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Abstract

Embedding images into a low dimensional space has
a wide range of applications: visualization, clustering,
and pre-processing for supervised learning. Traditional
dimension reduction algorithms assume that the exam-
ples densely populate the manifold. Image databases
tend to break this assumption, having isolated islands
of similar images instead. In this work, we propose a
novel approach that embeds images into a low dimen-
sional Euclidean space, while preserving local image
similarities based on their scale invariant feature trans-
form (SIFT) vectors. We make no neighborhood as-
sumptions in our embedding. Our algorithm can also
embed the images in a discrete grid, useful for many vi-
sualization tasks. We demonstrate the algorithm on im-
ages with known categories and compare our accuracy
favorably to those of competing algorithms.

1 Introduction

In this work, we propose a novel approach to em-
bed images into a Euclidean space so that each image
lies close to similar other images, while far apart from
those with large distinctions. It is essentially a dimen-
sion reduction problem for images. Image embeddings
can have a wide range of applications. With the abun-
dance of digital photography, many households have
thousands of images stored on their home computer
without a suitable method for searching them. Graphic
visualization of the entire database can be a great aid in
allowing easy retrieval of photographs.

General dimension reduction has been extensively
studied. Classical techniques such as principal compo-
nent analysis (PCA) try to find a linear embedding for
high dimensional input. Due to the nonlinearity of im-
ages, such methods generally do not work very well.

Much of the recent work on image dimension reduc-
tion focuses on learning an underlying manifold, and
embedding images into the low-dimensional manifold.

In [9], the authors proposed Isomap. It is capable of dis-
covering the nonlinear degrees of freedom of the data
and computes the globally optimal solution. They also
show that asymptotically Isomap is guaranteed to con-
verge to the true underlying manifold structure. [8] pro-
posed another dimension reduction algorithm: locally
linear embedding (LLE). By using pairwise distances,
LLE can embed inputs into a single global coordinate
space without problematic local minimum. The LLE
algorithm is also capable of finding the underlying man-
ifold structure for the high dimensional data. [10] pro-
poses semidefinite embedding (SDE). It overcomes cer-
tain limitations of the previous methods. All of these
algorithms work on general dimension reduction tasks,
and are applicable to image data.

The listed algorithms work for image embedding
tasks. However, they assume that the set of images
forms a single well-sampled manifold. For many image
data sets, this is not true: there are islands (for example
different object classes) of images, each of which might
be well-described by a low dimensional subspace, but
there are no images that demonstrate a “path” from one
island to the next. Our method explicitly uses SIFT fea-
tures and makes no assumptions about the underlying
geometry of the space. It merely states that images with
similar features should be near each other.

Additionally, as we show in Section 2.3, our method
can be adapted to non-Euclidean spaces. In particular,
we can embed the images into a grid, suitable for visu-
alization. [6] also propose a visualization specifically
for images. It is based primarily on PCA on the raw
pixel values and has a postprocessing step to attempt to
separate the images for better visualization. By contrast
our method has a non-linear embedding and can directly
avoid overlap without the need for postprocessing.

2 Image Embedding Problem

In [5], we proposed an algorithm that can visu-
alize collaborative data. Unlike [7], in which they
use Term Frequency Inverse Document Frequency (TF-



IDF) based scoring algorithm to retrieve relevant im-
ages. We use a real-valued Bayesian network to model
the embedded positions of the users and items, along
with the ratings that relating them. We then employ
a Markov chain Monte Carlo (MCMC) algorithm with
simulated annealing to find samples that maximize the
posterior likelihood. In addition, we propose to use the
nonparametric statistic Kendall’s τ [3] as a criterion to
evaluate the embedding quality. In this work, we adopt
the overall structure of [5]. We do not have “users” that
have rated the images, but we employ SIFT features in
a similar role (see Section 2). We also simplify their
optimization method. Instead of trying to maximize the
posterior distribution of a complex graphical model, we
propose to directly minimize Kendall’s τ . Given this as
the end target criterion, we think it more natural to opti-
mize it directly instead of using the posterior likelihood
of a probabilistic model as a proxy.

2.1 Problem Formulation

Given a set of images I, our task is to embed them
into a D-dimensional space. Distances in this embed-
ded space should capture the image similarity: we want
to put similar images near each other, and dissimilar
ones far apart.

We first extract the SIFT features for all the images
(let Si be the features from image Ii), and then clus-
ter all features from all images together into m groups,
{Kj}. We have found that the end results are fairly sta-
ble with respect to the number of clusters and the clus-
tering algorithm. We use k-means to do this cluster-
ing. For any image Ii, we then count Nij , the number
of features in Si that belong to cluster Kj . If we di-
vide Nij by the size of Si, we have a distribution of
“membership” to the cluster Kj for image Ii. So we
can consider rij = Nij/‖Si‖ as the fractional “vote” of
Ii for Kj . So, following [5], we embed both the images
(items) and SIFT clusters (users) in the same space so
that SIFT clusters are near images that they like (have
many examples of the feature) and are far away from
those that they do not like (do not have the feature).

Consider the case where we already have a potential
embedding, containing image points and cluster points.
Let the images have points {Ii} in that space, and the
SIFT feature clusters have points {Kj}. For any par-
ticular image Ii, we can compute its distance to all the
cluster points, which we denote dij = ‖Ii−Kj‖. From
the SIFT feature clustering, we also have the member-
ship distribution rij . Let τ(a, b) be Kendall’s τ between
these two sequences a and b. The image embedding
problem can be formulated as finding the argmin over

the embedded points I = {Ii} and K = {Kj} of

T (I,K) =
1

n

∑n

i=1
τ({rij}

m
j=1, {dij}

m
j=1) . (1)

That is, we would like the lists of distances and mem-
bership distributions to have exactly reverse orderings
(images are near SIFT feature they contain and far from
those they do not).

2.2 Simulated Annealing

Exact algorithms to minimize the function T are not
possible due to its combinatorial nature. Instead, we
use simulated annealing [4]. We begin with a random
embedding of I and K. Samples from a multi-variate
Gaussian distribution work fine in practice.

At each step, we randomly choose a point, either an
image or a cluster, to resample. We drawn the new
potential location from a multi-variate Gaussian pro-
posal distribution centered at the old point. We calculate
∆T , the change in T if the point were moved, and ac-
cept the change with probability min{exp(− 1

β
∆T ), 1}.

By recording the number of concordant and discordant
pairs for each Kendall’s τ , this change can be calculated
quickly without recomputing all of Equation 1.

We iterate this resampling procedure until conver-
gence. Since our problem is to find the arg min of T , as
is standard in simulated annealing, we set β initially to
1, and we let it shrink toward zero.

2.3 Grid-based Image Embedding

The final embedding of the images will inevitably
involve much overlap if we plot the images in their em-
bedded space. If the embedding is simply for dimension
reduction as an initial step of machine learning, this is
not a problem. However, it is a problem if visualization
is the desired goal.

Unlike many other dimension reduction algorithms,
our framework can be easily adapted to a “grid-based”
approach. We do this by setting the target embedding
space to be a grid, i.e. each image can be only placed
into one of the embedding grid cells. The proposal dis-
tribution for changing an image can be a uniform dis-
tribution over all cells, or, more efficiently, a uniform
distribution over the neighbors of the image’s current
cell. If there is already another image that takes the pro-
posed grid position, then the proposed move is to swap
the two images, otherwise the proposal is to move the
image position to the new cell.

Everything else in the above algorithm remains the
same. We also restrict the SIFT cluster locations to the
grid cells. However, we do not require there to be at



Figure 1. One-dimensional embedding for the shoes object in the ALOI data set.

Figure 2. Sample embedding (left) and grid-based results for a subset of ALOI data set.

most one per cell. Rather, the SIFT clusters may coexist
on the same cell as we will not be displaying them.

3 Experiments and Results

We tested the embedding algorithms on two data
sets. The Amsterdam Library of Object Images
(ALOI) [2] contains images of a set of small objects. It
has images for 1000 objects, each has 72 images taken
from different viewing angles. This data set is noise-
free and is relatively easy for unsupervised image em-
beddings. Caltech101 [1] is another well-known data
set containing 101 categories of (more variable) images.
It is a harder data set for image dimension reduction.

It is usually difficult to numerically evaluate the em-
bedding results. Fortunately we know the ground-truth
category for each image in both data sets we used. We
use k-nearest neighbors accuracy (kNNA) to evaluate
the embedding:

kNNA(Ii) =

∑
Ij∈Nk(Ii)

Category(Ii)=Category(Ij)
k

,

where Nk(Ii) is the set of the k nearest neighbors of
image Ii in the embedding. The average kNNA for the
embedding is just kNNA =

P

i
kNNA(Ii)

P

i
1 .

We compared our simulated annealing embedding
(SAE) algorithm with Isomap, LLE, and SDE. Running
Isomap, LLE, and SDE with raw pixels produced poor
results. Instead, we ran those embedding algorithms us-
ing the SIFT distributions as the images’ vector repre-
sentation. This also removes any representation bias.

In addition to using Euclidean distance as the standard
distance metric, we also tried pairwise Pearson corre-
lations between the SIFT-feature vectors as a distance
metric.

3.1 Sample SAE Embeddings

Figure 1 shows a sample embedding of shoe images
from the ALOI data set viewed from different angles
using SAE. We picked 12 evenly spaced images in the
derived embedding from all of the 72 embedded shoe
images. It is clear that SAE preserves the pairwise sim-
ilarity well in terms of the shoe’s rotation.

Figure 2 shows a sample two-dimensional Euclidean
embedding for the ALOI data set. We randomly chose
a subset of 6 objects (categories), each with 36 different
images. A small number of images lie far away from the
center, so to show clearly, we zoomed in to a smaller
region with much higher image density. Note that we
also show in the same embedding the positions of the
SIFT clusters in circles. The cluster images are gener-
ated directly from the gradient intensities specified in
the vector. To be specific, the 128-dimensional vector
contains 8 gradient values for 16 sub-windows of inter-
est. We plotted these values in corresponding positions
in a small image.

Figure 2 shows the result of using a grid-based em-
bedding on the same data sets. These grid-based em-
beddings provide a user-friendly image grid. Unlike the
unconstrained Euclidean embeddings, there is no over-
lap obscuring some of the images. The images cate-
gories still cluster well into different areas of the space.
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Figure 3. kNNA results for the ALOI (left) and Caltech (right) data sets.

3.2 kNNA Results

For more quantitative results, we ran SAE, Isomap,
LLE and SDE embedding algorithms on 10 randomly
chosen objects from the ALOI data set, using 30 im-
ages for each object. We set m = 50 cluster centers
for grouping the SIFT features. We stopped the SAE
algorithm when the change in T was below 10−6. The
embedding dimension D was set to 2. We then calcu-
lated the kNNA accuracy of the derived embedding for
each value of the number of neighbors k. We ran 10
independent experiments (each with random objects),
and reported the average kNNA values for all the al-
gorithms. With the same settings, we ran similar ex-
periments on the Caltech101 data set with 10 randomly
chosen categories, each with 30 images. The results are
shown in Figure 3. Results of algorithms with pairwise
correlation as similarities are also shown in the figure
(with label ρ).

4 Conclusions

Our algorithm achieves higher accuracy results than
any of the other three algorithms. We believe this is
because our algorithm is designed to cluster images
with similar properties (as opposed to find parameters
of continuous variation). Although our method works
for continuous parameter variation (see Figure 1) and
the dimensionality reduction algorithms have some suc-
cess in clustering images (see Figure 3), our algorithm’s
strength is in embedding heterogeneous sets of images
in which there may not be any continuous path of im-
ages leading from one member of the data set to an-
other. For example, there is no “axis of variation” that
one can vary to generate a natural smooth set of images
from a butterfly image to a cellphone image in the Cal-
Tech101 data set. The butterflies and cellphones occupy

disconnected regions of the space of images of interest.
For many applications on data sets like Caltech101, we
think this strength is particularly important.

Finally, our method has the advantage of being able
to generate grid-based embeddings. For some applica-
tions, this is crucial to the utility of the embedding.
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