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Abstract
A continuous time Bayesian network (CTBN) uses a structured representation to describe a dynamic sys-

tem with a finite number of states which evolves in continuous time. Exact inference in a CTBN is often
intractable as the state space of the dynamic system grows exponentially with the number of variables. In this
paper, we first present an approximate inference algorithm based onimportance sampling. We then extend it
to continuous-time particle filtering and smoothing algorithms. These three algorithms can estimate the ex-
pectation of any function of a trajectory, conditioned on any evidence setconstraining the values of subsets of
the variables over subsets of the time line. We present experimental results on both synthetic networks and a
network learned from a real data set on people’s life history events. Weshow the accuracy as well as the time
efficiency of our algorithms, and compare them to other approximate algorithms: expectation propagation and
Gibbs sampling.
Keywords: continuous time Bayesian networks, importance sampling, approximate inference, filtering,
smoothing

1. Introduction

Many real world applications involve highly complex dynamic systems. These systems usually contain a
large number of stochastic variables, which evolve asynchronously in continuous time. Such dynamic sys-
tems include computer networks, sensor networks, social networks, mobile robots, and cellular metabolisms.
Modeling, learning and reasoning about these complex dynamic systems is an important task and a great
challenge.

1.1 Structured Process Representation

A central task of the above applications is to calculate probability distributions of the system over time. For
instance, we may wish to know the distribution over when a variable will change next or the state of a current
variable, given past (partial) evidence. However, as the number of the variables increases, the state space of
the distribution grows exponentially. Such growth makes the inference task very difficult for large systems.
One solution is to use structured representation to factorize the state space according to the dependencies of
the variables. For dynamic systems, Dynamic Bayesian Networks (DBNs) (Dean and Kanazawa, 1989) are
commonly used. A DBN describes the dynamic system as a time-sliced model by measuring the evolution of
the system with a (usually fixed) time interval∆t . The transition probabilities from states at timet to states
at timet +∆t are represented by a Bayesian network. DBNs can work well forsystems that are observed at
regular time steps. However, for many applications, discretizing time has several limitations. First, we usually
choose a fixed time interval,∆t. In many real world systems, variables evolve at different time granularities.
Some variables may evolve very fast whereas some evolve veryslowly. Choosing an appropriate time interval
is a difficult task. Larger∆t may result in an inaccurate model while smaller∆t may cause inference in the
model to be inefficient.
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Second, the dependencies of the transition model are unstable with respect to∆t. That is, different choices
of ∆t may result in different network structures betweent and t + ∆t. The network structure represents
independencies between variables att and∆t. This is a function of∆t, both theoretically and empirically
(Nodelman et al., 2003). If∆t is an inherent parameter of the process, this is not a problem. However, if it
is chosen for estimation or computational reasons, this becomes an issue as its choice is not unique. Finally,
DBNs (and discrete-time Markov processes in general) do notnecessarily correspond to processes that are
Markovian outside of the sampled instants of time. Considerthat if T is the transition matrix for a process
with time interval∆t, T1/2 is the transition matrix for the same process with time interval ∆t

2 . However, such
a square root may not exist in the space of real matrices. Therefore, there may not be any simple extension
of a DBN to the times between the sampled instants.

An alternative and more natural approach to model dynamic systems is to use a continuous-time model.
For systems with a finite number of states, one way is to consider the entire system as a continuous-time
discrete-state Markov process. Like discrete-time processes, this method suffers from the fact that the state
space of the process grows exponentially with the number of variables in the system. Recently, Nodelman
et al. (2002) extended this framework to acontinuous time Bayesian network(CTBN), which factorizes a
system into local variables using a graphical representation, much as a DBN does for a discrete-time pro-
cess. Parameter estimation in CTBNs with fully observed data and partially observed data were provided
in Nodelman et al. (2003) and Nodelman et al. (2005b) respectively. Because CTBNs explicitly represent
the temporal dynamics in continuous time and explore the dependencies among stochastic variables using a
structured representation, they have been applied to various real world systems, including human-computer
interactions (Nodelman and Horvitz, 2003), server farm failures (Herbrich et al., 2007), robot monitoring
(Ng et al., 2005) and network intrusion detection (Xu and Shelton, 2008). Kan and Shelton (2008) used the
CTBN representation in their solution of structured continuous-time Markov decision processes.

Queueing theory (Bolch et al., 1998) and Petri nets (Petri, 1962) provide an alternative continuous-time
structured process models. However, they make different assumptions about the structure. They were de-
signed to answer questions about steady-state distributions. Their algorithms are not suited to learning from
partial data nor to answering many statistical questions. Asingular and recent exception is the work of Sutton
and Jordan (2008) which applied Gibbs sampling to queueing models.

1.2 Prior CTBN Inference Methods

In CTBNs, a trajectory (or sample) consists of the starting values for the system along with the (real-valued)
times at which the variables change and their correspondingnew values. Inference for a CTBN is the task
of estimating the distribution over trajectories given a partial trajectory (in which some values or transitions
are missing for some variables during some time intervals).Inference plays a central role as it not only helps
us answer queries about distributions, but it is also involved in parameter estimation when the observation
data is incomplete. Performing exact inference in a CTBN requires constructing a single rate matrix for the
entire system and computing the exponential of the matrix, which is often intractable: the exponentiation
must be performed separately for each period of constant evidence and (more problematic) even a sparse rep-
resentation of the matrix may not fit in memory. Thus, many applications of CTBNs require an approximate
inference method. A method based on expectation propagation (Minka, 2001) was presented in Nodelman
et al. (2005a). Saria et al. (2007) extended it to full beliefpropagation and provided a method to adapt the
approximation quality.

Other approximate inference methods are based on sampling.They have the advantage of being anytime
algorithms. (We can stop at any time during the computation and obtain an answer.) Furthermore, in the limit
of infinite samples (computation time), they converge to thetrue answer.

As we note below, because time is a continuous variable, any evidence containing a record of the change in
a variable has a zero probability under the model. Thereforerejection sampling and straightforward likelihood
weighting are generally not viable methods.

Ng et al. (2005) developed a continuous-time particle filtering algorithm. However, it only handles point
evidence on binary and ternary discrete variables using rejection sampling and focuses primarily on the incor-
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poration of evidence from a continuous-state part of the system (which we do not consider here). Recently,
El-Hay et al. (2008) provided another sampling algorithm for CTBNs using Gibbs sampling. The algorithm
starts from an arbitrary trajectory that is consistent withthe evidence. Then, in each iteration, it randomly
picks one variableX, and samples an entire trajectory for that variable by fixingthe trajectory of all the other
variables. Since onlyX is not fixed, the conditioned cumulative distribution thatX stays in one state less
thant and the state transition probabilities can be calculated exactly using standard forward and backward
propagation within the Markov blanket ofX. The Gibbs sampling algorithm can handle any type of evidence
and it provides an approach to sample from the exact posterior distribution given the evidence. However, the
posterior distribution can be any arbitrary function. To sample exactly from it, binary search has to be applied
andF(t) is repeatedly evaluated, which may affect the efficiency of the algorithm.

1.3 Outline of This Work

In this paper we explore a different sampling approach usingimportance sampling. Our algorithm generates
weighted samples to approximate the expectation of a function of the trajectory. It differs from previous
approaches in a number of key ways. There is no exact inference method involved in our approach. Thus,
our algorithm does not depend on complex numeric computations. The transition times for variables are
sampled from regular exponential distributions in our algorithm, which can be done in constant time. Our
algorithm can be adapted to a population-based filter (a particle filter). It can handle both point and continuous
evidence, is simple to implement, and can be easily extendedto continuous time systems other than CTBNs.
The formulation of this sampling procedure is not trivial due to the infinite extent of the trajectory space,
both in the transition time continuum and the number of transitions. The algorithm was first presented in Fan
and Shelton (2008). This paper extends that work by comparing the algorithm to the newly developed Gibbs
sampling algorithm (El-Hay et al., 2008), evaluating its performance on parameter learning with partially
observed data, and demonstrating its performance on real-world networks.

The remainder of the paper is structured as follows. In Section 2, we briefly describe the notation for
CTBNs. In Section 3, we describe our importance sampling algorithm for CTBNs and extend the algorithm
to particle filtering and particle smoothing algorithms. InSection 4, we describe our experiment results.

2. Continuous Time Bayesian Networks

We first briefly describe the definition, likelihood, and sufficient statistics of the CTBN model. We then
review the exact inference and parameter estimation algorithms for CTBNs.

2.1 The CTBN Model

Continuous time Bayesian networks (Nodelman et al., 2002) are based on the framework of continuous time,
finite state, homogeneous Markov processes (Norris, 1997).Let X be a continuous time, finite state, homo-
geneous Markov process withn states{x1, . . . ,xn}. The behavior ofX is described by the initial distribution
P0

X and the transition model which is often represented by the intensity matrix

QX =




−qx1 qx1x2 · · · qx1xn

qx2x1 −qx2 · · · qx2xn
...

...
.. .

...
qxnx1 qxnx2 · · · −qxn


 ,

whereqxix j is the intensity with whichX transitions fromxi to x j andqxi = ∑ j 6=i qxix j . The intensity matrix
QX is time invariant. GivenQX, the transient behavior ofX can be described as the following:X stays in
statexi for an amount of timet and transitions to statex j . t is exponentially distributed with parameterqxi .
That is, the probability density function and the corresponding distribution function forX staying in statexi
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Exercise

Weather Body Weight

Calorie Intake

Figure 1: CTBN Example: Weight Control Effect

are

f (qxi , t) = qxi exp(−qxi t), t ≥ 0.

F(qxi , t) = 1−exp(−qxi t), t ≥ 0.

The expected time of transitioning is 1/qxi . Upon transitioning, the probabilityX transitions from statexi to
x j is θxix j = qxix j/qxi .The distribution over the state ofX at timet can be calculated as

PX(t) = P0
X exp(QXt)

whereP0
X is the distribution overX at time 0 represented as a row vector, and exp is the matrix exponential.

To model a dynamic system containing several variables, we can consider the whole system as one vari-
able, enumerate the entire state space, calculate the transition intensity of each pair of these states and put
them into a single intensity matrix. However, the size of thestate space grows exponentially with the number
of variables in the system, which makes this method infeasible for large systems.

Nodelman et al. (2002) defined acontinuous time Bayesian network(CTBN), which uses a graphical
model to provide a compact factored representation of continuous time Markov process. A CTBN models
each local variableX as an inhomogeneous Markov process, whose parametrizationdepends on some subset
of other variablesU. The intensity matrix ofX is called a conditional intensity matrix (CIM) QX|U, which is
defined as a set of intensity matricesQX|u, one for each instantiationu of the variable setU. The evolution
of X depends instantaneously on the values of the variables inU.

LetX be a dynamic system containing several variablesX. A continuous time Bayesian networkN over
X consists of two components: aninitial distribution P0

X
, specified as a Bayesian networkB overX, and

a continuous transition model, specified using a directed (possibly cyclic) graphG whose nodes areX ∈X.
Let UX denote the parents ofX in G . Each variableX ∈X is associated with a conditional intensity matrix,
QX|UX

.

Example 1 Assume we want to model the behavior of a person controlling his body weight. When the
person is overweight, he may exercise more to lose the excessweight. Increasing exercise intensity tends
to increase his appetite, which will increase his daily calorie intake. Both exercise intensity and calorie
intake contribute to his body weight. Furthermore, the exercise intensity also depends on the weather. Such
a dynamic system contains four variables: body weight, exercise, calorie intake, and weather. Each variable
changes in continuous time and its change rate depends on thecurrent value of some other variables.

We can use a CTBN to represent such behavior. The dependencies of these four variables are depicted
using a graphical structure, as shown in Figure 1. The quantitative transient dynamics for each variable is
represented using a conditional intensity matrix. Let us assume all the four variables are binary. Let B(t)
be the person’s body weight ( Val(B(t)) = {b0 = normal,b1 = overweight}), E(t) be the exercise intensity
(Val(E(t) = {e0 = light,e1 = heavy}), C(t) be his daily calorie intake ( Val(C(t) = {c0 = low,c1 = high})
and W(t) be the weather ( Val(W(t) = {w0 = rainy,w1 = sunny}). The conditional intensity matrices for the
four variables can be specified as
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QW QW =

[
−0.5 0.5

0.5 −0.5

]
,

QE|W,B

QE|w0,b0
=

[
−0.1 0.1

2 −2

]
, QE|w1,b0

=

[
−0.3 0.3

1 −1

]
,

QE|w0,b1
=

[
−0.5 0.5

0.5 −0.5

]
, QE|w1,b0

=

[
−1 1

0.1 −0.1

]
,

QC|E QC|e0
=

[
−0.2 0.2

1 −1

]
, QC|e1

=

[
−1 1

0.2 −0.2

]
,

QB|E,C

QB|e0,c0
=

[
−0.2 0.2

0.8 −0.8

]
, QB|e1,c0

=

[
−0.1 0.1

1 −1

]
,

QB|e0,c1
=

[
−1 1

0.1 −0.1

]
, QB|e1,c1

=

[
−0.2 0.2

0.6 −0.6

]
.

Notice that unlike Bayesian networks, the CTBN model allowscycles. The transient behavior of each
local variable is controlled by the current value of its parents. If the person is doing light exercise and his
calorie intake is low, the dynamics of his body weight are determined by the intensity matrixQB|e0,c0

. If the
time unit is one month, we expect his weight will go back to normal in1/0.8= 1.25months if he is currently
overweight and doing light exercise and controlling his daily calorie intake.

We can also use a single continuous time Markov process to represent this network, which requires an
intensity matrix of size16× 16. To generate the single intensity matrix, we can follow the amalgamation
algorithm in Nodelman et al. (2002). Basically, we enumerate the entire state space(W,E,C,B), and assign
intensity 0 to transitions that change two variables simultaneously. For any transition involving only one of
the variables, simply use the entry from the appropriate intensity matrix above. The resulting matrix is

w0e0c0b0



−1 0.5 0.1 0 0.2 0 0 0 0.2 0 0 0 0 0 0 0
0.5 −1.2 0 0.3 0 0.2 0 0 0 0.2 0 0 0 0 0 0
2 0 −3.6 0.5 0 0 1 0 0 0 0.1 0 0 0 0 0
0 1 0.5 −2.6 0 0 0 1 0 0 0 0.1 0 0 0 0
1 0 0 0 −2.6 0.5 0.1 0 0 0 0 0 1 0 0 0
0 1 0 0 0.5 −2.8 0 0.3 0 0 0 0 0 1 0 0
0 0 0.2 0 2 0 −2.9 0.5 0 0 0 0 0 0 0.2 0
0 0 0 0.2 0 1 0.5 −1.9 0 0 0 0 0 0 0 0.2
0.8 0 0 0 0 0 0 0 −2 0.5 0.5 0 0.2 0 0 0
0 0.8 0 0 0 0 0 0 0.5 −2.5 0 1 0 0.2 0 0
0 0 1 0 0 0 0 0 0.5 0 −3 0.5 0 0 1 0
0 0 0 1 0 0 0 0 0 0.1 0.5 −2.6 0 0 0 1
0 0 0 0 0.1 0 0 0 1 0 0 0 −2.1 0.5 0.5 0
0 0 0 0 0 0.1 0 0 0 1 0 0 0.5 −2.6 0 1
0 0 0 0 0 0 0.6 0 0 0 0.2 0 0.5 0 −1.8 0.5
0 0 0 0 0 0 0 0.6 0 0 0 0.2 0 0.1 0.5 −1.4




.

w1e0c0b0
w0e1c0b0
w1e1c0b0
w0e0c1b0
w1e0c1b0
w0e1c1b0
w1e1c1b0
w0e0c0b1
w1e0c0b1
w0e1c0b1
w1e1c0b1
w0e0c1b1
w1e0c1b1
w0e1c1b1
w1e1c1b1

As we include more variables in this system, the size of the intensity matrix grows exponentially with the
number of variables.

2.2 Likelihood and Sufficient Statistics

The probability density over trajectoriesσ of a set of variablesX described by a CTBN belongs to the
exponential family. Therefore, the distribution of a CTBN can be described in terms of the sufficient statistics
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of σ (Nodelman et al., 2003). LetT[x|u] be the amount of timeX = x while UX = u, andM[x,x′|u] be the
number of transitions fromx to x′ while UX = u. If we let M[x|u] = ∑x′M[x,x′|u], the probability density of
trajectoryσ (omitting the starting distribution) is

PN (σ) = ∏
X∈X

LX(T[X|UX],M[X|UX]) (1)

where

LX(T[X|UX],M[X|UX]) = ∏
u

∏
x

(
qM[x|u]

x|u exp(−qx|uT[x|u]) ∏
x′ 6=x

θM[x,x′|u]
xx′|u

)
(2)

is the local likelihood for variableX. The likelihood also decomposes by time. That is, the likelihood of a
trajectory on[0,T) is equal to the likelihood based only on sufficient statistics from time 0 to timet multiplied
by the likelihood based only on sufficient statistics from timet to timeT.

2.3 Evidence and Queries

Given a CTBN model, we would like to use it to answer queries conditioned on observations. There are
two common types of observations: point evidence and continuous evidence. Point evidence represents the
observation of the value of some variables at a particular time instant. Continuous evidence provides the
behavior of some variables throughout an interval[t1, t2). For instance,x= 1 during the interval[2,3.5), or
x= 1 from t = 2 to t = 3 and thenx transitions tox= 0 att = 3 and stays in that state untilt = 5. We define
x[t1 : t2) be the behavior of variableX on the interval[t1, t2), x[t1 : t2] be the behavior ofX on the interval
[t1, t2] andx(t1 : t2] be the behavior ofX on the interval(t1, t2].

Queries can ask about the marginal distribution of some variables at a particular time, such as the dis-
tribution of x andy at t = 2, or questions about the timing of a transition, such as the distribution over the
time thaty transitions fromy= 1 toy= 2 for the first time in the interval[1,4). In learning (especially when
employing expectation-maximization), we might query the expected sufficient statistics of a CTBN, which
include the total amount of time that a variable spends in a state, and the total number of times that a variable
transitions from one state to another state under certain conditions. For example, we might want to know the
total amount of time thatx= 0 throughout the entire interval, or the number of times thatx transitions from 1
to 2 during the time interval[2,3) wheny= 0. In this paper, we will concentrate on answering queries given
the continuous evidence, but our method can be trivially extended to point evidence.

2.4 Exact Inference in CTBNs

A CTBN can be viewed as a homogeneous Markov process with a large joint intensity matrix amalgamated
from the CIMs of the CTBN. Exact inference in a CTBN can be performed by generating a single joint
intensity matrix over the entire state space of the CTBN and running the forward-backward algorithm on the
joint intensity matrix of the homogeneous Markov process. We review this method here, but a more complete
treatment can be found in Nodelman et al. (2002).

Assume that we have a partially observed trajectoryσ of a CTBNN from 0 to T. We can divide the
evidenceσ into N intervals[ti , ti+1) (i = 0, . . . ,N−1) according to the observed transition times. That is, each
interval contains a constant observation of the CTBN, andti is the time that a variable begins to be observed,
stops being observed, or is observed to transition. We sett0 = 0 andtN = T.

To perform exact inference, we first generate the intensity matrix Q for the joint homogeneous Markov
process and incorporate the evidence intoQ. If each variableXi in the CTBNN hasni states, the number of
states of the joint Markov process isn= ∏ni andQ is ann×n matrix. The value of the off-diagonal element
qi j in Q for which only one variable value is different between states i and j is the corresponding intensity in
the CIM of that variable. All the other off-diagonal elements are zero since two variables can not transition
at exactly the same time in a CTBN. The diagonal elements are computed to make each row sum to zero.

To incorporate the evidence, we reduce the joint intensity matrix Q to Qi for each interval[ti , ti+1) by
zeroing out the rows and columns ofQ which represent states that are inconsistent with the evidence. Addi-
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tionally, letQi, j be the matrixQ with all elements zeroed out except the off-diagonal elements that represent
the intensities of transitioning from non-zero rows inQi to non-zero columns inQ j . If evidence blocksi
and j differs only in which variables are observed (no transitionis observed between them), thenQi, j is the
identity matrix instead.

exp(Qi(ti+1− ti)) represents the transition matrix for interval[ti , ti+1) andQi,i+1 corresponds to the tran-
sition probability density between two consecutive intervals at timeti+1. We can use the forward-backward
algorithm for Markov process to answer queries.

We define the forward and backward probability vectorsαt andβt as

αt = p(Xt ,σ[0,t)),

βt = p(σ[t,T)|Xt) .

Letα0 be the initial distributionP0
X over the state andβT be a vector of ones. The forward and backward

distribution vector for each interval can be calculated recursively:

αti+1 = αti exp(Qi(ti+1− ti))Qi,i+1,

βti = Qi−1,i exp(Qi(ti+1− ti))βti+1 .

The distribution over the state of the CTBN at timet ∈ [ti , ti+1) given the evidenceσ[0,T) can be computed
as

P(Xt = k,σ[0,T)) =αti exp(Qi(t− ti))∆k,k exp(Qi(ti+1− t))βti+1 (3)

where∆i, j is an n× n matrix of zeros with a single one in positioni, j. Other queries can be similarly
computed.

2.5 CTBN Parameter Estimation

Given a set of trajectoriesD = {σ1,σ2, . . . ,σn} and a fixed graphical structure, we would like to estimate the
parameters (the conditional intensity matrix) of the CTBN model.

When the data setD is complete, where each trajectoryσi is a complete set of state transitions and the
times at which they occurred, the parameters can be learned by maximizing the log-likelihood of the data set
(Nodelman et al., 2003). According to Equation 1 and Equation 2, the log-likelihood can be written as the
sum of the log-likelihood for each local variable. By maximizing the log-likelihoods, the parameters can be
derived as

q̂x|u =
M[x|u]
T[x|u] ; θ̂xx′|u =

M[x,x′|u]
M[x|u] . (4)

When the data set is incomplete, the expectation maximization (EM) algorithm (Dempster et al., 1977)
can be used to find the maximum likelihood parameters (Nodelman et al., 2005b). The EM algorithm begins
with an arbitrary initial parameter assignment, and alternatively repeats the expectation step and maximization
step until convergence. In expectation step, for each trajectory σi ∈ D, expected sufficient statistics̄M[x|u],
M̄[x,x′|u] andT̄[x|u] are computed using exact inference. In maximization step, new parameters are computed
according to Equation 4 as if the expected sufficient statistics came from complete data.

3. Sampling-based Inference

As we described in the previous section, exact inference in aCTBN can be performed by generating a single
joint intensity matrix over the entire state space. As the number of states is exponential in the number of the
nodes in the network, this approach is infeasible when the network size is large. In this section we describe
an algorithm for approximate CTBN inference based on importance sampling.
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ProcedureCTBN-Sample(tend)
1. t← 0, σ← /0
2. For each variableX ∈X

Choose statex(0) according toθBX|paB (X)
.

Loop:
3. For each variableX such thatTime(X) is undefined:

Choose∆t for nextX transition from an exponential with parameterqx(t)|uX(t).
DefineTime(X)← t +∆t

4. LetX = argminX∈X [Time(X)]
5. If Time(X)≥ tend return σ
6. Updatet← Time(X)
7. Choosex(t), the next value ofX, from the multinomial with parametersθx(t)|uX(t).

Add 〈X← x(t), t〉 to σ.
UndefineTime(X), andTime(Y) for all variablesY for which X ∈ UY.

Figure 2: Forward sampling semantics for a CTBN

3.1 Forward Sampling

Queries that are not conditioned on evidence can be answeredby randomly sampling many trajectories and
looking at the fraction that match the query. More formally,if we have a CTBNN we generate a set of
particlesD = {σ[1], . . . ,σ[M]} where each particle is a sampled trajectory. WithD we can estimate the
expectation of any functiong by computing

ÊN [g] =
1
M

M

∑
m=1

g(σ[m]) . (5)

For example, if we letg= 1{x(5) = x1} then we could use the above formula to estimatePN (x(5) = x1). Or
the functiong(σ) might count the total number of times thatX transitions fromx1 to x2 while its parentU
has valueu1, allowing us to estimate the expected sufficient statisticM[x1,x2|u1]. The algorithm for sampling
a trajectory is shown in Figure 2. For each variableX ∈X, it maintainsx(t)—the state ofX at timet—and
Time(X)—the next potential transition time forX. The algorithm adds transitions one at a time, advancing
t to the next earliest variable transition. When a variableX (or one of its parents) undergoes a transition,
Time(X) is resampled from the new exponential waiting time distribution. We useuX(t) to represent the
instantiation to parents ofX at timet.

If we want to obtain a conditional probability of a query given evidence, the situation is more complicated.
We might try to userejection sampling: forward sample to generate possible trajectories, and then simply
reject the ones that are inconsistent with our evidence. Theremaining trajectories are sampled from the
posterior distribution given the evidence, and can be used to estimate probabilities as in Equation 5. However,
this approach is entirely impractical in our setting, as in any setting involving an observation of a continuous
quantity—in our case, time. In particular, suppose we observe thatX transitions fromx1 to x2 at timet. The
probability of sampling a trajectory in which that transition occurs at precisely that time is zero. Thus, if we
have evidence about transitions, with probability 1, none of our sampled trajectories will be relevant.

3.2 Gibbs Sampling

Recently, El-Hay et al. (2008) provided a Markov Chain MonteCarlo (MCMC) procedure which used a
Gibbs sampler to generate samples from the posterior distribution given the evidence.

Suppose we want to sample trajectories from a CTBN withn variables(Xi ,X2, . . . ,Xn) given the evidence
e. The Gibbs sampler starts with an arbitrary trajectory thatis consistent with the evidence. In each iteration,
the sampler randomly picks one variableXi and samples the entire trajectory ofXi by fixing the trajectories
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of the other variablesY = {X1, . . . ,Xi−1,Xi+1, . . . ,Xn} as evidence. To generate the entire trajectory ofXi

according to the evidencee, the states and transitions ofXi need to be sampled in those intervals thatXi is
not observed according to the evidence. The trajectory in each unobserved interval ofXi can be generated
by alternatively sampling transition time∆t and new statex from the posterior distribution givene and the
trajectories of the other variablesY.

Assume we are sampling the trajectory ofX for the interval[0,T], andXi(0) = x0, Xi(T) = xT . The
transition time∆t is sampled by inverse transform sampling: first drawξ from the[0,1] uniform distribution
and set∆t = F−1(ξ), whereF−1(ξ) is the inverse of the conditional cumulative distribution functionF(t)
thatXi stays in statex0 for a time less thant:

F(t) = 1−Pr(Xi(0 : t] = x0|x0,xT ,Y[0 : T]) .

F(t) can be calculated by decomposingPr(Xi(0 : t] = x0|x0,xT ,Y[0 : T]) using the Markov property of
the process:

Pr(Xi(0 : t] = x0|x0,xT ,Y[0 : T]) =
α̃(t)β̃x0(t)

β̃x0(0)

where

α̃(t) = Pr(Xi(0 : t] = x0,Y[0 : t]|x0,Y0),

β̃x(t) = Pr(xT ,Y(t : T]|Xi(t) = x,Y(t)) .

α̃(t) andβ̃x(t) can be calculated using a slightly modified version of the standard forward-backward algorithm
described in Section 2.4. Using the fact thatXi is independent of all the other components given the entire
trajectory of its Markov blanket, the computation ofα̃(t) andβ̃(t) can be limited toXi and its Markov blanket
(the parents ofXi , the children ofXi , and the children’s parents).

Since the conditional cumulative distribution functionF(t) can be arbitrarily complex, the inverse func-
tion F−1(t) can not be solved analytically. Finding∆t that satisfiesF(∆t) = ξ is performed using a two-step
searching method: first find the interval[τk,τk+1] that satisfiesF(τk) < ξ < F(τk+1), whereτk are the tran-
sition points of the Markov blanket ofXi . Then∆t is found by performing anL step binary search on the
interval [τk,τk+1].

The transition probability thatXi transitions fromx(0) to a new statex can be calculated similarly:

Pr(Xi(t
+) = x|Xi(0 : t] = x(0),Y(0 : T]) =

qXi |Y
x0,x β̃x(t)

∑x′ 6=x0
qXi |Y

x0,x′
β̃x′(t)

.

The Gibbs sampling algorithm can handle any type of evidence. The sampled trajectories are guaranteed
to be consistent with the evidence. However, sampling the transition time∆t requires using a binary search
algorithm and repeatedly computing the conditional cumulative distribution functionF(t), which may require
long running time.

3.3 Importance Sampling

In this section, we introduce another approximate inference method using importance sampling, which does
not require computing the exact posterior distribution. This method first appeared in Fan and Shelton (2008).

In importance sampling, we generate samples from a proposaldistributionP′ which guarantees that our
sampled trajectories will conform to our evidencee. We must weight our samples to correct for the fact that
we are drawing them fromP′ instead of the target distributionPN defined by the CTBN. In particular, ifσ is
a sample fromP′ we set its weight to be

w(σ) =
PN (σ,e)

P′(σ)
. (6)
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In normalized importance sampling, we draw a set of samplesD = {σ[1], . . . ,σ[M]} i.i.d. from the proposal
distribution, and estimate the conditional expectation ofa functiong given evidenceeas

ÊN [g | e] =
1
W

M

∑
m=1

g(σ[m])w(σ[m])

whereW is the sum of the weights.
This estimator is consistent if the support ofP′ is a superset of the support ofPN . In general,ÊN is

biased and the bias decreases asO(M−1). The variance of the estimator also decreases asO(M−1). For more
information on this and related sampling estimates, see Hesterberg (1995).

For our algorithm, we base the proposal distribution on the forward sampling algorithm. As we are
sampling a trajectory, we occasionally depart from the regular forward sampling algorithm and “force” the
behavior of one or more variables to ensure consistency withthe evidence.

3.4 Simple Evidence

The simplest query involves evidence over some subset of variablesV ⊂X for the total length of the tra-
jectory. We force only the behavior of the variablesV and there are no choices about how to do that. In
particular, we use the following proposal distribution: forward sample the behavior of variablesX ∈ (X \V )
inserting the known transitions at known times for variables inV as determined by the evidence. As there
are no choices in our forcing, the likelihood of drawingσ from the proposal distribution is just the likeli-
hood contribution of forward sampling the behavior of the variablesX ∈ (X \V ), in the context of the total
behavior of the system.

According to Section 2.2,x[t1 : t2) can be summarized by the sufficient statistics overX on the inter-
val [t1, t2). Let L̃X(x[t1 : t2)) be a partial likelihood contribution function, computed byplugging the suf-
ficient statistics ofx[t1 : t2) into Equation 2. The partial contribution function can be defined over a col-
lection of intervalsI as L̃X(I ) = ∏x[t1 : t2)∈I L̃X(x[t1 : t2)). Returning to our simple evidence above, let

τ1 < τ2 . . . ,τn−1 < τn be all the transition times inσ[0,T), τ0 = 0 andτn+1 = T. The likelihood of drawingσ
from the target distributionPN is

L̃N (σ) = ∏
X∈X

n

∏
i=0

L̃X(x[τi : τi+1))

Let L̃′X(x[t1 : t2)) be the corresponding probability density for our sampling procedure. Since we force the
values and transitions of variables inV according to the evidence, the probability that we sample aninterval
x[τi : τi+1) for X ∈ V from proposal distributionP′ is always 1. Therefore, the likelihood of drawingσ from
the proposal distributionP′ is

L̃′N (σ) = ∏
X∈X

n

∏
i=0

L̃′X(x[τi : τi+1))

= ∏
X∈(X\V )

n

∏
i=0

L̃X(x[τi : τi+1))× ∏
X∈V

n

∏
i=0

1.

To compute the proper weightw(σ) we substitute in Equation 6, and get

w(σ) =
PN (σ,e)

P′(σ)
=

∏X∈X ∏n
i=0 L̃X(x[τi : τi+1))

∏X∈(X\V ) ∏n
i=0 L̃X(x[τi : τi+1))

= ∏
X∈V

n

∏
i=0

L̃X(x[τi : τi+1)).

Therefore, the weightw(σ) is the likelihood contribution of all the variables inV . This algorithm exactly
corresponds tolikelihood weightingin Bayesian networks (Shachter and Peot, 1989; Fung and Chang, 1989).

2124



IMPORTANCESAMPLING FOR CONTINUOUS TIME BAYESIAN NETWORKS

Intuitively, this makes sense because we can account for allthe evidence by simply assigning the observed
trajectories to the observed variables.

3.5 General Evidence

Now, consider a general evidence patterne, in which we have time instants where variables become observed
or unobserved. How can we force our trajectory to be consistent with e? Suppose there is a set of variables
which has evidence beginning atte. We can not simply force a transition at timete to make the variables
consistent with the evidencee: if the set contains more than one variable, the sample wouldhave multiple
simultaneous transitions, an event whose likelihood is zero.

Instead, we look ahead for each variable we sample. If the current state of the variable does not agree with
the upcoming evidence, we force the next sampled transitiontime to fall before the time of the conflicting
evidence. To do this, we sample from a truncated exponentialdistribution instead of the full exponential
distribution. In particular, if we are currently at timet and there is conflicting evidence forX at timete > t,
we sample from an exponential distribution with the sameq value as the normal sampling procedure, but
where the sample for∆t (the time to the next transition) is required to be less thante− t. The probability
density of sampling∆t from this truncated exponential is qexp(−q∆t)

1−exp(−q(te−t)) whereq is the relevant intensity for
the current state ofX (the diagonal element ofQX|UX

corresponding to the current state ofX).
The subsequent state is still sampled from the same (forwardsampling) distribution. In Section 3.6 we

explore a more intelligence option. Note that we cannot, in general, transition directly to the evidence state, as
such a transition may not be possible (have 0 rate). Furthermore, if we are still “far away” from the upcoming
evidence, such a transition may lead to a highly unlikely trajectory resulting in an inefficient algorithm.

To calculate the weightw(σ), we partitionσ into two pieces. Letσe be the collection for all variables
X ∈X of intervalsx[t1 : t2) where the behavior ofX is set by the evidence. Letσs be the complement ofσe

containing the collection of intervals of unobserved behavior for all variables. By applying Equation 6, we
have

w(σ) =
PN (σ,e)

P′(σ)

= ∏
x[τi : τi+1)∈σs

L̃X(x[τi : τi+1))

L̃′X(x[τi : τi+1))
× ∏

x[τi : τi+1)∈σe

L̃X(x[τi : τi+1))

L̃′X(x[τi : τi+1))

= ∏
x[τi : τi+1)∈σs

L̃X(x[τi : τi+1))

L̃′X(x[τi : τi+1))
× ∏

x[τi : τi+1)∈σe

L̃X(x[τi : τi+1)). (7)

Based on the distribution we sampled for transition time of the variable in each step, we can further
partitionσs into three pieces:

σsn be the collection for all variablesX ∈X of intervalsx[t1 : t2) where the transition time is sampled
from an exponential distribution.

σst be the collection for all variablesX ∈X of intervalsx[t1 : t2) where the transition time is sampled
from a truncated exponential distribution and the variableis involved in the next transition.

σs f be the collection for all variablesX ∈X of intervalsx[t1 : t2) where the transition time is sampled
from a truncated exponential distribution and the variableis not involved in the next transition.
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Figure 3: (a) Evidence of a CTBN. (b) A sampled trajectory agreeing with the evidence. (c). Partitioning of
the trajectory according to the evidence and the transitions. σe equalsx[τ3 : τ4) andx[τ7 : τ8) (d)
Partitioning of the trajectory based on the different sampling situations.

Therefore, we can rewrite Equation 7 as

w(σ) = ∏
x[τi : τi+1)∈σsn

L̃X(x[τi : τi+1))

L̃′X(x[τi : τi+1))
× ∏

x[τi : τi+1)∈σst

L̃X(x[τi : τi+1))

L̃′X(x[τi : τi+1))

× ∏
x[τi : τi+1)∈σs f

L̃X(x[τi : τi+1))

L̃′X(x[τi : τi+1))
× ∏

x[τi : τi+1)∈σe

L̃X(x[τi : τi+1)). (8)

Example 2 Assume that we are given a CTBN with two binary variables X andY. X has two states x0 and
x1. Y has two states y0 and y1. We have such observation: X is x1 in interval [t1, t2) and [t3,T), as shown
in Figure 3(a). To answer queries based on the evidence, we use the method above to sample trajectories.
Figure 3(b) shows one of the sampled trajectories. To calculate the weight of the trajectory, we partition the
trajectory into four categories (as shown in Figure 3(c) andFigure 3(d)), and apply Equation 8.

According to Equation 8, each time we add a new transition to the trajectory, we advance time fromt to
t+∆t. For each variablex we must update the weight of trajectory to reflect the likelihood ratio forx[t : t+∆t]
based on the distribution we use to sample the “next time” andthe transition variable we select. Each such
variable can be considered separately as their times are sampled independently.

For any variablex whose value is given in the evidence during the interval[t, t +∆t), as we discussed
above, the contribution to the trajectory weight is justL̃N (x[t : t +∆t)). For any variablex[t : t +∆t) ∈ σns,
whose “next time” was sampled from an exponential distribution, L̃X(x[τi : τi+1)) = L̃′X(x[τi : τi+1)) and the
ratio is 1.

Now, we consider segmentsx[t : t +∆t) ∈ σst andx[t : t +∆t) ∈ σs f. The behavior of the variables in
these segments are forced due to upcoming evidence.

For variableX thatx[t : t +∆t) ∈ σst, the variable’s “next time” is sampled from a truncated exponential
distribution and it is part of the next transition. The weight must be multiplied by the probability density of
sampling the transition inPN divided by the the probability density in the sampling algorithm. The former is
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an exponential distribution and the latter is the same exponential distribution, truncated to be less thante− t.
The ratio of these two probabilities is 1−exp(−q(te− t)), whereq is the relevant intensity.

Otherwise,x[t : t +∆t) ∈ σs f, the next time for the variable was sampled from a truncated exponential
but was longer than∆t. In this case, the ratio of the probabilities of a sample being greater than∆t is

1−exp(−q(te−t))
1−exp(−q(te−t−∆t)) . Note that when∆t is small (relative tote− t, the time to the next evidence point for this
variable), the ratio is almost 1. So, while the trajectory’sweight is multiplied by this ratio for every transition
for every variable that does not agree with the evidence, it does not overly reduce the weight of the entire
trajectory.

The algorithm for CTBN importance sampling is shown in Figure 4. To more easily describe the evidence,
we define a few helper functions:

eval
X (t) is the value ofX at timet according to the evidence, or undefined ifX has no evidence att.

etime
X (t) is the first time aftert wheneval

X (t) is defined.

eend
X (t) is the first time after or equal tot wheneval

X (t) changes value or becomes undefined.

Note thateend
X (t) = t when there is point evidence att, whent is the end of an interval of evidence, and

when there is a transition in the evidence at timet.
The line numbers follow those given in the forward sampling algorithm with new or changed lines marked

with an asterisk.Time(X) might be set to the end of an interval of evidence which is not atransition time but
simply a time when we need to resample a next potential transition. This means that we will not updateσ
with a new transition every time through the loop. The algorithm differs from the forward sampling procedure
as follows. Step 2 now accounts for evidence at the beginningof the trajectory (using standard likelihood
weighting for Bayesian networks). In Step 3, we draw∆t from the truncated exponential if the current value
disagrees with upcoming evidence. If the current evidence includes this variable,∆t is set to the duration of
such evidence. Step 5 updates the weights using the procedure Update-Weight. Finally, Step 7 now deals
with variables that are just leaving the evidence set.

3.6 Predictive Lookahead

The algorithm in Figure 4 draws the next state for a variable from the same distribution as the forward
sampling algorithm. This may cause a variable to transitionseveral times in a short interval before evidence
as the variable “searches” to find a way to transition into theevidence. Thus, we may generate many unlikely
samples, making the algorithm inefficient. We can help mitigate this problem by trying to force the variable
into a state that will lead to the evidence.

When sampling the next state for variableX at timet, instead of sampling from the multinomial according
to θx(t)|uX(t), we would like to sample from the distribution of the next state conditioned on the upcoming
evidence. SupposeX is in statexi at timet, and the next evidence forX is statexk at te. Assuming the parents
of X do not change beforete and ignoring evidence over the children ofX, the distribution of the state ofX
at t given only the evidence can be calculated using Equation 3:

P̃(Xt+∆t = x j |X[t : t +∆t) = xi ,Xte = xk) =
1
Z

1⊤j QX exp(QX(te− t))1k = pi, j

where1 j is the vector of zeros, except for a one in positionj. We can therefore select our new state according
to the distribution ofP̃(Xt+∆t |X[t : t +∆t) = xi ,Xte = xk) and, assuming statex j is selected, multiply the

weight by
θxi xj |uX (t)

pi, j
to account for the difference between the target and sampling distributions.

3.7 Particle Filtering

The algorithm in Figure 4 allows us to generate a single trajectory and its weight, given the evidence. To apply
this algorithm to the task of online inference in a dynamic system, we can generate multiple trajectories in
parallel, advancing time forward as evidence is obtained.
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ProcedureCTBN-Importance-Sample(tend,e)
1. t← 0, σ← /0, w← 1 *
2. For each variableX ∈X

If eval
X (0) defined,
setx(0)← eval

X (0), *
Setw← w ·θBx(0)|paB (0)

*

Else
choose statex(0) according toθBX|paB (X)

Loop:
3. For eachX ∈X such thatTime(X) is undefined:

If eval
X (t) is defined, set∆t← eend

X (t)− t *
Elseifeval

X (te) is defined wherete = etime
X (t), x(t) 6= eval

X (te),
choose∆t from an exponential distribution with
parameterqx(t)|uX(t) given∆t < (te− t). *

Else choose∆t from an exponential w/ param.qx(t)|uX(t)
DefineTime(X)← t +∆t

4. LetX = argminX∈X [Time(X)]
5. If Time(X)≥ tend

w← Update-Weight(X,w, t, tend) *
return (σ,w)

Else *
w← Update-Weight(X,w, t,Time(X)) *

6. Updatet← Time(X)

7. If eend
X (t) 6= t or eval

X (t) is defined *
If eval

X (t) is defined, setx(t)← eval
X (t) *

Else choosex(t), the next value ofX, from a
multinomial with parameterθx(t)|uX(t)

Add 〈X← x(t), t〉 to σ.
UndefineTime(X) andTime(Y) for all variablesY
for which X ∈ UY

Else *
UndefineTime(X). *

ProcedureUpdate-Weight(Y,w, t1, t2)
1. For eachX ∈X such thateval

X (t) is defined fort ∈ [t1, t2):
w← w · L̃X(x[t1 : t2))

2. For eachX ∈X such thateval
X (te) is defined,

wherete = etime
X (t1), andx(t1) 6= eval

X (te):
If X =Y, w← w · (1−exp(−qx(t1)|uX(t1)(te− t1)))

Elsew← w · 1−exp(−qx(t1)|uX (t1)
(te−t1))

1−exp(−qx(t1)|uX (t1)
(te−t2))

3. return w

Figure 4: Importance sampling for CTBNs. Changes from Figure 2 are noted with asterisks.

The resulting algorithm is an instance of sequential importance sampling, and therefore suffers from
its characteristic flaw: As the trajectory length increases, the distribution of the importance weights gets
increasingly skewed, with most importance weights converging to zero exponentially quickly. Thus, the
number of “relevant” samples gets increasingly small, and the estimates provided by the set of samples
quickly become meaningless. A family of methods, commonly known as sequential Monte Carlo or particle
filtering (Doucet et al., 2001), have been proposed in the setting of discrete-time processes to address this flaw.
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ProcedureCTBN-Particle-Filtering({Xi
0,w

i
0}i=1...N, tend,e)

1. k← 0,Wt ← 1,Nr ← N
2. Fori← 1 toN: Pai

0← i, wi ← 1/N
Loop:
3. For each i such thatt i

k < tend :
(Xi

k+1, t
i
k+1,w

i
k+1)←

Sample-Segment(X
Pai

k
k , t

Pai
k

k ,wi , tend,e)
If t i

k+1≥ tend

Nremain← Nr −1,
Wt ←Wt −wi

k+1
4. k← k+1
5. If Nr = 0

return {Xi
mi
, t i

mi
,wi

mi
,Pai

mi
}i=1...N,mi=1...ni ,

whereni is the number of transitions of theith particle
6. CalculateN̂e f f of all incomplete particles
7. If N̂e f f < Nthr

SamplePai
k according towi

k
wi ←Wt ×1/Nr

Else
wi ← wi

k, Pai
k← Pai

k−1

Figure 5: Particle Filtering for CTBNs

At a high level, these methods re-apportion our samples to focus more efforts on more relevant samples—
those with higher weights.

The application of this idea to our setting introduces some subtleties because different samples are not
generally synchronized. We could pick a timet and run the algorithm in Figure 4 withtend = t so that
samples are synchronized att. We would re-apportion the weights and continue each trajectory from its state
at t, first settingTime(X) to be undefined for allX. However, choosing the proper synchronization timet is a
non-trivial problem which may depend on the evidence and thespeed the system evolves.

Instead of synchronizing all the particles by the time, we can align particles by the number of transitions.
If we let ti be theith transition time andXi be the value ofX from ti−1 to ti , the following recursion holds.

P(X[0 : tn)) = P(X1:n, t1:n,e[0:tn))

= P(X1:n−1, t1:n−1,e[0:tn−1))P(Xn|Xn−1)P(X[tn−1,tn),e[tn−1,tn)|Xn−1,etn−1).

The weighted approximation of this probability is given by

P(X[0 : tn))≈
N

∑
i=1

w(Xi [0 : tn))δ(X[0 : tn),Xi [0 : tn))

whereXi [0 : tn) is the ith sample andw(Xi [0 : tn)) is the normalized weight of theithsample. According to
Equation 8, the weight can be updated after every transitionstep. The weight update equation can be shown
as

w(Xi [0 : tn)) ∝ w(Xi [0 : tn−1))
L̃X(Xi [tn−1 : tn))

L̃′X(X
i [tn−1 : tn))

.

Thus, to sample multiple trajectories in parallel, we applythe CTBN importance sampling algorithm to
each trajectory until a transition occurs. To avoid the degeneracy of the weights, we resample the particles
when the estimated effective sample sizêNe f f =

1
∑i(w

i
k)

2 is below a thresholdNthr. This procedure is similar

to the regular particle filtering algorithm except that all particles are not synchronized by time but the number
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ProcedureCTBN-Particle-Smoothing({Xi
mi
, t i

mi
,wi

mi
}, tend,e)

i = 1. . .N,mi = 1. . .Mi
1. σ← /0
2. Choosek with probability proportional towMi

i
3. setY = XMk

k
, s←Mk, t← tk

s

Loop:
4. σ[ts−1,s)←Y
5. If σ is complete

return σ
6. For j ← 1 toN

w′j ← Check-Weight(Y, t,X j
s−1, t

j
s−1,w

j
s−1)

7. Choosei with probability proportional tow′i
8. Y← Xs

i , t← t j
s s← s−1

ProcedureCheck-Weight(X, t,Xs, ts,ws)
1. If t ≤ ts or e(ts,t) contains a transition, or

the value ofX andXs do not differ by only one variable
return 0

2. σ[ts,t)← Xs, σ(t)← X
3. w← ws · L̃X(σ[ts,t2])

4. return w

Figure 6: Particle Smoothing for CTBNs

of transitions. To answer queries in the time interval[0,T), we propagate the particles until all of their last
transitions are greater thanT.

Figure 5 shows the algorithm for generatingN trajectories from 0 toT in a CTBN. It assumes that the
initial values and the weights have already been sampled. The procedureSample-Segmentloops from line
3 to 7 in Figure 4 until a transition occurs, returns the transition time and variables value, and updates the
corresponding weight for that segment. Note that we are approximating the distributionP(X1:n, t1:n,e[0:tn)) for
all possiblen. Therefore, we only propagate and re-apportion weights forparticles that have not yet reached
timeT. Particles that have been sampled pastT are left untouched.

3.8 Particle Smoothing

Although the resampling step in the particle filtering algorithm reduces the skew of the weights, it leads to
another problem: the diversity of the trajectories is also reduced since particles with higher weights are likely
to be duplicated multiple times in the resampling step. Manytrajectories share the same ancestor after the
filtering procedure. A Monte Carlo smoothing algorithm using backward simulation addresses this problem
(Godsill et al., 2004).

The smoothing algorithm for discrete-time systems generates trajectories usingN weighted particles
{xi

t ,w
i
t} from the particle filtering algorithm. It starts with the particles at timeT, moves backward one

step each iteration and samples a particle according to the product of its weight and the probability of it tran-
sitioning to the previously sampled particle. Specifically, in the first step, it samples̃xT from particlesxi

T at
timeT with probabilitywi

T . In the backward smoothing steps it samplesx̃t according towi
t|t+1 =wi

t f (x̃t+1|xi
t),

where f (x̃t+1|xi
t) is the probability that the particle transitions from statexi

t to x̃t+1. The resulting trajectory
set is an approximation ofP(x1:T |y1:T) wherey1:T is the observation.

This idea can be used in our setting with modification. Given the filtered particles{Xi
mi
, t i

mi
,wi

mi
},we need

to sample both variable values and transition times at each step when we move backward. There are two
main differences from the algorithm in Godsill et al. (2004): There are fewer thanN particles that can be
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Figure 7: Drug Effect Network

used at the beginning steps of the backward smoothing since the trajectories do not have exactly the same
number of transitions, and not all particles at stepn can be considered as candidates to move backward. A
particle{Xi

n, t
i
n,w

i
n} is a valid candidate as the predecessor for{X̃n+1, t̃n+1} only if (1) t i

n < t̃n+1, (2) the values
of Xi

n andX̃n+1 differ in only one variable (thus a single transition is possible), and (3)e(t in,̃tn+1)
contains no

transitions.
Figure 6 shows the smoothing algorithm which generates a trajectory from the filtering particles. We

apply the algorithmN times to sampleN trajectories. These equally weighted trajectories can be used to
approximate the smoothing distributionP(X[0,T)|e). Generating one trajectory with this smoothing process
requires considering all the particles at each step. The running time of samplingN trajectories using particle
smoothing isN times of that of particle filtering.

4. Experimental Results

In this section, we report on the performance of our algorithm on synthetic networks and a network built
from a real data set of people’s life histories. We tested ouralgorithm’s accuracy for the task of inference
and parameter estimation. We also compare our algorithms with other approximate inference algorithms for
CTBNs: the method based on the expectation propagation in Saria et al. (2007) and the method based on
Gibbs sampling in El-Hay et al. (2008).

All the algorithms we used in the experiments were implemented in the same code base to make fair
comparisons. We tried our best to optimize all the code. The implementations are general so that they can be
applied to any CTBN model. Our implementation of EP is adapted from that of Saria et al. (2007) who were
kind enough to share their code. The code base is described inShelton et al. (2010) and is available from the
authors’ website.

4.1 Networks

In our experiments, different types of network structures were used, including the drug effect network (Nodel-
man et al., 2002), a chain-structured network, and the BHPS network (Nodelman et al., 2005b). All the net-
works are at the upper size limit for the exact inference algorithm so that we can compare our result to the
true value.

Drug Effect Network: The drug effect network is a toy model of the effect of a pain-relief medicine.
It has 8 (5 binary and 3 ternary) variables. The structure of the network is shown in Figure 7. Att = 0 the
person is not hungry, is not eating, has an empty stomach and is not drowsy. He has joint pain due to the
falling barometric pressure and takes the drug to alleviatethe pain.
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Figure 8: British Household Panel Survey Network

Chain Structured Network: The chain network contains five nodesX0, . . . ,X5, whereXi is the parent
of Xi+1 for i < 5. Each node has five states,s0, . . . ,s4. X0 (usually) cycles in two loops:s0→ s1→ s3→ s0

ands0→ s2→ s4→ s0. All the other nodes stay at their current state if it matchestheir parent and otherwise
transition to their parent’s state with a high probability.Each variable starts in states0.

More specifically, the intensity matrix ofX0 is

QX0 =




−2.02 1 1 0.01 0.01
0.01 −2.03 0.01 2 0.01
0.01 0.01 −2.03 0.01 2

2 0.01 0.01 −2.03 0.01
2 0.01 0.01 0.01 −2.03



.

For all other nodes, the off-diagonal elements of the intensity matrices are given by

qsi ,sj |u=sk
=

{
0.1 if i 6= j and j 6= k,

10 if i 6= j and j = k.

BHPS Network: This network was learned from the British Household Panel Survey (BHPS) (ESRC
Research Centre on Micro-social Change, 2003) data set. Thedata set provides information about British
citizens. The data are collected yearly by asking thousandsof households questions such as household or-
ganization, employment, income, wealth and health. Similar to Nodelman et al. (2005b), we keep a small
set of variables so that exact inference could be applied. Wechose four variables: employ (ternary: student,
employed, unemployed), children (ternary: 0, 1, 2+), married (binary: not married, married), and smoking
(binary: non-smoker, smoker), and we assumed there is a hidden variable (binary) for each of those four
variables. We trained the network on 8935 trajectories of people’s life histories. We applied the structural
EM algorithm in Nodelman et al. (2005b) and learned the structure of the network shown in Figure 8. We
then estimated the parameters of the network using the EM algorithm and exact inference. We consider the
learned model as the true BHPS network model for these experiments.

4.2 Evaluation Method

We evaluated the performance of the approximate inference algorithms in two tasks: the inference task of
answering queries given evidence and the learning task of parametric learning with partially observed data.
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Figure 9: Relative bias and standard deviation of sampling with and without predictive lookahead.

In the inference task, each evidence is a partially observedtrajectory of the CTBN network. The evidence
is generated using two methods. The first method is to set it manually. The second is to generate a trajectory
using the forward sampling algorithm and randomly remove some parts of the sampled trajectory. In particu-
lar, we repeated the following proceduren times: for each variable, we randomly removed the information of
the trajectory fromts to ts+ γT, whereT is the total length of the trajectory,ts is randomly sampled from the
[0,T− γT] uniform distribution andγ < 1. After we run the removing proceduren times, there are at mostnγ
time units of information missing for each variable. In all comparisons, this procedure was applied once and
the same evidence was given to all algorithms.

In our experiments, we set our query to be one of three types: the expected total amount of time a variable
X stays on some statexi , the expected total number of times that a variable transitions from statexi to state
x j , or the distribution of variable at timet.

For each query, we ran the sampling based algorithms with different sample sizes,M. For each sample
size, we ran the experimentN times. We calculated our query according to Equation 6 and compared the
result to the true value calculated using exact inference. We used two metrics: the relative bias|∑vM−v∗|

v∗N ,
wherevM is the query value of sampling algorithm with sample sizeM, andv∗ is the true value; and the
relative standard deviationσM

v∗ whereσM is the standard deviation from the true value when sample size is
M. For each sample size, we also recorded the average running time t̄M of each experiment and used̄tM to
evaluate the efficiency of the algorithm.

In the learning task, we used the sampling algorithms to estimate the parameters of a CTBN network
given some partially observed data. Monte Carlo EM (Wei and Tanner, 1990) was applied in this task: In
each iteration, we used the sampling based algorithm to estimate the expected sufficient statistics given the
incomplete data and used Equation 4 to compute the parameters.

The training data were generated by sampling trajectories from the true model and randomly removing
some portion of the information as described above. We sampled another set of trajectories from the true
model as the testing data. We calculated the log-likelihoodof the testing data under the learned model to
evaluate the learning accuracy.

4.3 Inference Experimental Results

In this section, we evaluate the performance of our importance sampling based algorithms in answering
queries and compare with the EP algorithm in Saria et al. (2007) and the Gibbs sampling algorithm in El-Hay
et al. (2008).

4.3.1 COMPARISON OFIMPORTANCESAMPLING AND PREDICTIVE LOOKAHEAD

We first tested the importance sampling algorithm and the predictive lookahead modification using the drug
effect network. We set the observed evidence: ont = [0,1) the stomach is empty, ont = [0.5,1.2) the
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Figure 10: Time-efficiency comparison of particle filtering, smoothing and importance sampling

barometer is falling, and ont = [1.5,2.5) he is drowsy. Our query is the expected total amount of time that
he has no joint pain on[0,2.5). (The true value is 0.1093). We ran the two algorithms with sample sizes,
M, from 5 to 90000. For each sample size, we ran the algorithmsN = 1000 times. The results are shown in
Figure 9. Both algorithms achieve the correct result when the sample size is large. The standard deviation
decreases at a rate ofO( 1√

M
) (shown by the thin solid line). The sampling algorithm with prediction achieves

lower standard deviation than the non-prediction version.

4.3.2 IMPORTANCESAMPLING, PARTICLE FILTERING AND SMOOTHING

We then used the chain network to evaluate the efficiency of the importance sampling, particle filtering, and
smoothing algorithms. We assumed that onlyX4 was observed in this experiment. We used four different
evidences. The first one is a simple evidence: only part of thebehavior ofX4 is observed: on[1,1.7), X4 = s3,
and on[2,2.5), X4 = s2. For the other three, the behavior ofX4 is fully observed during the interval[0,T),
whereT = 3,6,9. This is done by forward sampling a trajectory from 0 toT and keeping only the information
aboutX4. Our query is the marginal distributionP(X2(

T
2 )|e[0,T)). Note that this is the most difficult case for

the importance sampling algorithm since the chain network is nearly deterministic. We recorded the average
running time and KL-divergence between the estimated and true distributions, for each sample size across
N = 300 trials.

Figure 10 shows the efficiency of the three algorithms. In Figure 10(a), we used the simple evidence.
In Figure 10 (b)-(d), we used the evidence withX4 fully observed andT = 3,6,9 respectively. In all four
cases, the particle filtering and smoothing algorithms bothoutperform the importance sampling algorithm
when the sample size is small (small running time). For simple evidence (Figure 10(a)), the importance
sampling algorithm achieves comparable performance when the sample size is large. When the evidence
is complicated (Figure 10 (b)-(d)), the error of importancesampling is large, even when we use very large
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Figure 11: Comparison to expectation propagation: Drug Network

sample sizes. When the trajectory is short, the particle filtering algorithm is slightly better than the particle
smoothing algorithm. This is because the filtering algorithm can generate more samples than the smoothing
algorithm with the same running time. However, as the trajectory length increases, the particle smoothing
algorithm outperforms the filtering algorithm due to particle diversity problems.

4.3.3 COMPARISON OFIMPORTANCESAMPLING AND EP

We also compared our three sampling algorithms to the approximate inference algorithm based on expectation
propagation in Saria et al. (2007). We did not use their adaptive splitting method (for reasons we explain
below). Even without the adaptive splitting, their method still differs from that of Nodelman et al. (2005a),
in that it allows asynchronous propagation of messages along time.

We used the same evidence as in Section 4.3.1 on the drug effect network and answered two queries: the
total amount of time that the concentration is low and the total amount of time the person has no joint pain.
For the EP algorithm, we first tried a segmentation that splitthe timeline at the evidence. We then gradually
decreased the time interval of the segments to 0.15. The results of accuracy with respect to running time are
shown in Figure 11. The importance sampling algorithm and the particle filtering algorithm outperforms the
EP algorithm in answering both queries. Among the sampling-based algorithms, the importance sampling
algorithm performs the best and the smoothing algorithm is the worst. This is not surprising given that
most of the nodes are binary. At each transition time, the sampled trajectory has no choice as to the next
state. Therefore, smoothing (or filtering) has less effect as there is no need to intelligently select the next
state. However, the extra computation time for resampling and backward simulation makes the filtering and
smoothing algorithm less efficient.

As mentioned above, we did not employ the adaptive splittingmethod of Saria et al. (2007). It would not
have changed our results much. The left-most points in our Figure 11 correspond to the minimum number
of splits. (They are as fast as possible.) The right-most points of the Figure 11 correspond to many fine
splits, and are about as accurate as possible, and we can see that the accuracy has flattened out. So, while the
horizontal widths of the EP curves would have been shortened(by allowing for the better accuracy in less
time), the vertical spread would have been approximately the same. In neither plot of Figure 11 would this
have made a large difference in the comparisons to our sampling method.

4.3.4 COMPARISON OFIMPORTANCESAMPLING AND GIBBS SAMPLING

We compared our importance sampling algorithm to the Gibbs Sampling algorithm in El-Hay et al. (2008).
We used three CTBN network models: the drug effect network, the BHPS network and the chain structured
network. For each network, we randomly generated evidence using the procedure described in Section 4.2.
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Figure 12: Comparison to Gibbs Sampling: Drug Network. Noteburn-in time for Gibbs Sampling is not
included (3.94 seconds on average).

We ran the procedure 4 times for each variable and each time, we removed 20% of the content. Thus, there
are at most 80% information missing for each variable.

For the importance sampling algorithm, we chose the sample size M from 10 to 500000. For Gibbs
sampling algorithm, we chose the sample sizeM from 10 to 5000. We ran the experiments for each sample
sizeN = 100 times and recorded the average running time for each algorithm. For Gibbs sampling algorithm,
we first ran 100 “burn-in” iterations for each sample size before we sample trajectories from the sampler. The
time spent on the “burn-in” iterations was not included in the final running time.

For the drug effect network, the evidence trajectory beginsat timet = 0 and ends at timet = 5. We asked
two queries: the expected total amount of time the person’s stomach is half full, and the expected number of
times that the person’s stomach changes from empty to half full.

Using enough running time (sample size), we observed that both algorithms could answer the queries
accurately (with a relative bias below 0.1%). The decreasing of the relative standard deviation with respect to
the running time of the two algorithms are shown in Figure 12.The average “burn-in” time for Gibbs sampler
is about 3.94 seconds. From the figure, we can see that importance sampling outperforms Gibbs sampling in
answering both queries.

For the BHPS network, we set the evidence fromt = 0 to t = 50 (years). We asked similar queries: the
expected total amount of time a person’s employment status is as a student and the expected number of times
that he becomes employed. We chose the same sample sizes as onthe drug effect network and ran each
sample sizeN = 100 times. Figure 13 shows the result of the decreasing of thestandard deviation of the two
algorithms. The average “burn-in” time for Gibbs sampling algorithm in this experiment is 30.88 seconds.

We achieved similar result as the experiments with the drug effect network. The importance sampling
algorithm outperformed the Gibbs sampling algorithm in answering the query of time. The performances on
the query of transitions are almost the same.

In both networks, importance sampling outperformed Gibbs sampling in three of the four cases, even
when the running time on “burn-in” iterations was not considered. To achieve the same accuracy and stan-
dard deviation, Gibbs sampling algorithm requires fewer samples. This is because for each variable, Gibbs
sampling samples from the true posterior distribution given the evidence and its Markov blanket. However,
sampling from the true posterior distribution is computational costly, since it requires repeatedly computing
the conditional cumulative distribution function. Using the same amount of time, importance sampling can
sample far more trajectories, which outperforms Gibbs sampling.

We last compared these two algorithms using the chain structured network. The evidence trajectory begins
at timet = 0 and ends at timet = 5. We set the queries to be the expected total amount of timeX2 stays in
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Figure 13: Comparison to Gibbs Sampling: BHPS Network. Noteburn-in time for Gibbs Sampling is not
included (30.88 seconds on average).
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Figure 14: Comparison to Gibbs Sampling: Chain Network. Note burn-in time for Gibbs Sampling is not
included (11.42 seconds on average).

states1 and the expected number of times thatX2 transitions froms0 to s1. Figure 14 shows the result over
N = 100 runs. The average “burn-in” time for Gibbs sampling algorithm in this experiment is 11.42 seconds.

The Gibbs sampling algorithm achieved better performance in this experiment. The result is not surpris-
ing. As we have mentioned before, the chain structured network is nearly deterministic, and it is the hardest
case for the importance sampling algorithm. We further examined the randomly generated evidence. The
only observed state onX0 is s0, which makes this experiment even harder for the importancesampling algo-
rithm. However, it is a very easy case for the Gibbs sampling algorithm since it is nearly deterministic and is
structurally simple. (There are only at most one parent and one child for each node.) Although importance
sampling can generate many more samples in the same period oftime, most of these samples are trajectories
with very small weights.

4.4 Parameter Estimation Experimental Results

In this section, we evaluate the performance of importance sampling algorithm on parameter estimation and
compare to the Gibbs sampling algorithm and the EP algorithm.
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Figure 15: Learning results for the drug effect network. Standard deviations across training data selection
(and random samples for the sampling methods) are shown jittered slightly for clarity.

We used the drug effect network for this experiment. We sampled increasing We sampled increasing
numbers of trajectories of 5 time lengths. To hide part of thetrajectory, we did the following: In each
iteration, for each variable we randomly selected a time window of 0.5 time lengths and removed the content
in that window. We repeated this until we dropped 50% of the content of the trajectory. We used these
incomplete trajectories as our training data. We sampled another 50 trajectories with the same length as our
testing data.

To estimate the parameters of the CTBN network, we followed the EM algorithm in Nodelman et al.
(2005b). When calculating the expected sufficient statistics, importance sampling, Gibbs sampling, and
expectation propagation were used. Therefore, the likelihood in the E-step was calculated approximately. In
our experiment, we fixed the total number of iterations for the EM algorithm at 15. In each iteration, we
compared the calculated likelihood to the likelihood in theprevious iteration. If the likelihood decreased, we
kept the parameters in the previous iteration.

We chose the initial parameters for the EM algorithm by sampling the diagonal elements of the condi-
tional intensity matrices from the Gamma distribution withparameters(0.5,1) and sampling the transition
probabilities from a Dirichlet distribution. We randomly sampled 5 models as the initial parameters for the
EM algorithm. For each initial parameter set, we ran the EM algorithm 10 times for the sampling methods
(and once for EP which is deterministic). We evaluated the learning accuracy by calculating the average
log-likelihood of the testing data on the 50 learned networks. To compare the running efficiency of the two
sampling-based algorithms, we fixed the total amount of timefor the sampler to generate samples in each EM
iteration to be the same time as the EP algorithm took (approximately 23 seconds). For the Gibbs sampling
algorithm, we dropped the first 50 trajectories as “burn-in”iterations. Figure 15 shows the results as we
increased the number of training trajectories from 1 to 6.

All algorithms obtain higher log-likelihood on the testingdata when we increase the number of training
trajectories. The sampling methods do better (and have lower variation), especially as the data size grows.

5. Conclusion

We have presented an approximate inference algorithm with two variations based on importance sampling.
We naturally extended the algorithm to sequential Monte Carlo methods such as particle filtering and smooth-
ing in CTBNs. We applied our sampling algorithm to syntheticnetworks and a network from real data. We
evaluated the efficiency of our algorithms and compared to other approximate inference algorithms based on
expectation propagation and Gibbs sampling. Our importance sampling algorithm outperformed both in most
of the experiments presented in this paper. In the situationof a highly deterministic system, Gibbs sampling
performed better.
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The networks used in this paper are at the upper size limit forexact computation. For example, calculating
the expected sufficient statistics of the chain structured network given evidence takes more than two days
using exact inference. Thus, approximate inference methods are critical for tracking, predicting, and learning
in continuous time Bayesian networks for real applications. Our importance sampling based algorithms are
fast, simple to implement and can be used to calculate the expected value of any function of a trajectory,
including the expected sufficient statistics necessary forexpectation-maximization for parameter estimation
with missing data.
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