedure described in Fišer et al. [15] is precisely equiv-
alent to performing distance-one merging over F . The asymptotic analysis performed
therein naturally does not account for practical benefits of the matrix representation
such as its memory locality and amenability to bit vector operations.
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2.4 A simple position encoding scheme

The Chess position encoding we use retains the traditional top-level division of Chess
endgame positions by their material balance to permit straightforward comparison with
the substantial body of prior work. More importantly, the scheme selected is relatively
uninformed about Chess. Not only do our input vectors contain no machine-learned
features, they also fail to manually capture basic Chess notions such as whether the
player to move is in check or has at least one legal move that can be played. We have
stayed far away from using any sort of bitboard representation [1] that could cause logic
minimization-based image processing techniques [4,11,29] to become applicable. No
counters are used; even the specific material balance in use is not encoded. Furthermore,
we make no application of concepts that might assist logic minimization itself such as
multiple-valued variables or reflected binary (a.k.a. Gray) coding. By doing so, we hope
to convince the reader of the generality of the compression technique.

The input to the logic minimizer contains a matrix description of the universe of dis-
course: 0000010000000010000001001010 is an example row of T . Of the 25
input bits, the first is 1 iff Black is to move. Chess boards contain 26 potential piece lo-
cations, so a sextet is used to specify the placement of each piece. Pieces are recorded in
KQRBNPkqrbnp order. The final triplet is a multi-valued variable indicat-
ing whether White wins, draws, or loses with best play, or that we do not care. Were we
processing the KNkp table, the row above would be interpreted as follows: White is
to move; the white king is on c8; the white knight is on a8; the black king is on a6; the
black pawn is on b7; White has a draw with best play. The complete table T for each
four-piece material balance contains 225 rows.

Note the austere simplicity of this representation. Extensive efforts have been made
to identify indexing schemes that include all legal positions for a material balance, but
as few additional illegal positions as possible [19,37,18,23]. It is also common for mul-
tiple indexing order permutations to be attempted for each material balance: once it is
determined which variant turns out to yield the smallest file size after a subsequent layer
of block compression is applied, the necessary data required to select which scheme is
to be used for decompression is recorded near the beginning of the file. Instead, we rely
upon logic minimization to combine adjacent cubes with compatible outputs.

This representation also permits labelling large blocks of positions with the same
output vector a priori. For example, all positions where a black pawn is on the eighth
rank are illegal. We could specify that we do not care about any such positions within the
KNkp table using a single matrix row: XXXXXXXXXXXXXXXXXXX000XXXXXX.
For simplicity, we do not currently represent either castling or en passant rights.

2.5 Method

We construct one matrix M per material balance, where each row represents a (possibly
illegal) position and its associated game-theoretic outcome. We then employ logic min-
imization to construct a more compact matrix M ′. We begin with iterated distance-one
merging. Then, one or more ESPRESSO operators (e.g., expansion) are applied.

To probe the game-theoretic value of a position, the query position is encoded as
aforementioned. Then, the M ′ for the appropriate material balance is scanned linearly
until a match is found. The output bits of the matching entry dictate the returned result.
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3 Experimentation

We explore the trade-off between the minimization time and quality, then compare the
resulting on-disk size and time to query endgame positions our method and Fathom.

3.1 Two- and three-piece endgame tables

Our first experiment manipulates three processing conditions while processing the two-
and three-piece tables: whether iterated distance-one merging is or is not performed;
whether a single expansion pass or the full ESPRESSO algorithm will be executed;
whether or not canonicalization is used. This last condition is explained immediately
below, followed by discussing the results of this first experiment.

Canonicalization Symmetries in Chess endgames (and in other puzzles and games)
have long been exploited [26,2,17,33,34,35,10,28]. A simply example of symmetry ex-
ploitation is that the Syzygy (and our) EGTs do not include the Kkq material bal-
ance. When needed, the KQk table is probed using the inverted position, and the
result translated. Additional symmetries do exist, especially in pawnless endgames.

For each equivalence class of positions defined by the available symmetries for
a material balance, we designate one in particular as the canonical representation for
which WDL data is recorded. All other positions within the equivalence class are as-
signed exclusively to the DC-cover. The probing operation must then translate to the
canonical position during querying.

Results We perform experiments on two- and three-piece endgames. Regardless of the
processing condition under test, for each of the trivially-drawn material balances (Kk,
KBk, and KNk), the ON-cover consistently resolves to a single row with all inputs
marked as don’t care and the outputs indicating a drawn result. We are nonetheless
able to observe striking performance differences with the remaining material balances
(KQk, KRk, and KPk).

Cumulatively, 194 602 clauses in F exist between the six endgame tables under
consideration prior to iterated distance-one merging; versus just 29 920 clauses in F
afterward. This early 6.5x reduction in cubes yields a significant processing time ad-
vantage for the immediately following expansions, and moreover, takes negligible time
to perform. Accordingly, we always apply iterated distance-one merging in our experi-
ments hereafter, and not just to F , but also to R and to D.

Canonicalization causes a large majority of positions in each endgame under con-
sideration to be classified as don’t care, which substantially increases the opportunities
for cube expansion, and thus for ON- and OFF-cover cardinality minimization. We do
acknowledge that the use of canonicalization effectively slips some slight amount of do-
main knowledge into our lossless compression algorithm. However, symmetry exploita-
tion is not inherently Chess-specific, and this same (and even more) domain knowledge
is also exploited by Syzygy EGTs, which serves as our standard for comparison. As
with iterated distance-one merging, the benefit is so clear that we always apply this
process hereafter.
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Executing the complete ESPRESSO algorithm improves ON-cover cardinality ver-
sus performing only a single expansion pass, but the associated time penalty is no-
ticeable. Thus, we proceeded to further investigate this tradeoff with larger material
balances.
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Fig. 1: (a) Time versus compression comparison for running ESPRESSO to completion versus
performing just a single expansion and irredundancy pass. Each data pair, which is denoted by the
dashed line connecting two dots, represents an endgame. The input to all endgames depicted was
preprocessed using both iterated distance-one merging and canonicalization. (b) A comparison
of the resulting cardinality of the ON-cover for the iterating versus the non-iterating treatment,
using the same data as (a). Four-piece endings with two pieces per side tend to be more complex
than those where one side has only a king, and so tend to require more cubes to be accurately
represented.

3.2 Two- through four-piece results

We now additionally include four-piece endgames in our exploration. The processing
treatment that has been added is to apply iterated distance-one merging, expansion,
and irredundancy, but without subsequent iteration of the ESPRESSO reduce-expand-
irredundant main loop.

We observe that applying a single irredundancy pass after the expansion pass is
both quick and effective at reducing the cardinality of F . Figure 1(a) illustrates that
iterating the main loop of ESPRESSO extracts improvements only at a relatively high
cost in time; Figure 1(b) provides an alternate view showing clearly that the ON-cover
cardinality reduction achieved for this extra effort is not great. Furthermore, there is
every reason to expect that iteration time will increase with problem size.

Exerting additional effort to continue to reduce cover cardinality may be particularly
valuable in the electronics manufacturing context. For example, simpler circuits are
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associated with using either fewer lookup tables (LUTs), or less die space and power.
However, the extra effort of iterating until improvement can no longer be found does
not appear to be an efficient use of our limited processing power. Given our intention
to obtain usable compressed PCN versions of larger EGTs as economically as possible,
applying iterated distance-one merging, expansion, then irredundancy appears to be our
best trade-off.

3.3 Compression effectiveness

103 105

compressed PCN size (bytes)

102

103

104

105

106

re
co

m
pr

es
se

d
Sy

zy
gy

W
D

L
si

ze
(b

yt
es

)

3 pieces
4 pieces, K -k
4 pieces, K -k
totals

10−5 10−3

PCN query time (sec)

10−6

10−5

10−4

10−3

10−2

Sy
zy

gy
W

D
L

qu
er

y
tim

e
(s

ec
)

mean
marginal densities

(a) (b)

Fig. 2: Comparison of our method versus Syzygy WDL. (a) Table sizes: Each point represents
one material balance; points above the diagonal line represent tables for which our method out-
performs Syzygy. Note the log-scale: tables to the right and top dominate the total compression
size. (b) Query performance: Joint density (across 10M random queries) of the query time for our
method and Syzygy. Again, note the log-scales. Our method has a faster mean query time (39 µs
versus 138 µs) and smaller standard deviation (41 µs, compared with 258 µs).

Each product clause in F generated when using iterated distance-one merging, ex-
pansion, and irredundancy is representable in PCN in 64 bits with room to spare. We
generate a binary file per material balance containing each row in PCN sorted lexico-
graphically, then compress it via xz -9 -e. Figure 2(a) contrasts the space consumed
on disk by our method with the Syzygy endgame tables after being recompressed with
xz -9 -e. For the 2-, 3-, and 4-piece endings, our method does require 47% more
space than the recompressed Syzygy EGTs. Given that there has been a half-century of
endgame table technology development leading to the Syzygy format, and that numer-
ous opportunities to improve compression results using our novel method remain, we
are comfortable claiming that this method of lossless compression has some promise.
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3.4 Query effectiveness

We sampled uniformly with replacement to obtain ten million four-piece Chess endgame
positions. We place a white king on any of 64 squares, then a black king on any of
64 squares, then any non-king on any of 64 squares, then any non-king on any of 64
squares, then select the side to move. Any non-legal position is then discarded. Note
that castling and en passant rights are never present.

All ten million positions are first probed to verify correctness of the result returned.
Afterwards, all ten million positions are probed a second time for timings capture.
Fathom is used to probe Syzygy; our method linearly scans the minimized ON-cover
for a matching cube.

Figure 2(b) shows the density plot of the joint distribution of query times. Densities
above the diagonal are positions that took longer for Syzygy; those below took longer
for our method. The mean time (above the diagonal) is shown, along with the marginal
densities. Our probes are on average both substantially faster (39 µs versus 138 µs) and
exhibit lower variability (a standard deviation of 41 µs versus 258 µs), which demon-
strates the viability of the approach.

4 Contributions

Logic minimization techniques have previously been applied widely within EDA, and
also within image processing-like and stream compression contexts [39,3]. We pro-
vide a top-level explanation of two-level logic minimization, clarify some relationships
between techniques described within its literature, and demonstrate superior probing
performance when using this method to losslessly compress Chess endgame tables.
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