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Abstract

We present a continuous time Bayesian network reasoning andlearning engine (CTBN-RLE). A
continuous time Bayesian network (CTBN) provides a compact(factored) description of a continuous-
time Markov process. This software provides libraries and programs for most of the algorithms
developed for CTBNs. For learning, CTBN-RLE implements structure and parameter learning for
both complete and partial data. For inference, it implements exact inference and Gibbs and impor-
tance sampling approximate inference for any type of evidence pattern. Additionally, the library
supplies visualization methods for graphically displaying CTBNs or trajectories of evidence.
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1. Introduction

Continuous time Bayesian networks (CTBNs) represent a continuous-time finite-state Markov pro-
cess compactly factored according to a graph (Nodelman et al., 2002). The initial distribution of
the process is represented as a Bayesian network. The dynamics of the process is also factorized
according to a directed graph, but this graph may contain cycles. The edges in this second graph
represent causal influence between variables of the system.

CTBNs compactly represent the dynamics differently than models in queueingtheory (Bolch
et al., 1998), Petri nets (Petri, 1962), or matrix diagrams (Ciardo and Miner, 1999). The representa-
tion and algorithms developed so far for CTBNs emphasize reasoning about the transient properties
over the steady-state of the system. Unfortunately, previously there wereno commonly available
software packages implementing CTBN algorithms. Their implementation requires afew critical
numerical algorithms, thus making it difficult to quickly try the representation without prior experi-
ence.

This software package aims to reduce this barrier to entry by supplying our implementations
of these methods in a complete object-oriented design. The software does not require any external
libraries. It is implemented in C++ with demonstration programs for common functionality and a
documented interface for users to develop their own programs. The classhierarchy was designed
with extensions to allow for further innovation.
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2. Continuous Time Bayesian Networks

The dynamics of a continuous-timen-state Markov process are often described with ann-by-n in-
tensity (or rate) matrix,Q with elementsqi j . The diagonal elements are non-positive and correspond
to the parameters of the exponential distributions describing the duration of timethe process stays
in each state. Therefore the expected duration in statei is 1

−qii
. All other elements are non-negative

and each row sums to zero. The probability of transitioning from statei to statej is proportional to
qi j .

A continuous time Bayesian network (CTBN) consists of a set of variables,X , an initial distri-
butionP0 overX specified as a Bayesian network, and a graph-factored model of the dynamics of
the system which is composed of two parts: (1) a directed (possibly cyclic) graphG overX and
(2) conditional intensitiesQX|U for each variableX ∈ X with parent setU in the graphG . QX|U is
defined as a set of intensity matricesQX|u for each assignmentu to the variablesU. At any instant,
the evolution of variableX is governed by the intensity matrixQX|u if u is the current assignment
to the parents ofX.

3. Engine Components

In terms of data structures, the library supplies classes for storing and efficiently scanning mul-
tivariate trajectories, for representing both the initial distribution (as a Bayesian network) and the
dynamics (as a directed graph with associated conditional rate matrices) of aCTBN, for representing
the associated sufficient statistics, and for drawing samples from the CTBNprocess.

3.1 Inference Methods

Inference for CTBNs can take a number of forms. The common three typesof queries are all
implemented and additional query types can be added (through subclassing) without knowledge of
the details of the inference algorithms. In particular, code is supplied for

• querying the marginal distribution of a variable at a particular time (filtering or smoothing),

• querying the expected number of transitions for a variable during an interval of time, and

• querying the expected amount of time a variable stayed in a particular state during an interval.

All are conditioned on a (possibly incomplete) trajectory of events (transitions of the states of the
variables of the process). The latter two represent the calculations necessary to compute expected
sufficient statistics.

Exact inference (which takes exponential time in terms of the number of variables) is imple-
mented. Additionally, two approximate inference methods based on sampling arealso implemented:
Gibbs sampling (El-Hay et al., 2008) and importance sampling (Fan and Shelton, 2008).

3.2 Learning

All learning methods estimate both the dynamics graph and the Bayesian networkof the initial
distribution. For the latter, this is just standard Bayesian network learning which exists in other
packages; however, we supply our implementation here for simplicity and to avoid relying on other
software packages.
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Figure 1: (Left) Automatic layout of the drug effect network without parameters. (Right) Portion
of automatic layout with parameters.

Maximum likelihood parameter learning is implemented both for complete data (Nodelman
et al., 2003) and for incomplete data (Nodelman et al., 2005) via the expectation-maximization
algorithm. Structure learning is also implemented for both complete and incomplete data. The
latter represents an implementation of structural expectation maximization. Two structure searches
are available: a brute force search that tries all parent sets up to a certain size (not possible for the
initial distribution due to acyclic constraints) and a graph edit search that makes local changes to
the graph.

3.3 Modularity

Any supplied (or user-defined) inference method can be used in expectation-maximization and
structural expectation maximization. Different proposal distributions for importance sampling can
be added through simple subclassing. Similarly, the code allows for the construction of CTBNs
from any underlying process type. As an example, we define “toggle” variables (only thechange
of state has meaning) through a very short subclass that implements the necessary parameter tieing.
This new process can be mixed freely with other processes to create CTBNs of mixed node types.

3.4 Visualization

Two visualization tools are supplied. The first converts a CTBN into a text filesuitable to be read by
the open source packagegraphviz which can then layout the CTBN in a variety of formats. Fig-
ure 1 shows the output of this automatic visualization on the drug effect network from Nodelman
et al. (2002). Additionally, either an postscript or text visualization of a trajectory can be automat-
ically generated. Figure 2 shows these outputs for a partially observed trajectory drawn from the
same drug effect network.
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Figure 2: Automatic visualizations of a trajectory of the drug effect network(with all variables
missing observations fromt = 1 to 1.5), as a postscript file (left) and in text (right).
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