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Abstract. Chess endgame tables encode unapproximated game-
theoretic values of endgame positions. The speed at which informa-
tion is retrieved from these tables and their representation size are
major limiting factors in their effective use. We explore and make
novel extensions to three alternatives (decision trees, decision dia-
grams, and logic minimization) to the currently preferred implemen-
tation (Syzygy) for representing such tables. Syzygy is most com-
pact, but also slowest at handling queries. Two-level logic minimiza-
tion works well, though performing the compression takes significant
time. Decision DAGs and multiterminal binary decision diagrams are
both comparable and offer the best querying times, with decision di-
agrams providing better compression.

1 Introduction
Endgame tables (EGTs) support increased skill in play by storing
precomputed exact (non-heuristic) information about game positions
for convergent games, which are games where the size of the state
space decreases as the game approaches its end. An EGT serves as
a map from game state to relevant information. EGTs are typically
calculated via retrograde analysis [15]. For Checkers, the precompu-
tation of EGTs combined with forward search allowed the determi-
nation of the game-theoretic result of its initial position [12].

We focus on Chess EGTs, the first of which were computed by
Ströhlein [14]. Currently, the largest full sets of EGTs are for endings
with seven pieces or fewer [16]. The full set of such Syzygy EGTs
consumes 17 TiB. We study lossless compression methods for Chess
EGTs, quantifying their compression and probing speeds.

1.1 State-of-the-art

Syzygy [5] is currently the predominant Chess EGT storage imple-
mentation: its representation is more compact than widely available
alternatives, it is acceptably efficient to query, and its data files and
source code are freely available for download and use.

Syzygy, and virtually all of its predecessor Chess EGT implemen-
tations, provide a separate table for each material balance: the set of
pieces remaining for each player. There is a table for positions where
White has a king, pawn, and rook, and Black has a king and queen,
there is another table for positions where White has a king and two
rooks and Black has a king and pawn, and so on. For each mate-
rial balance, there is both a win/cursed win/draw/blessed loss/loss
(WCDBL) table and a distance to zeroing (DTZ) table.
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Cursed wins and blessed losses are positions where the official
over-the-board rules of Chess allow a player to claim a draw when
100 consecutive ply occur without a zeroing ply, but would otherwise
lead to a decisive result with perfect play.

In this paper, we focus on WCDBL, which provides the game-
theoretic value of positions: the use of sufficiently large WCDBL
tables alone during lookahead would be sufficient to avoid reaching a
game-theoretically suboptimal position. DTZ tables store additional
information to permit optimal play once an EGT position has been
reached.

1.2 Problem definition

We encode the coordinate of any location on the chessboard using
three bits for the file and three bits for the rank. One additional bit
is used to encode the side to move. A pawn that may be captured
en passant is encoded as being on the first or eighth rank instead of
the fourth or fifth rank where it is actually located. Syzygy EGTs do
not include game-theoretic values for positions where either side has
not already permanently lost their right to castle. Therefore, when
probing some particular five-piece material balance, we express the
input as a bit vector of length (3 + 3)× 5 + 1 = 31.

The mapping from the input to one of five outcomes is partial: not
all inputs are possible. For instance, two pieces cannot occupy the
same location. We also exploit symmetry to reduce further the num-
ber of stored positions. For example, when no pawns are present (and
castling is not possible), all board rotations are equivalent. Flipping
the player to move along with the colour of all pieces is also sym-
metric. We only store and query one canonical position for each set
of symmetric positions. Consequently, over 90% of possible inputs
are not associated with any particular output.

The goal is to produce a data structure, and suitable querying code,
that returns the proper game-theoretic value for any canonical encod-
ing of a Chess position. While it is not strictly necessary to do so, we
continue the historic practice of building separate data structures for
each material balance. We build our alternative compressed repre-
sentations from a list of each canonical Chess position of the relevant
material balance, paired with its associated game-theoretic outcome.

1.3 Research Goal

We aim to explore alternatives to the Syzygy Chess EGT format.
Syzygy is a complex system that by design exploits Chess-specific
properties. Importantly, it uses a capture-based minimaxing search,



which allows it to often store something other than the actual game-
theoretic value for positions where captures are possible, thus per-
mitting smaller data files.

However, it is not our goal to exhaustively assess historic Chess
EGT formats that are no longer in common use today. One promi-
nent earlier approach is the Nalimov EGTs[9], which did provide
compelling benefits versus the then-available alternatives in its hey-
day. It is no longer popular because it does not provide full WCDBL
information, yet requires seven times the space that Syzygy does to
represent up to and including all six-piece EGTs.

Rather, this paper aims to quantify what is possible using non-
Chess-specific compression techniques. While we do modify some
standard compression methods, these modifications target general
properties of EGTs. We explore three alternatives that, while exploit-
ing basic symmetries of Chess, are nonetheless general-purpose com-
pression and query techniques. They have simple querying code and
straightforward interpretations. We believe these alternatives could
also be helpful in other convergent games in which symmetries exist,
such as Xiangqi and International Draughts.

1.4 Contributions

We consider and compare three alternative methods to Syzygy for
storing a WCDBL EGT: decision directed acyclic graphs (DAGs),
two-level logic minimization (TLLM), and multiterminal reduced or-
dered binary decision diagrams (MTBDDs). All methods construct a
tree or DAG whose leaves indicate either individual outcomes or a
small set of cube-outcome pairs to scan linearly. Each of these meth-
ods uses different heuristics to form a compact representation of the
EGT data.

We provide necessary improvements to each method for efficient
use on this application. For decision trees, the modification is minor:
we build a decision DAG instead of a tree. For decision diagrams, we
extend the concretization methods for fully-reduced binary decision
diagrams (BDDs) to MTBDDs. For two-level logic minimization, we
not only significantly rework the main operations of the ESPRESSO
algorithm, but also introduce both a new operation, distance-n merg-
ing, and an indexing scheme. Together, these logic minimization im-
provements enable effective minimization even when the input ON-
cover contains several hundreds of millions of minimum product
terms. These decision diagram and logic minimization modifications
are novel contributions.

Each method approaches the compression problem differently. We
outline each method, draw connections amongst them, and compare
them empirically with each other and with Syzygy on three-, four-,
and five-piece EGTs.

2 Decision DAGs

We use a standard binary decision tree learning algorithm [11] to
compress each EGT. The set of canonical positions of each table are
used as the training examples, each viewed as an input of binary fea-
tures and an output as one of five classes reflecting the game-theoretic
value of the position. When building, we employ greedily the stan-
dard information gain metric [10]. Decisions at internal nodes corre-
spond to checking a single bit of the input.

Our method differs only slightly from typical machine learning
decision tree construction. Because we seek only compression, not
generalization (our training set for each EGT already includes every
position of interest), we exhaustively build the tree and perform no

pruning. Second, to save space, we construct a DAG rather than a
tree by merging common subtrees during the construction process.

3 Two-level logic minimization
We also compare with the recent endgame compression method of
Gomboc and Shelton [7], which leveraged the ESPRESSO [1] two-
level logic minimizer to perform minimization on three- and four-
piece tables. ESPRESSO represents functions as pairs of input and
output vectors. The input vector may be represented using the al-
phabet {0, 1, ∗}, respectively meaning that the corresponding input
must be 0, must be 1, or may be either 0 or 1. The output vector may
be represented using the alphabet {f, r, d,∼}, respectively meaning
that the corresponding output must be 1, must be 0, may be either 0
or 1, or is unconstrained by the paired input vector.

ESPRESSO repeatedly iterates through three major operations.
EXPAND attempts to replace 0s and 1s in each input vector with
*s (known as “raising”) such that as many other input vector are
subsumed and eliminated as possible, while ensuring that no out-
put vector specification conflicts occur. IRREDUNDANT identifies
and removes input vectors whose output constraints may be deduced
from combinations of other remaining input vectors without adjust-
ing the values of any input vectors. REDUCE attempts to replace *s
in each input vector with 0s and 1s without newly permitting any out-
put bit to take on any value that was previously precluded by some
combination of mapping constraints.

3.1 Representation simplification

As discussed in Section 1.2, lookups for the vast majority of input
vectors will never be performed. Nonetheless, ESPRESSO explicitly
represents D, the multiset of input vectors that map any output to d,
because its implementation of both IRREDUNDANT and REDUCE
depend upon D’s availability. When attempting to process five-piece
EGTs using ESPRESSO, representing D causes main memory (256
GiB) exhaustion. To address this problem, we devised alternative al-
gorithms for performing these two operations that do not require D
to be provided as an input.

In our application of TLLM, we never map any output bit to ∼, and
furthermore, either every element or no element of each individual
output vector is mapped to d. Thus, in addition to not representing
D, we also need not represent R, the multiset of input vectors that
map any output to r, separately from F , the multiset of input vectors
that map any output to f , which results in further memory savings.

In this paper, we refer to just the input vector associated with an
output as a cube. We initialize the EGTs prior to minimization by
specifying the output value for each minimum product term (a.k.a.
minterm, or unit cube) about which we care.

As arguments to Algorithms 1 and 2, we provide two cube sets,
which we denote as B (for baseline) and E (for expanded). B rep-
resents an earlier representation of F prior to expansion: it can, but
does not have to, be the original definition of F prior to any mini-
mization. E represents some expansion of B. In both, we use indices
(see Section 3.3), priority queues, and caching to make them more
efficient than a direct implementation of the pseudo-code would be.

3.1.1 Efficient D-less irredundancy

Algorithm 1 computes an irredundant cover E′ from B and E. We
add cubes from E, starting with all cubes that uniquely cover some
cube in B, then greedily select additional cubes which cover the most
additional not-yet-covered cubes of B.



Algorithm 1 IRREDUNDANT
Require: B: Baseline cubes (modifies copy)
Require: E: Expanded cubes that covers B (modifies copy)
Ensure: E′: Irredundant subset of E that covers B

1 E′ = {e | ∃ b ∈ B,∀ e′ ̸= e,¬contains(e′, b)}
2 B = B − {b ∈ B | ∃ e ∈ E′, contains(e′, b)}
3 E = E − E′

4 while E ̸= {}
5 e = argmax

e∈E

∑
b∈B|contains(e,b′)

1

6 E′ = E′ ∪ {e}
7 B = B − {b ∈ B | contains(e, b)}
8 E = E − {e} − {e′ ∈ E | ∄ b ∈ B, contains(e′, b)}
9 return E′

3.1.2 Efficient D-less reduction

Algorithm 2 computes a reduced cover E′ from B and E. The func-
tion supercube returns the smallest cube that contains all of the
inputs. We repeatedly select expanded cubes uniformly at random
without replacement, shrinking them as much as possible while en-
suring that B remains covered.

Algorithm 2 REDUCE
Require: B: Baseline cubes (modifies copy)
Require: E: Expanded cubes that cover B (modifies copy)
Ensure: E′: Cover of B, each cube is a subcube of some cube in E

1 E′ = {}
2 foreach e ∈ E (random order)
3 E = E − {e}
4 B′ = {b ∈ B | contains(e, b)}
5 B′′ = {b ∈ B′ | ∄e′ ∈ E, contains(e′, b)}
6 if B′′ ̸= {}
7 E′ = E′ ∪ {supercube(B′′)}
8 B = B −B′′

9 return E′

3.2 Accelerating expansion

Application of Algorithms 1 and 2 permit us to no longer immedi-
ately exhaust main memory, yet we can still only completely pro-
cess several of the simplest five-piece EGTs. The performance of
ESPRESSO, both before and after the above changes, is dominated
by the 99% time spent in EXPAND.

Though the time complexity of a single EXPAND operation is re-
ferred to as quadratic in the size of its input within ESPRESSO’s
source code, we found that it actually scales less well. As is, EX-
PAND could not be applied even a single time to the vast majority of
five-piece EGTs, even when given weeks of running time. We were
able to address this problem by introducing two innovations.

3.2.1 Distance-n merging (for n > 1)

Both ESPRESSO and its predecessor MINI [8] support distance-one
merging: merging of two cubes that disagree on only a single vari-
able. Such merges are always useful for maximal compression.

We introduce a generalization, distance-n merging, that can be
used to merge cubes that disagree on multiple variables simultane-
ously. Unlike the distance-one case, the blocking cover must now be
consulted. Given v input variables, Algorithm 3 sweeps over all v-
choose-n combinations of input variables and attempts to merge any
set of cubes that differ only in these variables. Distance-n merging is
not intended to be a replacement for the more general EXPAND op-
eration of MINI and ESPRESSO. Rather, it is particularly effective
when n ≪ v and there may be many small cubes present within a
cover that is to undergo expansion. By sorting the cubes based on all
other variables, we can quickly find groups of cubes to be merged.

Algorithm 3 DISTANCE-N-MERGE
Require: M : Cover to which merging should be applied
Require: B: Baseline cubes
Require: n: number of variables to merge
Ensure: M ′: Cover equivalent to M , where |M ′| ≤ |M |

1 M ′ = M
2 foreach subset, V , of variables of size n
3 G = groupby(M,V )
4 (groups where all variables except V are the same)
5 foreach G ∈ G:
6 if output, o, same for cubes in G
7 c = supercube(G)
8 c[V ] = ∗
9 D = {b ∈ B | contains(c, b) ∧ output(b) ̸= o}

10 if D = {} (check not necessary if n = 1)
11 M ′ = (M ′ −G) ∪ {c}
12 return M ′

3.2.2 Random expansion

ESPRESSO’s [1] implementation of the EXPAND algorithm [8]
tracks which cubes cover which other cubes in order to attempt to
grow cubes in ways that encompass as many other cubes as possi-
ble. While highly effective at small problem sizes, this tracking is
also the root cause of its performance bottleneck when applied to the
much larger minimization problems we consider, which render the
algorithm infeasible for our use.

Instead, we propose the RANDOM-EXPAND algorithm (Algo-
rithm 4). Each time RANDOM-EXPAND attempts to expand any
cube, it randomly selects an input variable ordering, then attempts
to raise each input variable (replace the specific 0 or 1 for this vari-
able with ∗) one after the other in that chosen order. Every raise that
does not result in a conflict is accepted. Consequently, unlike with
EXPAND as used by ESPRESSO, RANDOM-EXPAND discards no
cubes whatsoever. Instead, we exclusively rely on IRREDUNDANT
for cube elimination.

3.3 Cube list indexing

Naïve lookup of a position in the resulting cube list would require
scanning all cubes to find the one(s) that match the input position’s
bit vector, and then returning the associated output. This is too slow,
so we build an index tree over the cube list to accelerate lookup.

Our algorithm for building the cube index is similar to that of
building a decision DAG: The index is a tree with internal nodes



Algorithm 4 RANDOM-EXPAND
Require: B: Baseline cubes
Require: L: Input dimension count of B
Require: F : Cover of B, where |F | ≤ |B|
Ensure: E: Cover of B, where |E| = |F |, such that each cube in F
is a subcube of some cube in E

1 E = F
2 foreach c ∈ E (random order)
3 e = c D = 1 . . . L
4 foreach d ∈ D (random order)
5 e′ = raise(e, d)
6 if (e′ does not contradict B)
7 e = e′

8 E = E − {c} ∪ {e}
9 return E

corresponding to checking one bit of the input. It is built greedily
and recursively. However, there are a few differences.

Because the cubes to be indexed are not bit vectors, but rather
{0, 1, ∗}-vectors, constructing a binary tree would require the dupli-
cation of cubes: If an internal node tests bit i, for any cube for which
bit i is ∗, it would need to be duplicated on the 0 and 1 subtrees.
This would negate the advantages of the two-level logic minimiza-
tion that produced the cubes. Instead, we build a ternary tree with
three branches at each internal node. Any cube so indexed belongs to
only one of the 0, 1, or ∗ branches.

We use a modified Gini impurity score to score a potential inter-
nal node. If n0, n1, and n∗ are the number of cubes that would be
sorted into the 0, 1, and ∗ branches, respectively, we use the score of
n0(n0 + n∗) + n1(n1 + n∗) + 2n2

∗. The first two terms represent
the number of items to be scanned (n0 + n∗ and n1 + n∗) times the
relative frequency with which they would be scanned. The last term
penalizes large number of examples in the common subtree.

We do not build the index structure all the way to single leaves.
Rather, empirical tests indicate that performing a linear scan of 10 to
20 cubes is faster than refining the index further, so we stop when the
number of remaining cubes is 16 or fewer. A lookup consists of re-
cursively descending the tree, checking either the 0 or 1 branch first,
followed by the ∗ branch if necessary. Whenever a leaf is reached,
the cubes associated with that leaf are scanned linearly. Because each
leaf is unique, the index cannot be made into a DAG.

4 Multiterminal reduced ordered binary decision
diagrams

A fully-reduced, ordered BDD (FBDD) [2], the most common type
of BDD, encodes a Boolean-valued function in a DAG with the two
terminal nodes 0 and 1. The fixed order in which variables are en-
countered on all paths from the root to any terminal node (unlike
the decision DAGs of Section 2) allows for both efficient opera-
tions combining BDD-encoded functions (not used in this work) and
greater opportunity to merge common subDAGs.

We could encode partial function f described by an m-piece
EGT using five FBDDs encoding fi : B6n+1 → B, for i ∈
{W, C, D, B, L}, where fi(x) = 1 iff f(x) = i, so that the don’t
care set D = {x : f(x) = ⊥} would be implicitly given by
{x : ∀i, fi(x) = 0}. Instead, we use a single multiterminal reduced
ordered binary decision diagram (MTBDD) [3], a generalization of
FBDDs that allows an arbitrary set of terminal nodes. MTBDDs en-
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Figure 1. MTBDD encoding f (left), and a concretization f ′ of f (right).

code total, rather than partial, functions, so we treat f as a total func-
tion of the form f : B6n+1 → {W, C, D, B, L, ⊥}. Probing an
MTBDD once is both simpler than probing multiple FBDDs in par-
allel and, in expectation, faster than probing multiple FBDDs serially.

Formally, a K-variable MTBDD is an edge-labelled DAG where
the terminal nodes belong to an arbitrary finite set R, and are at
level 0, while each nonterminal node p is at a level p.level =
k ∈ {1, . . . ,K} and has a 0-child, p[0], and a 1-child, p[1], sat-
isfying k > max{p[0].level , p[1].level} and p[0] ̸= p[1] (i.e.,
there are no redundant nodes). MTBDD node p at level k encodes
function fp : Bk → R, defined recursively as fp(i1, . . . , ik) =
fp[ik](i1, . . . , ik−1) if k > 0, otherwise fp = p. Figure 1
shows two example MTBDDs, encoding functions f, f ′ : B4 →
{W, D, L, ⊥}. In the figure, dashed directed edges point to the 0-
child, while solid directed edges point to the 1-child.

An advantage of the BDD approaches we discuss is that we can
naturally store multiple BDDs of the same type in a single forest
with shared nodes, especially at lower levels. Thus, the node count
of the forest storing all m-piece EGTs together cannot exceed, and is
in practice less than, the sum of the node counts needed to store each
m-piece EGT individually.

4.1 Concretization

In our application, we never evaluate f(x) for x ∈ D. Thus, the
MTBDD size may be reduced by concretizing f , that is, chang-
ing some of the values of f from ⊥ to (appropriate) values i ∈
{W, C, D, B, L}.

Finding a concretization f ′ of f with minimal size (which can be
shown to be full, i.e., f ′(x) ̸= ⊥ for all x ∈ BK ) is NP-hard, so
we limit ourselves to greedy (suboptimal) heuristics. We use three
increasingly expensive and increasingly general heuristics originally
proposed for FBDDs [13], but with notable differences: In Shiple et
al. [13], a partial Boolean-valued function f is encoded using two
FBDDs: one to encode f , and one to encode “don’t care” set D
(or, equivalently, the “care set” which is the complement of D). The
heuristics must then consider the two FBDDs simultaneously to per-
form the concretization. Our versions of the heuristics, instead, use a
single MTBDD where the “don’t cares” are encoded as terminal node
⊥. The heuristics proceed top-down in the MTBDD and attempt to
remove each nonterminal node p by making it redundant as follows
(let p′ and p′′ be the two children of p, in either order):

• Restrict: If p′ = ⊥, change p′ to p′′. When applied to function f
in Figure. 1, restrict eliminates nodes u (replaced by W ) and q
(replaced by v).



method disk space used (MiB) data structure memory used (MiB) query mean query time (µs)
subset 3 pc 4 pc 5 pc all 3 pc 4 pc 5 pc all memory 3 pc 4 pc 5 pc all

Flat file mmap 1.2 480.0 112640.0 113121.2 1147.0 1365.5 1178.8 1216.3
Decision DAGs 0.0 4.5 1372.5 1377.0 0.0 11.4 3038.5 3049.9 3292.0 1221.8 1449.7 1312.1 1337.5
MTBDD 0.0 2.7 782.9 785.6 0.0 7.1 1763.5 1770.6 2299.7 1198.1 1467.2 1513.4 1492.9
TLLM 0.0 2.0 634.8 636.8 0.1 13.2 4160.9 4174.2 4460.4 1335.5 1804.2 3935.4 3404.8
Syzygy WCDBL 0.0 1.2 376.6 377.8 1399.2 7271.5 12496.3 17160.8 15854.7

Table 1. Experiment results. Memory space includes the index for TLLM. Full distributions are shown in Figures 2 and 3.

• One-sided-match: If p′ is a (not necessarily full) concretization
of p′′, change p′′ to p′. When applied to function f in Figure 1,
one-sided-match eliminates nodes g (replaced by v), q, and u.

• Two-sided-match: If p′ and p′′ admit a common (least, thus not
necessarily full) concretization q, change p′ and p′′ to q, which
may be an existing node or a new node. When applied to func-
tion f in Figure 1, two-sided-match produces function f ′: node r
concretizes both nodes p and q, produces while node v concretizes
node u; thus node h is eliminated and replaced by r, and node g
is eliminated and replaced by v.

As these are heuristics, none is guaranteed to be best. However,
experiments we performed using five-piece EGTs showed that re-
strict and one-sided-match tend to have similar node savings w.r.t.
no concretization, while two-sided-match was almost always best,
sometimes by a substantial factor. Five-piece EGTs concretized with
two-sided-match require only 44.2% of the nodes versus using no
concretization. When storing these EGTs in a forest, the node counts
are only 78.4% (with no concretization) and 91.1% (with two-sided-
match) of the total node counts for the individual EGTs. Thus, using
forests does not help as much in conjunction with concretization, but
the forest with two-sided-match still requires only 59.9% of the nodes
of the forest with no concretization.

Finally, while BDD implementations may vary widely in the way
they store edges (pointers vs. indices) and levels (the size of the
integer types), once the total count T of (terminal or nonterminal)
nodes in the forest is known, it is a simple matter to encode the entire
MTBDD forest using T · (2⌈log2 T ⌉+ ⌈log2 K+1⌉) bits, where K
is the number of variables.

5 Experimentation

We measure and discuss data preparation, the size of the data of the
various methods, then measure and discuss their probing efficiency.

5.1 Methodology

We downloaded the Syzygy EGTs[4], and updated the code of
Fathom[6] to return an appropriate result whenever an invalid, ille-
gal, or already mated position is probed. We probed every input bit
vector for each of the three-, four-, and five-piece material balances,
and recorded the result returned by Fathom. As a coarse baseline rep-
resenting no compression, we memory-mapped these flat files and
queried them directly (“flat file mmap” in results).

Subsequently, we used this data for decision DAG, MTBDD, and
TLLM EGT construction. The total construction time for all five-
piece decision DAG and MTBDD EGTs, executed in parallel, was
just a few hours. However, the construction of many of the five-piece
TLLM EGTs required substantially more time.

For each TLLM EGT, we iterated through n = 1 . . . N . Within
each iteration, we performed a single distance-n merge sweep im-
mediately followed by an IRREDUNDANT pass. These early ap-
plications of IRREDUNDANT are a key part of reducing the cube
count of the working set as quickly as possible, which permits more
challenging functions to be minimized.

For three-piece TLLM EGTs, we set N = 11 (higher N intro-
duces no further changes). For four-piece and five-piece EGTs, we
used N = 9 and N = 5, respectively.

Once all these iterations completed, we performed a single RE-
DUCE pass, a single RANDOM-EXPAND pass, a single further IR-
REDUNDANT pass, and one final REDUCE pass (which, while not
reducing cube count, tends to improve the compressed size on disk).

5.2 Data size

For the flat file and Syzygy EGT formats, we report the on-disk file
size as-is, because they must be memory mapped. The other formats
are amenable to being streamed into memory via the xz decompres-
sor, so we instead report the on-disk file size after xz compression1.

5.2.1 Disk space

Of the four methods, decision DAGs provide the least compact disk
representation (see Table 1 and Figure 2). Even when we take into
consideration the reduced size of the combined MTBDD forest, the
MTBDD method uses more space than the TLLM method. However,
Syzygy’s disk representation is clearly the most compact.

5.2.2 Memory usage

The decision DAG, MTBDD, and TLLM data structures all require
roughly a constant factor across tables more for memory versus disk
space. However, in the case of TLLM, that constant factor is rela-
tively higher, because indices of the cube lists are required to probe
the TLLM EGTs efficiently. (They are constructed rapidly at data
load time.) In contrast, the decision DAG and MTBDD structures do
not require additional augmentation after in-memory decompression
of the on-disk data. Of these three methods, the MTBDD method is
the most efficient from a memory usage perspective.

The memory usage of Syzygy substantially differs from the three
other methods we explore, and is difficult for us to characterize.
Syzygy EGTs are cleverly engineered to store blocks of compressed
data, so that it is not actually necessary to unpack the entirety of any
individual table into memory to perform any single probe. However,
because Syzygy’s data encoding requires that a minimax-based cap-
ture search be performed when any captures are available, it follows

1 The xz compression options used were -T1 -lzma2=preset=9e,
dict=1GiB,mf=bt4,mode=normal,nice=273,depth=1000.
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Figure 2. Pair plot of bytes required to store compressed WCDBL data on disk. Each point is one material balance. Orange points are pawnless material
balances; blue points are those with at least one pawn. Triangles are three-piece EGTs; squares are four-piece EGTs; pentagons are five-piece EGTs.

Off-diagonal plots are scatter plots comparing two methods. Diagonal plots are (kernel-smoothed) distributions over the space per table.

that compressed blocks from multiple such tables frequently need to
be probed to resolve the game-theoretic value of a particular position
under consideration.

To capture these tradeoffs, we also measured memory usage as
reported by Linux via /proc/meminfo on an independent run of
the probe timing code (to avoid altering the probe timing results:
see below). These measurements are shown in the “query memory”
column of Table 1.

5.3 Probe timing

For each of the 145 material balances, we sampled two million po-
sitions with replacement by drawing the location of each of the m
pieces uniformly at random, then drawing the side to move. All po-
sitions that are invalid or illegal are redrawn. Fathom provides the
capture search necessary to properly query the Syzygy EGTs.

For each of the three groups of m-piece positions, two probing
passes are performed. The correctness of the probe results returned
is verified on the first pass; probe timings are captured on the second
pass. We then compute the mean probe time for each material balance
within the group of m-piece positions. The probe timings reported
are from a system with only a solid-state drive.

As shown in Table 1 and Figure 3, decision DAG EGTs may be
probed almost as quickly as the flat files, and probing MTBDDs is
only marginally slower than those methods. In comparison, the mean
probing speeds of TLLM and especially Syzygy are poor.

6 Discussion

Syzygy is both the most space-efficient and the least runtime-efficient
method. It could be interesting to explore either removing its manda-
tory capture-based search, or augmenting the other methods to also



103

104

105

fla
tfi

le
m

m
ap

103

104

105

de
ci

si
on

D
A

G

103

104

105

M
T

B
D

D

103

104

105

T
L

L
M

103 104 105

flat file mmap

103

104

105

Sy
zy

gy
W

C
D

B
L

103 104 105

decision DAG
103 104 105

MTBDD
103 104 105

TLLM
103 104 105

Syzygy WCDBL

3-piece pawnful
3-piece pawnless
4-piece pawnful
4-piece pawnless
5-piece pawnful
5-piece pawnless
mean

Figure 3. Pair plot of mean nanoseconds required to probe previously-loaded WCDBL data. Symbol interpretation is the same as in Figure 2.

use one, so that we could discern with precision the effects of that
particular design decision.

Decision DAGs are the simplest to implement, and do provide the
lowest querying latency, but are not particularly space efficient. In
comparison, the use of MTBDDs increases latency only a little, but
results in far superior compression.

Other BDD-based techniques may also perform similarly well to
MTBDDs, and are thus worth exploration. In addition, while not con-
sidered in this paper, BDDs can also be used to efficiently perform
operations on sets of positions, which could enable generating the
Chess EGTs in compressed form without explicitly enumerating all
canonical positions.

TLLM exhibits high potential for both future result improvement
and future obsolescence, depending on whether or not further min-
imization breakthroughs are discovered. The challenge of handling
the exponential growth in data size as ever-larger m-piece EGTs are
processed currently seems the most daunting for this method.
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