
Solving Structured Continuous-Time Markov Decision Processes

Kin Fai Kan and Christian R. Shelton
Department of Computer Science and Engineering

University of California, Riverside, CA 92521, USA
{kkan,cshelton}@cs.ucr.edu

Abstract

We present an approach to solving structured continuous-time
Markov decision processes. We approximate the the opti-
mal value function by a compact linear form, resulting in a
linear program. The main difficulty arises from the num-
ber of constraints that grow exponentially with the number
of variables in the system. We exploit the representation of
continuous-time Bayesian networks (CTBNs) to describe the
Markov process. We show that by exploiting the structure of
the CTBN, we can reduce the growth in the number of con-
straints to be polynomial. We provide theoretic bounds on
the quality of the approximation and experimental results on
problems of different sizes, demonstrating the scalability and
fidelity of our approach.

1 Introduction
Many real-world systems involve in continuous time. Net-
works (both traditional computer networks and sensor net-
works) are asynchronous with no natural clock to regu-
late their behavior. These and other systems, such as mo-
bile robots (Ng, Pfeffer, & Dearden 2005), biological pro-
cesses (El-Hay et al. 2006), computer users (Nodelman &
Horvitz 2003), and transportation (Gopalratnam, Kautz, &
Weld 2005), have all been modeled using continuous-time
Bayesian networks (CTBNs).

A CTBN (Nodelman, Shelton, & Koller 2002) allows for
the structured (and therefore compact) representation of the
dynamics of a multi-variate stochastic system. Unlike a dy-
namic Bayesian network (DBN) (Dean & Kanazawa 1989)
which represents the values of the system at discrete time
points, a CTBN represents the distribution over complete
trajectories of the system. This means that it makes assump-
tions about the independencies of the immediate and local
interactions of the variables, not the independences about
samples taken at particular time intervals. Thus the structure
of the network is not dependent on the time-slice width.

Algorithms for learning (Nodelman, Shelton, & Koller
2005) and inference (Nodelman, Koller, & Shelton 2005)
in CTBNs have been previously established. Yet, currently
there are no methods for control or planning in such systems
that exploit the structure to reduce computation time and
memory. In this work we combine classic work in the field

Copyright c© 2008, authors listed above. All rights reserved.

of continuous-time Markov decision processes (MDPs) with
work from discrete-time structured MDPs (Guestrin, Koller,
& Parr 2001; Schuurmans & Patrascu 2002; de Farias & Van
Roy 2003) to produce results in continuous-time structured
MDP planning.

We start by setting out the problem for flat (unstructured)
continuous-time MDPs and providing performance bounds.
We then describe, briefly, the CTBN model and how it helps
us reduce the exponentially-large number of constraints. We
conclude with experimental results.

2 Continuous-Time MDPs
A Markov Decision Process (MDP) consists of four com-
ponents: a state space X , an action space A, a transition
model, and a reward model. A policy is a mapping from X
to A. We assume that the MDP has an infinite horizon and
future rewards are discounted exponentially with a discount
factor, β. The goal is to find a policy that maximize the total
discounted reward in every state.

For a continuous-time MDP, the transition model is a set
of intensity matrices, one for each action a:

Qa =

−qa(x1) qa(x1, x2) · · · qa(x1, xN)
qa(x2, x1) −qa(x2) · · · qa(x2, xN)
...

...
. . .

...
qa(xN , x1) qa(xN , x2) · · · −qa(xN)

where qa(xi, xj) is the intensity of transitioning from state
xi to state xj by performing action a and qa(xi) =
∑

j 6=i qa(xi, xj).
Given Qa, we can describe the transient behavior of X(t)

as follows. If X(0) = x then the system stays in state x for
an amount of time exponentially distributed with parameter
qa(x).1 Upon transitioning, X shifts to state x′ with proba-
bility θa(x, x′) = qa(x, x′)/qa(x).

The reward model is a function r(x, a) that represents the
reward rate while taking action a in state x. There may also
be a lump sum reward for transitioning from one state to
another. For this paper, we ignore the lump sum (assume it
is equal to zero). The rewards are discounted exponentially
in time at a rate of β: a reward of 1 at time t is equivalent to
a reward of eβδ at time t + δ.

1The mean of the exponential distribution is the reciprocal of
its parameter.

The value function V π(x) is defined as the expected total
discounted return of executing π from state x.

V π(x) =
r(x, π(x))

β + qπ(x)(x)
+

∑

x′ 6=x

qπ(x)(x, x′)

β + qπ(x)(x)
V π(x′) (1)

Equation (1) is the Bellman equation for a continuous-time
MDP. The optimal value function V ∗ is the best possible
expected total discounted rewards that can be attained by
any policy. It satisfies a slightly different version of Bellman
equation:

V ∗(x) = max
a

r(x, a)

β + qa(x)
+

∑

x′ 6=x

qa(x, x′)

β + qa(x)
V ∗(x′) . (2)

Given V ∗, we can obtain the optimal policy easily. For any
state x, we choose the action a that maximizes the right hand
side of Equation (2).

2.1 Linear Programs for Continuous-Time MDPs
We can solve a continuous-time MDP by computing the op-
timal value function V ∗ and extracting the optimal policy
from V ∗ afterward. It is well known that the problem of
computing V ∗ can be formulated as a linear program:

min.
∑

x

V (x)

s.t. V (x) ≥
r(x, a)

β + qa(x)
+

∑

x′ 6=x

qa(x, x′)

β + qa(x)
V (x′) ∀x, a .

We call this linear program the exact LP. In many domains,
the state space is quite large, and we need to approximate
the value function V (x) with a more compact one. A simple
scheme is to approximate V (x) by a linear combination of
k fixed basis functions:

V (x) =

k
∑

i=1

wihi(x) (3)

where hi and wi are the ith basis function and its weight.
Substituting Equation (3) into the exact LP, we obtain the
approximate LP:

min.
k

∑

i=1

wiαi s.t.
k

∑

i=1

wihi(x) ≥
r(x, a)

β + qa(x)
∀x, a

+
k

∑

i=1

∑

x′ 6=x

wiqa(x, x′)

β + qa(x)
hi(x

′)

where αi =
∑

x hi(x).
The idea of using linear value function was proposed ini-

tially by Bellman & Dreyfus (1959) and has been further
explored by Tsitsiklis & Van Roy (1996) and Koller & Parr
(1999). de Farias & Van Roy (2003) have developed er-
ror bounds that provide performance guarantees for approxi-
mate LP with linear value functions in the discrete-time set-
ting. Following their ideas, it is straightforward to prove
analogous error bounds in the continuous time setting.

Theorem 1. Let e = [1, . . . , 1] be in the span of the basis
functions and N be the size of the state space. Then if w̃ is
an optimal solution to the approximate LP,

‖V ∗ − Hw̃‖1,1/N ≤ 2

(

1 +
qmax

β

)

min
w

‖V ∗ − Hw‖∞

where Hw represents the function
∑k

i=1 wihi(·), ‖·‖1,1/N is
the L1-norm weighted by 1/N , and qmax = maxa,x qa(x).

Theorem 2. Let w̃ be a solution of the approximate LP.
Then, for any v ∈ <k such that (Hv)(x) > 0 and

maxa∈A

∑k
i=1 vi

∑

x′ 6=x
qa(x,x′)
β+qax ≤ (Hv)(x) for all x ∈

X ,

‖V ∗ − Hw̃‖1 ≤
2eHv

1 − γv
min

w
‖V ∗ − Hw‖∞,1/Hv

where γv = maxx
maxa∈A

Pk
i=1 vi

P

x′ 6=x

qa(x,x′)
β+qax

(Hv)(x) , e =

[1, . . . , 1], and ‖ · ‖∞,1/Hv is the L∞-norm weighted by
1/Hv.

Theorems 1 and 2 bound the difference between the ob-
jectives of the exact LP and the approximate LP. Theorem 1
suggests that the performance of the approximate LP de-
pends on the ratio of the maximum state transition rate and
the reward discount rate. The bound in Theorem 1 may be
too loose for large MDPs because of the L∞-norm. Theo-
rem 2 remedies the situation by providing a refined bound
which is expressed in terms of a weighted L∞-norm.

3 Solving Structured Continuous-Time
MDPs

Although the approximate LP reduces the number of opti-
mization variables from the size of the state space |X | to
a constant (the number of basis functions), the number of
constraints remain the same (|X | · |A|). To scale up to large
state spaces, it is necessary to exploit the structure of the
continuous-time MDP. As in Guestrin, Koller, & Parr (2001)
and Schuurmans & Patrascu (2002), we make three standard
assumptions: (1) factored continuous-time dynamics, (2) a
factored reward function, and (3) the value basis functions
each depend on only a small subset of the state variables.
These three assumptions allow us to rewrite the approximate
LP in a compact form. The resulting LP is called the fac-
tored LP.

3.1 Structured Continuous-Time MDPs
Factored MDPs (Dean & Kanazawa 1989) are one ap-
proach to represent large, structured MDPs compactly in
the discrete-time setting. In the same spirit, we introduce
structured continuous-time MDPs. In this framework, the
set of states is described via a set of random variables X =
{X1, . . . , Xn}, where each Xi takes on values in some finite
domain Dom(Xi). A state x defines a value xi ∈ Dom(Xi)
for each variable Xi. We define for each action a, a sepa-
rate state transition model using a continuous-time Bayesian
network . Furthermore, we need to provide a compact repre-
sentation of the reward function. We assume that the reward

function is factored additively into a set of localized reward
functions, each of which only depends on a small set of vari-
ables.

We briefly review the key features of CTBNs (Nodelman,
Shelton, & Koller 2002). Continuous-time Bayesian net-
works describe the joint dynamics of the state variables in
a structured homogeneous Markov processes. A CTBN is a
directed (possibly cyclic) dependency graph G over a set of
n variables. Let UX be the parents of X in G. Each vari-
able X is a Markov process and is associated with a condi-
tional intensity matrix, QX|UX : a set of homogeneous inten-
sity matrices QX|u, one for each instantiation of values u to
UX . Given UX = u, the transition dynamics of X are de-
termined by QX|u and are independent of all other variables.
A basic assumption of CTBNs is that, as time is continuous,
two distinct variables cannot transition at the exact same in-
stant. Thus, in the joint intensity matrix, all intensities that
correspond to two simultaneous changes are zero. Given a
CTBN, we can describe the transient behavior of X(t) as
follows. If X(0) = x, then the system stays in state x for
an amount of time exponentially distributed with parameter
q(x):

q(x) =
∑

x′

q(x,x′)

=

n
∑

i=1

∑

x′
i
6=xi

qXi|ui(xi, x
′
i) (4)

where x′i is any value in Dom(Xi), xi and ui are the values
assigned to Xi and Ui in x, and qXi|ui(·, ·) are intensity val-
ues in QXi|ui . Upon transitioning, X changes Xj from xj to
some value x′j 6= xj with probability qXj |uj (xj , x

′
j)/q(x).

3.2 Factored LP
We want to construct a compact LP that avoids an explicit
enumeration of the constraints for the exponentially many
states. To begin, for every constraint in the approximate LP,
we multiply both sides of the inequality by β + qa(x) and
move everything on the left hand side to the right hand side.
We obtain the following inequality.

0 ≥ r(x, a) +

k
∑

i=0

wi

[

− βhi(x) − qa(x)hi(x) (5)

+
∑

x′ 6=x

qa(x,x′)hi(x
′)

]

∀x, a .

The key is to show that the right hand side of Equation (5)
has a factored representation. Recall that in CTBNs, only
one single variable can change at any single instant and,
given the values of the parent variables in CTBN, the rate
that a variable changes is independent of all the other vari-
ables. We can rewrite Equation (5) in terms of the condi-
tional intensities. We use x[j←z] to denote the state assign-
ment that is the same as x except that Xj equals z. sci is the
set of variables in the scope of h(i). Rewriting the left hand
side (except for r(x, a)) we get

k
∑

i=0

wi

[

− βhi(x) −
∑

Xj∈sci

∑

x′
j
6=xj

qXj |uj
a (xj , x

′
j)hi(x)

−
∑

Xj 6∈sci

∑

x′
j
6=xj

qXj |uj
a (xj , x

′
j)hi(x)

+
∑

Xj∈sci

∑

x′
j
6=xj

qXj |uj
a (xj , x

′
j)hi(x[j←x′

j
])

+
∑

Xj 6∈sci

∑

x′
j
6=xj

qXj |uj
a (xj , x

′
j)hi(x)

]

=
k

∑

i=0

wi

[

− βhi(x) −
∑

Xj∈sci

∑

x′
j
6=xj

qXj |uj
a (xj , x

′
j)hi(x)

+
∑

Xj∈sci

∑

x′
j
6=xj

qXj |uj
a (xj , x

′
j)hi(x[j←x′

j
])

]

.

Using max to combine the linear constraints for the same
action a, we are left with |A| non-linear constraints:

0 ≥max
x

{

r(x, a) +
k

∑

i=0

wi

[

− βhi(x) (6)

−
∑

Xj∈sci

∑

x′
j 6=xj

qXj |uj
a (xj , x

′
j)hi(x)

+
∑

Xj∈sci

∑

x′
j
6=xj

qXj |uj
a (xj , x

′
j)hi(x[j←x′

j
])

]

}

∀a .

Note that in Equation (6), for each i, the terms within the
square brackets depend only on the variables in the scope
of hi and their parents. We assume that the optimal value
function can be approximated well by a linear combination
of some fixed basis functions, each of which depends on a
small number of variables. The reward function r(x, a) is,
by assumption, factored. Thus, we can use the technique
proposed in Guestrin, Koller, & Parr (2001) to rewrite the
|A| non-linear constraints into a small number of linear con-
straints. For example, if each reward function or value basis
function depends on one variable, the number of linear con-
straints generated is exponential in the degree of the vari-
ables in the CTBNs rather than the complete set of vari-
ables. The technique is basically the same as variable elimi-
nation in Bayesian Networks. Instead of computing max by
enumerating all possible assignment of X, it maximizes one
variable at a time. We illustrate the main idea using a simple
example.
Example 1. Consider the following constraint

0 ≥ max
x1,x2,x3,x4

f1(x1, x2)+f2(x2, x3)+f3(x3, x4)+f4(x1, x4).

We first maximize the left hand side w.r.t. variable x4. We
group terms that depend on x4 together.

0 ≥ max
x1,x2,x3

f1(x1, x2)+f2(x2, x3)+max
x4

f3(x3, x4)+f4(x1, x4)

Then, we introduce a new term e1(x1, x3) to represent the
result of the maximization over x4 and rewrite the above
constraint as a non-linear constraint plus a linear con-
straint.

0 ≥ max
x1,x2,x3

f1(x1, x2) + f2(x2, x3) + e1(x1, x3)

e1(x1, x3) ≥ f3(x3, x4) + f4(x1, x4), ∀x1, x3, x4 .

By repeating the above procedure for x1, x2, and x3, we
transform the single non-linear constraint into a number of
linear constraints.

The factored linear value function not only allows us to
rewrite the constraints in a compact form, but also makes
computing αi, which appears in the objective of the approx-
imate LP, efficient. Recall that αi =

∑

x
hi(x). Since hi is

factored, we just need to sum over the domain of hi instead
of the whole state space. Also, it is easy to extract the policy
from the factored linear value function. The major step is
to compute the term

∑

x′ 6=x

qa(x,x′)
β+qa(x)hi(x

′) in Equation (2).
However, since it is assumed in CTBNs that all intensities
corresponding to simultaneous changes are zero, the time
complexity of the summation is linear in the number of vari-
ables in the scope of hi.

3.3 Uniformization
There is an alternative approach to obtain the same factored
LP. Instead of tackling the continuous-time MDP directly,
we can convert the continuous-time MDP into a discrete-
time MDP using the uniformization technique (Puterman
1994) and use the approximate LP for the discrete-time
MDP. We choose a constant κ satisfying

sup
x∈X

q(x) ≤ κ < ∞

and define the reward function (r̃) and the transition model
(T̃) as follows

r̃(x, a) = r(s, a)
β + qa(x)

β + κ
;

T̃a(x, x′) =

{

κ − qa(x) x′ = x,
qa(x, x′) x′ 6= x.

The uniformization may be viewed as an equivalent process,
in which the system state is observed at random times which
are exponentially distributed with parameter κ. The reward
function is adjusted to ensure that the transformed system
has the same expected total discounted rewards. We write
down the Bellman equation for this transformed model. Af-
ter some algebraic manipulation, we obtain the same result
as Equation 2.

We do wish to point out that this conversion method is not
the same as constructing the discrete-time MDP correspond-
ing to any fixed sampling rate. Uniformization constructs a
discrete-time MDP in which each time step corresponds to a
single transition in the continuous-time domain. Thus, steps
in the new discrete Markov decision process do not corre-
spond to fixed amounts of time in the original process.

By contrast, if we were to construct a DBN that corre-
sponded to sampling the CTBN at a fixed rate, each DBN

Bi−directional ring 3 legs

Figure 1: Network topologies

variable at time t + 1 would have as parents all variables
at time t that were its ancestors in the CTBN. Furthermore,
barring cycles, it would also have the same variables at time
t + 1 as parents as well. Thus, even simple sparse CTBNs
(such as the ring network in Figure 1) can lead to fully con-
nected (with both inter- and intra-time-slice arcs) DBNs, if
we sample them at a uniform rate.

4 Experimental results
We tested the factored LP approach on the continuous time
version of the SysAdmin problem from (Guestrin, Koller, &
Parr 2001). A system administrator has to maintain a di-
rected network of computers. The network topologies we
considered are shown in Figure 1.

The state of the computer network is represented by a
number of indicator variables, one for each computer in-
dicating whether it is working or faulty. Computers fail
randomly. The system administrator can choose to reboot
one of the computers or do nothing. We assume that the
amount of time a computer is working until it fails fol-
lows an exponential distribution with an intensity of 0.5. A
faulty computer causes neighboring computers to fail more
quickly. The intensity with which a computer fails is defined
as 0.5 + 0.5× number of faulty neighbors. If the system ad-
ministrator reboots a faulty computer, the amount of time
before the faulty computer returns to be working follows an
exponential distribution with parameter 2. A computer re-
ceives a reward of 1 per unit time when working. In ring
networks, one computer is designated to receive a reward of
2 per unit time to introduce asymmetry. Faulty computers
get contribute zero reward. The rewards are discounted ex-
ponentially in time at a rate of β = 0.1. The value basis
functions we used are independent indicators for each com-
puter, with value 1 if it is working and 0 otherwise, and a
constant basis whose value is 1 for all states.

We implemented a program to generate the factored LP in
Matlab and used the GNU Linear Programming Kit (GLPK)
to solve the resulting linear programs. GLPK is intended
for solving large-scale linear programming, mixed linear
programming, other related problems. It is a simplex-
based solver and it is able to handle problems with up to
100,000 constraints. GLPK is about 10-100 times slower
than CPLEX 8.0 dual simplex on very large-scale problems.
The experiments were performed on a PC with a 3GHz Pen-
tium 4 processor.

No. of computers 4 6 8 10
Time (ExactLP) 0.05 0.26 4.69 123.13
Time (FactoredLP) 0.12 0.34 1.00 2.40
No. of variables 249 685 1313 2133
No. of constraints 324 1014 2024 3354

No. of computers 4 6 8 10
Time (ExactLP) 0.08 0.54 5.31 148.47
Time (FactoredLP) 0.06 0.14 0.20 0.21
No. of variables 119 251 431 659
No. of constraints 154 328 566 868

(a) Ring network (b) 3-Leg network

Table 1: Running time in seconds and the size of the factored LP (small networks)

4 6 8 10
0

0.05

0.1

0.15

0.2

0.25

No. of computers

R
el

at
iv

e
er

ro
r

Ring
3 legs

4 6 8 10
4

5

6

7

8

9

10

No. of computers

A
ve

ra
ge

 to
ta

l d
is

co
un

te
d

re
w

ar
d

Optimal
Factored LP

4 6 8 10
4

5

6

7

8

9

10

No. of computers

A
ve

ra
ge

 to
ta

l d
is

co
un

te
d

re
w

ar
d

Optimal
Factored LP

(a) (b) (c)

Figure 2: Results for small networks: (a) Approximation quality, (b) Ring network performance, and (c) 3-leg network perfor-
mance.

We evaluated the efficiency and the approximation quality
of the factored LP approach on problems of various sizes.
For small problems, we solved the exact LP. We compare
the time taken to solve the exact LP and the factored LP.
Table 1 shows the time taken to solve the LPs and the num-
bers of optimization variables and constraints generated by
the factored LP. As the number of computers increases, the
size of the factored LP increases and the running time of the
factored LP increases. However, the running time of the fac-
tored LP increases much more slowly than that of the exact
LP. Each computer in a ring network has two parents while
each computer in a 3-leg network has only one parent (ex-
cept the root computer in the center which has none). Not
surprisingly, the factored LP generated more variables and
constraints for a ring network than a 3-leg network of the
same size.

We evaluated the error in our approximate value function
relative to the true optimal value function: ‖Hw−V ∗‖∞

‖V ∗‖∞
. We

also compared the quality of the policy extracted from our
approximate value function with the true optimal policy us-
ing Monte Carlo simulations. In each simulation, we used
1000 trials and each trial lasted for 100 time units. Fig-
ure 2(a) shows the relative error of the factored LP approach.
Figure 2(b–c) shows the rewards obtained by the optimal
policy and the factored LP policy in the simulation. We ob-
serve that for the ring networks, the relative error of the fac-
tored LP increases as the number of computers increases.
For the 3-leg networks, the relative error of the factored LP
remains roughly the same. However, the policy extracted
from the factored LP consistently performed almost as well
as the optimal policy did in our simulation.

For large problems, we can no longer compute the true

16 22 28 34
0

100

200

300

400

500

600

No. of computers

T
im

e
(in

 s
ec

s)

Ring
3 legs

Figure 3: Running time of the factored LP (large networks)

optimal value function. Figure 3 shows how the time taken
to solve the factored LP scales with the number of comput-
ers in the large ring network (the running time for the 3-leg
network is negligible). Table 2 gives the numbers of vari-
ables and constraints generated. For comparison, the exact
LP for a 34-node network has approximately 16 billion vari-
ables and 500 billion constraints.

We use an upper bound on the Bellman error to eval-
uate the approximation quality of the factored LP. In the
discrete-time setting, the Bellman operator T ∗ is T ∗ =
maxa [R(x, a) + γ

∑

x′ P (x′|x, a)V (x′)], where R(s, a) is
the reward function, γ is the discount factor, and P (x′|x, a)
is the transition probability. The Bellman error, defined as
BellmanErr(V) = ‖V −T ∗V ‖∞, can be used to provide
a bound: ‖V ∗ − Hw‖∞ ≤ BellmanErr(Hw)

1−γ (Williams &
Baird 1993). The Bellman error can in turn be bounded by
mina ‖V − T aV ‖∞ where T aV is just like T ∗ but with

No. of computers 16 22 28 34
R: No. of variables 5745 11062 18153 26914
R: No. of constraints 9264 18054 29724 44274
L: No. of variables 1631 3035 4871 7139
L: No. of constraints 2158 4024 6466 9484

Table 2: The size of the factored LP (large networks). “R:”
indicates results for the Ring network while “L:” indicates
results for the 3-leg network.

16 22 28 34
0.1

0.15

0.2

0.25

No. of computers

U
B

 B
el

lm
an

 e
rr

or
 /

R
m

ax

Ring
3 legs

Figure 4: Approximation quality of the factored LP (large
networks)

maxa replaced by a fixed action a (Schuurmans & Patrascu
2002). To apply this bound in our case, we convert the con-
tinuous time MDP into a discrete time MDP using the uni-
formization technique. Figure 4 shows the upper bound on
the Bellman error (denoted by UB Bellman error) divided by
the maximum total reward (denoted by Rmax) for increasing
number of computers. The ratio UB Bellman error/Rmax

seems to decrease very slightly (but consistently) with the
size of the problem.

5 Conclusions and Extensions
In this paper, we present an approach to solving structured
continuous-time MDPs. Our method is based on solving a
single linear program that approximates the best linear fit
to the optimal value function. We exploit the representa-
tion of continuous-time Bayesian networks to describe the
Markov process. We show that by exploiting the structure of
the CTBN, we can rewrite the linear program in a compact
form and hence make it easy to solve. We tested our method
on a simplified version of a network maintenance task. Our
results demonstrate that our method can produce high qual-
ity approximate value functions (and policies) and it scales
effectively to large problems.

We would like to extend this work in a number of ways
in future research. We think the linear program can be ex-
tended and improved in two ways. First, adding “lump sum”
rewards should be possible by modifying the linear program.
However, we still need additional work to insure that the re-
sulting LP can be factored. Second, our constraint genera-
tion is not as fast as it could be. Techniques from Schuur-
mans & Patrascu (2002) should also apply here to speed up
generation.

Much as Guestrin, Koller, & Parr (2001) can perform pol-
icy iteration in DBNs, we think the techniques in this paper
can also be used to perform policy iteration in CTBNs. The
basic methods for constraint representation remain the same.
The method is more involved and it would be interesting to
explore whether it results in better policies.

Finally, we would like to explore the possibility of
planning in partially-observable continuous-time models.
Younes & Simmons (2004) and Younes (2005) explore us-
ing phase-type distributions and algebraic decision diagrams
(ADD) to model semi-Markov decision processes (a sim-
ple kind of partial observability). Their state space is not
factored like that of a CTBN (the transition model uses an
ADD) and they do not approximate the value function. How-
ever, it is worth noting that the phase-type distributions used
by Younes & Simmons are similar to those that result from
partially observed CTBNs (Nodelman, Shelton, & Koller
2005). A combination of the two methods might be able
to solve large partially-observable continuous-time MDPs.

Acknowledgments
This work was funded by the DAF Air Force Office of Sci-
entific Research (Young Investigator Award #FA9550-07-1-
0076) and Intel Corporation.

References
Bellman, R., and Dreyfus, S. 1959. Functional approxima-
tion and dynamic programming. Mathematical Tables and
Other Aids to Computation 13(68):247–251.
de Farias, D. P., and Van Roy, B. 2003. The linear program-
ming approach to approximate dynamic programming. Op-
erations Research 51(6):850–865.
Dean, T., and Kanazawa, K. 1989. A model for reason-
ing about persistence and causation. Computational Intel-
ligence 5(3):142–150.
El-Hay, T.; Friedman, N.; Koller, D.; and Kupferman, R.
2006. Continuous time Markov networks. In UAI, 155–
164.
Gopalratnam, K.; Kautz, H.; and Weld, D. S. 2005. Ex-
tending continuous time bayesian networks. In AAAI, 981–
986.
Guestrin, C.; Koller, D.; and Parr, R. 2001. Max-norm
projections of factored MDPs. In IJCAI, volume 1, 673–
680.
Koller, D., and Parr, R. 1999. Computing factored value
functions for policies in structured MDPs. In IJCAI, 1332–
1339.
Ng, B.; Pfeffer, A.; and Dearden, R. 2005. Continuous
time particle filtering. In IJCAI, 1360–1365.
Nodelman, U., and Horvitz, E. 2003. Continuous time
Bayesian networks for inferring users’ presence and activi-
ties with extensions for modeling and evaluation. Technical
Report MSR-TR-2003-97, Microsoft Research.
Nodelman, U.; Koller, D.; and Shelton, C. R. 2005. Expec-
tation propagation for continuous time Bayesian networks.
In UAI, 431–440.

Nodelman, U.; Shelton, C. R.; and Koller, D. 2002. Con-
tinuous time Bayesian networks. In UAI, 378–387.
Nodelman, U.; Shelton, C. R.; and Koller, D. 2005. Ex-
pectation maximization and complex duration distributions
for continuous time Bayesian networks. In UAI, 421–430.
Puterman, M. L. 1994. Markov Decision Processes. Wiley-
Interscience.
Schuurmans, D., and Patrascu, R. 2002. Direct value-
approximation for factored MDPs. In Dietterich, T. G.;
Becker, S.; and Ghahramani, Z., eds., NIPS, 1579–1586.
Tsitsiklis, J. N., and Van Roy, B. 1996. Feature-based
methods for large scale dynamic programming. Machine
Learning 22(1–3):59–94.
Williams, R., and Baird, L. 1993. Tight performance
bounds on greedy policies based on imperfect value func-
tions. Technical report, Northeastern University.
Younes, H. L. S., and Simmons, R. G. 2004. Solving gen-
eralized semi-Markov decision processes using continuous
phase-type distributions. In AAAI, 742–747.
Younes, H. L. S. 2005. Planning and execution with phase
transitions. In AAAI, 1030–1035.

