
Lossless compression via two-level logic minimization:
a case study using Chess endgame data

Dave Gomboc Christian R. Shelton
Dept. of Computer Science and Engineering,

University of California, Riverside, CA 92521 USA
dave gomboc@acm.org cshelton@cs.ucr.edu

Abstract

The utililty of processing techniques long in use
within the electronic design automation commu-
nity is underappreciated within the artificial in-
telligence community. We update and use the
ESPRESSO logic minimizer in order to generate
an exact, readily-queryable, and succinct represen-
tation of voluminous Chess endgame data.

1 Introduction
Chess play has been a relevant topic of academic study for
over a century, decades before computing science itself ex-
isted as a discipline [Zermelo, 1913; v. Neumann, 1928;
Shannon, 1950; Turing, 1953; Newell et al., 1958; Bellman,
1965; Quinlan, 1983; Campbell et al., 2002]. Today, ma-
chines are substantially stronger Chess players than top hu-
man experts, and the same can be said regarding many other
similar traditional human games (e.g., Backgammon, Check-
ers, Go, Othello, Scrabble, Shogi, and Texas Hold ’em).
Herein, we describe our recent effort to reduce the perceived
infeasibility of creating a Chess program that, under the as-
sumption that Chess is drawn with best play, will never make
a move that leads to a lost position.

1.1 Game-theoretic error-free endgame play
A Chess endgame table (“EGT”) is a precomputed, known-
correct source of information about Chess endgame positions.
The first Chess EGTs were computed by Ströhlein [1970];
seven-piece EGTs were first computed by Zakharov et
al. [2013] on the Lomonosov supercomputer, using tens of
tebibytes. Chess engines that reach such pre-tabulated posi-
tions from within their heuristic searches can propagate back
an exact score, which can be used either to improve on-line
game play or to improve the accuracy and efficiency of off-
line reinforcement learning [Silver et al., 2018] via tablebase
rescoring [killrducky, 2018].

1.2 State-of-the-art Chess endgame data
compression

Syzygy endgame tables are the current standard Chess EGT
format used, because these tables are more compact than any

Piece count Required space

≤ 5 78.1 MiB
= 6 67.8 GiB
= 7 8.5 TiB

Table 1: Syzygy win-draw-loss endgame table sizes

widely-available alternative, while also being acceptably ef-
ficient to query. By their design, it is required that the prob-
ing software possesses considerable infrastructure of a Chess
engine: in particular, positions with legal captures may be
recorded using a misleading value that achieves better com-
pression. The querying program must actually perform a
complete capture-based quiescence search and minimax the
resulting values in order to determine the correct result.

The open-source program Fathom [Falsinelli et al., 2015]
assists in querying Syzygy EGTs in the absence of a Chess
engine. We used a locally-modified version of this program
to query existing Syzygy tables to obtain source data. Ac-
cordingly, our computations have the same limitations as the
Syzygy EGTs: for example, it is always assumed that neither
side may castle their king.

For each covered combination of pieces, the Syzygy for-
mat provides a win-draw-loss (“WDL”) table and a distance-
to-zeroing-move (“DTZ”) table. The ability to search from
the starting position until the game result of every position
in the search frontier can be looked up within the WDL ta-
bles alone would be sufficient for a player to never play into
a game-theoretically-suboptimal position, as has previously
been achieved in Checkers [Schaeffer et al., 2007]: the DTZ
tables can merely be helpful when exploiting any mistakes
made by a fallible opponent. Accordingly, we will not con-
sider the DTZ tables further herein.

1.3 Objectives
The exponential growth of tablebase size as the piece count
increases ensures that the storage of even eight-piece tables
on commodity hardware will not be feasible in the near fu-
ture in the absence of an improved compression algorithm.
We wish to sharply reduce the storage space required to rep-
resent Chess EGT WDL information, while also eliminat-
ing any requirement to perform any amount of game-tree
search in order to successfully probe. We also hope that



realizing substantial simplification or improvement in an al-
ready thoroughly-studied domain will encourage other scien-
tists and engineers to consider whether processing the data
related to their applications of interest in a similar manner
would be beneficial.

We provide a fresh, accessible introduction to two-level
logic minimization in Section 2, and report on our experi-
ments in Section 3.

2 Two-level logic minimization
Let us consider a partial function P : {0, 1}n → {0, 1}m.
An equivalent total function T : {0, 1}n → {0, 1, X}m ex-
ists, where an output of X indicates that we do not care which
truth value is assigned to that output. Naturally, the straight-
forward tabular representation of T would always contain 2n

rows. Succinctness is desirable, so the matrix representation
of the function M : {0, 1, X}n → {0, 1, X}m, where an in-
put of X indicates that the row is applicable regardless of the
instantiated truth value of that input, can be used to reduce the
number of rows in the tabular representation: a single row of
matrix M with k inputs set to X is equivalent to specifying
the 2k compatible rows of the tabular representation of T .

The union of the input vectors where any of the outputs
is assigned to either 0, 1, or X is considered to be part of
the ON-cover (or F , for function), the OFF-cover (or R, for
reverse), or the DC-cover (or D, for don’t care), respectively.
Each such cover is the sum of clauses; each clause (or “cube”,
by tradition, though a clause can represent a hyperrectangle)
is the product of individual inputs. Two-level logic minimiza-
tion is the task of, having been provided with some matrix
M that is consistent with P , identifying a matrix M ′ that is
also consistent with P whose covers of interest have minimum
cardinality.

We first discuss a few important algorithms from the elec-
tronic design automation (“EDA”) literature, though we re-
fer the reader to Coudert [1994] for coverage of additional
historically-important logic minimization techniques. We
then describe the mapping from Chess endgame table data
to {0, 1, X}-vectors, and we finish the section by discussing
the enhancements that we have made to ESPRESSO.

2.1 MINI
The MINI logic minimizer [Hong et al., 1974] introduced the
heuristic approach of iteratively improving cover cardinality
via repeated cube expansion and reduction.

Positional cube notation
In positional cube notation (“PCN”), each specific value of
an input variable v is mapped to a tuple of bits whose length
is the cardinality of the domain. So, a multiple-valued input
variable of the domain {ant, bee, cat, dog} could be mapped
as follows: ant → 1000; bee → 0100; cat → 0010; dog
→ 0001. Here, 1111 would be used to represent “don’t
care”. For each binary input variable v, PCN reduces to a bit
pair v̄v: 0 → 10; 1 → 01; X → 11. Cube intersection is
efficiently performed via bitwise and: when two cubes with
incompatible variable assignments are so intersected, a zero-
tuple occurs for each such conflicting variable.

Distance-one merging
In their paper, Hong et al. report that MINI performed
distance-one merging for “computational advantage”. An in-
dividual distance-one merge operation permits two product
clauses of a cover to be combined when they disagree in a
single {0, 1, X}-input variable, thereby reducing cover cardi-
nality, as in the following three examples:

before 0X01100 100X010 X011001
0X11100 10XX010 X0X1001

after 0XX1100 10XX010 X0X1001

MINI iterates over each such input variable once, updating
the sorted ordering of M ′ prior to processing each variable
to ensure that the clauses are ordered to permit all potential
merges involving that variable via a linear scan through the
product clauses.

Expansion
Distance-one merging is a particular form of cube expansion,
which is the process of enlarging a cube so that it (hopefully)
includes as many as possible of the minimum product terms,
or minterms, of M ′ that must be covered, while avoiding cov-
ering any product terms that must not be covered (the collec-
tion of which constitutes the blocking cover). An expanded
cube may newly encompass one or more other cubes: when
this happens, these other cubes are no longer necessary to re-
tain in order to accurately represent P , and so are discarded.

Reduction
Once expansion has occurred, many cubes that partially over-
lap may cover the same minterms. Cube reduction is the pro-
cess of shrinking a cube while ensuring that it continues to
cover all minterms not already covered by any other cube.

2.2 ESPRESSO
Brayton et al. [1984] famously introduced the unate recur-
sive paradigm in their book, and their C implementation of
ESPRESSO was open-sourced under a liberal licence, assist-
ing its wide adoption. Unfortunately, that version has re-
mained in relative statis for the past quarter-century.

Irredundancy
While expansion alone can eliminate many cubes, it does
not eliminate any cube that does not end up completely en-
compassed by a single other cube. The irredundancy pass
within ESPRESSO’s expansion-irredundancy-reduction main
loop exists to prioritize the cardinality minimization of M ′

via the detection and removal of such cubes that are nonethe-
less redundant with respect to multiple other cubes in advance
of performing any reduction that could cause an available op-
portunity for cube removal to be forfeited.

Distance-one merging
Like MINI, the ESPRESSO implementation used does sup-
port the ability to apply distance-one merging across multiple
variables of the ON-cover in sequence. Though this capabil-
ity is neither alluded to anywhere in the book nor happens by
default, the espresso(1) manual page suggests its use.



2.3 Pupik
The Pupik logic minimization algorithm [Fišer et al., 2008;
Fišer and Toman, 2009] hails from the same research group as
the BOOM-II heuristic logic minimizer [Fišer and Kubátová,
2006]. Pupik is based on processing ternary trees [Fišer
and Hlavička, 2001] that compactly represent Boolean func-
tions. Pupik repeatedly performs single-variable absorption
(a+ab = a) and complementation (ab+ab̄ = a) to combine
adjacent cubes with identical outputs.

Unfortunately, the algorithmic and experimental perfor-
mance analyses performed by Fišer et al. [2008] and Fišer and
Toman [2009] consider neither the possibility of maintaining
M ′ in sorted order nor the use of ESPRESSO’s distance-one
merging capability, respectively. In fact, exploiting single-
variable absorption and complementation together is exactly
the same operation as a single distance-one merge opera-
tion, and performing the full procedure described in Fišer
et al. [2008] is precisely equivalent to distance-one merging
over F .

Furthermore, asymptotic analysis is not the whole story:
performing repeated accesses over a tree lacks the memory
locality behaviour of comparing vectors that are juxtaposed
in memory1, and assessing each individual binary bit access
within a table as a distinct operation is also unrealistic. To-
day, commodity processors provide registers that support op-
erating on 256 or even 512 bits at a time: it is difficult to
say how many tens of thousands of binary inputs might be
required before performance actually increased from using a
tree structure without either access to Pupik’s source code or
reimplementing it from scratch.2

2.4 A simple position encoding scheme
Many different ways to encode Chess positions for subse-
quent logic minimization exist: we have chosen ours with two
major critiera in mind. We retain the traditional top-level di-
vision of Chess endgame positions by their material balance.
Even though another strategy could be superior, making this
choice permits straightforward comparison of our experimen-
tal results with what has been prior practice for a half-century.

More importantly, the position encoding scheme has been
selected to be as absolutely uninformed about Chess as pos-
sible. Not only do our input vectors contain no machine-
learned features, they also fail to manually capture basic
Chess notions such as whether the player to move is in check
or has at least one legal move that can be played. We have
stayed far away from using any sort of bitboard represen-
tation [Adel'son-Vel'skii et al., 1970] that could cause logic
minimization-based image processing techniques [Augustine
et al., 1995; Damodare et al., 1996; Sarkar, 1996] to become
applicable. No counters are used; even the specific mate-
rial balance in use is not encoded. Furthermore, we make
no application of concepts that might assist logic minimiza-
tion itself such as multiple-valued variables or reflected bi-

1In practice, a suffix array implementation exhibits an approxi-
mately 5x performance advantage over an equivalent suffix tree im-
plementation, for this very reason.

2We attempted to but did not succeed in establishing communi-
cation with the relevant research authors.

nary (a.k.a. Gray) coding. By doing so, we hope to convince
the reader of the generality of the technique presented herein.

Directives at the top of an ESPRESSO input file indi-
cate how many inputs and outputs will appear per ma-
trix row, and can also indicate how many rows are present
and which covers will be provided. Such directives are
followed by a matrix description of the universe of dis-
course: 0000010010000000000001001010 is an ex-
ample row of T . Of the 25 input bits, the first is 1 iff Black is
to move. Chess boards contain 26 potential piece locations,
so six bits are used to specify the placement of each piece. We
always record the locations of the white king and black king
in bits 2-7 and 8-13, respectively; additional sextets are used
to represent any additional pieces for the particular material
balance in use. The final triplet are the three outputs, which
indicate whether the side that is to move wins, draws, or loses.
Were we processing the KNkp table, the row above would
be interpreted as follows: White is to move; the white king is
on c8; the black king is on a6; the white knight is on a8; the
black pawn is on b7; White has a draw with best play. The
complete table T for the KNkp material balance that we
provide to ESPRESSO for minimization contains 225 rows.

The austere simplicity of this representation is notewor-
thy. Extensive efforts have been made to identify indexing
schemes that include all legal positions for a material balance,
but as few additional illegal positions as possible [van den
Herik and Herschberg, 1985; Thompson, 1986; Heinz, 1999;
Nalimov et al., 2000]. It is also common for multiple index-
ing order permutations to be attempted for each material bal-
ance: once it is determined which variant turns out to yield the
smallest file size after a subsequent layer of block compres-
sion is applied, the necessary data required to select which
scheme is to be used for decompression is recorded near the
beginning of the file. By instead relying upon logic minimiza-
tion to combine adjacent cubes with compatible outputs, we
avoid considerable tedium.

This representation also permits labelling large blocks of
positions with the same output vector a priori. For example,
all positions where a black pawn is on the eighth rank are il-
legal. We could specify that we do not care about any such
positions within the KNkp table using a single matrix
row: XXXXXXXXXXXXXXXXXXX000XXXXXX. Thus, en-
hancing EGTs to also accommodate positions where castling
rights have not been lost becomes straightforward3: add a bi-
nary input for each relevant castling status, and whenever one
is enabled, set to don’t care the three outputs for all positions
when either the relevant king or rook that would be castled
with has already moved.

2.5 Modifications of ESPRESSO
We have made several local improvements to ESPRESSO.
Most of the changes we described are to ensure the correct-
ness of and/or to simplify the implementation, though com-
paction itself provides a substantial performance improve-
ment, as we shall see in Section 3.

3Castling support would be useful: Chess studies presume the
legality of castling, unless it can be proven that an encountered posi-
tion could not have been reached without having forfeited the right
to castle.



acanonical
endgame positions side to move side to move side to move rows
material invalid marked as illegal wins with draws with loses with inputs outputs in T
balance positions don’t care positions best play best play best play (.i) (.o) (.p)

Kk 128 0 840 0 7224 0 13 3 213

Kk 128 7508 64 0 492 0 13 3 213

KQk 24 320 0 131 516 144 508 23 048 200 896 19 3 219

KQk 24 320 465 648 9469 9563 1739 13 549 19 3 219

KRk 24 320 0 100 856 175 168 22 244 201 700 19 3 219

KRk 24 320 465 648 7108 11 924 1727 13 561 19 3 219

KBk 24 320 0 82 740 0 417 228 0 19 3 219

KBk 24 320 465 648 6105 0 28 215 0 19 3 219

KNk 24 320 0 70 528 0 429 440 0 19 3 219

KNk 24 320 465 648 5260 0 29 060 0 19 3 219

KPk 24 320 0 168 616 124 960 108 788 97 604 19 3 219

KPk 24 320 278 256 136 694 28 938 34 807 21 273 19 3 219

Table 2: Two- and three-piece endgame table statistics, both without and with canonicalization

Compaction
We perform distance-one merging against all {0, 1, X}-
inputs over each of F , D, and R, but using ESPRESSO’s
existing data structures. Compaction can occur in the pres-
ence of multiple-valued inputs and/or multiple binary outputs.
Unlike MINI’s and ESPRESSO’s older distance-one merging
capabilities, we do not cease to iterate after visiting each input
variable once. Instead, we continue iterating until no further
distance-one merges are available.

Function cover consistency
While a function’s covers need to be self-consistent,
ESPRESSO’s checking has been stricter than is necessary.
Self-consistency does require that the union of a function’s
ON-cover, OFF-cover, and DC-cover must be the universe.
However, overlap between its ON-cover and its DC-cover
is permitted. Likewise, overlap between its OFF-cover and
its DC-cover is permitted. Consequently, overlap between a
function’s ON-cover and OFF-cover that are simultaneously
undergoing minimization should actually be permitted, so
long as the entirety of their overlap remains within the func-
tion’s DC-cover. In other words, the intersection of the OFF-
cover and the DC-cover should not be part of the blocking
cover when operating on the ON-cover, and likewise, the in-
tersection of the ON-cover and the DC-cover should not be
part of the blocking cover when operating on the OFF-cover.

ESPRESSO does not retain either F − D or R − D in
memory: making such an improvement would permit simpler
covers to be identified whenever both covers could take ad-
vantage of flexibility provided by using the same don’t cares.
Currently, we compute these as part of our improved consis-
tency checking when vetting cover information read in from
a data file, as in the following operation.

Function consistency
Verifying that two matrices A and B actually represent the
same partial function P is essential to ensure that operations
on M ′ have been correctly performed. Therefore, we added
the capability to check that all of the following conditions

hold for two matrices read in from their corresponding data
files:

• DA = DB

• FA −DA = FB −DB

• RA −DA = RB −DB

Technical debt repayment
In furtherance of our aim to make additional algorthmic and
technical improvements, including but not limited to sup-
porting multiprocessing and SIMD-enablement via the us-
age of in-memory compressed Boolean vectors [Lemire et
al., 2018], we: have sharply reduced ESPRESSO’s use of not
only global variables and structures, but also raw memory ac-
cesses; have upgraded all of ESPRESSO’s code, which was a
mixture of K&R C and ANSI C89/ISO C90, to C++17; now
use the CMake build system, permitting parallel compilation.

3 Experimentation
We conduct experiments to explore the trade-off between
minimization time and minimization quality. As can be dis-
cerned from Table 2, the two-piece table has 213 possible po-
sitions (where, as explained above, a position not only en-
compasses the mapping of pieces to squares but also includes
the side to move), while each three-piece table has 219 pos-
sible positions. Any position where a piece would be super-
imposed on another is considered to be invalid. The notion
of canonicalization referred to in the third column of Table 2
will be described below.

The machine that we used for all timed computations has
an eight-core i7-9700 CPU that nominally runs at 3.0GHz
(though the frequency adapts dynamically) and has 32 GiB
of RAM. Each job was given the use of a single core and 4
GiB of RAM. Up to seven jobs were permitted to run simulta-
neously, in an attempt to avoid any resource oversubscription
that might cause undesirable timing variability.



co
m

pa
ct

io
n,

th
en

co
m

pa
ct

io
n,

th
en

ac
an

on
ic

al
m

at
er

ia
l

T
ju

st
ex

pa
ns

io
n

fu
ll

E
SP

R
E

SS
O

ju
st

co
m

pa
ct

io
n

ju
st

ex
pa

ns
io

n
fu

ll
E

SP
R

E
SS

O
as

do
n’

tc
ar

e
ba

la
nc

e
cl

au
se

s
in

F
tim

e
(s

)
cl

au
se

s
in

F
tim

e
(s

)
cl

au
se

s
in

F
tim

e
(s

)
cl

au
se

s
in

F
tim

e
(s

)
cl

au
se

s
in

F
tim

e
(s

)
cl

au
se

s
in

F

fa
ls

e
K
k

7
2
2
4

0
.1

1
0
.1

1
0
.1

3
0
0

0
.1

1
0
.2

1
tr

ue
K
k

4
9
2

0
.1

1
0
.2

1
0
.1

9
4

0
.1

1
0
.1

1
fa

ls
e

K
Q
k

3
6
8
4
5
2

2
1
3
1
9
.9

1
2
7
5

2
2
5
2
4
.9

1
1
2
3

9
1
.7

1
9
0
2
4

4
7
0
.1

1
3
7
9

9
2
9
.7

1
1
1
8

tr
ue

K
Q
k

2
4
8
5
1

1
2
1
.8

1
9
6

4
7
7
.2

1
8
4

1
9
.1

4
5
8
6

3
0
.3

2
3
5

4
8
.1

1
8
7

fa
ls

e
K
R
k

3
9
9
1
1
2

3
0
1
6
9
.6

8
4
6

3
0
6
6
0
.9

7
4
6

5
8
.4

1
5
0
9
6

2
8
0
.5

9
2
0

4
7
6
.1

7
4
1

tr
ue

K
R
k

2
7
2
1
2

1
7
7
.1

1
6
1

4
2
6
.6

1
5
5

1
9
.1

4
4
1
5

2
4
.8

1
9
1

3
8
.7

1
5
8

fa
ls

e
K
B
k

4
1
7
2
2
8

1
1
9
.0

1
1
2
0
.3

1
1
2
4
.5

1
2
9
8
4

1
2
4
.8

1
1
2
5
.0

1
tr

ue
K
B
k

2
8
2
1
5

1
0
.2

1
1
5
.6

1
1
4
.0

4
3
2
6

1
4
.1

1
1
4
.3

1
fa

ls
e

K
N
k

4
2
9
4
4
0

4
1
.6

1
4
2
.7

1
4
4
.0

8
1
8
8

4
4
.1

1
4
4
.3

1
tr

ue
K
N
k

2
9
0
6
0

9
.3

1
1
4
.7

1
1
2
.9

3
5
2
8

1
3
.0

1
1
3
.2

1
fa

ls
e

K
P
k

3
3
1
3
5
2

8
0
3
2
.3

5
4
0
7

1
7
5
9
2
.1

4
6
3
2

1
2
2
.6

3
0
5
7
0

5
2
1
.0

6
6
1
2

3
9
1
4
.7

4
6
5
7

tr
ue

K
P
k

8
5
0
1
8

1
3
6
8
.4

2
1
9
8

8
5
2
9
.6

1
9
9
2

3
6
.0

1
2
9
7
1

1
1
8
.9

2
7
0
6

6
2
1
.7

2
0
0
4

Ta
bl

e
3:

Tw
o-

an
d

th
re

e-
pi

ec
e

en
dg

am
e

ta
bl

e
re

su
lts

,w
ith

an
d

w
ith

ou
tc

an
on

ic
al

iz
at

io
n

an
d

di
st

an
ce

-o
ne

m
er

gi
ng

3.1 Two- and three-piece endgame tables
Our first experiment manipulates three processing condi-
tions while processing the two- and three-piece tables:
whether compaction is or is not performed; whether the full
ESPRESSO algorithm4 will be executed versus just a single
expansion pass; whether or not canonicalization is used. This
last condition is explained immediately below, followed by
discussing the results of this first experiment.

Canonicalization
Symmetries in Chess endgames (and in other puzzles
and games, e.g., Patashnik [1980], Allis et al. [1991],
Gasser [1996], Stiller [1989; 1991; 1996], Culberson and
Schaeffer [1998]) have long been exploited. A simple exam-
ple of symmetry exploitation is that the Syzygy EGTs do not
include the Kkq material balance. When it is needed, the
KQk table will instead be probed using the reversed board,
and the response received will be translated also. Additional
symmetries do exist, especially in pawnless endgames.

For each equivalence class of positions defined by the
available symmetries for a material balance5, we can des-
ignate one in particular as the canonical representation for
which WDL data is recorded. All other positions within the
equivalence class are assigned exclusively to the DC-cover.
The probing operation must then determine the appropriate
canonical position, read the WDL data, and, depending upon
the particular canonicalization transformation made, poten-
tially translate the read data back in order to return the appro-
priate probe result.

Results
Table 3 shows ON-cover minimization results for two- and
three-piece endgames under a variety of processing condi-
tions. The three trivial material balances that consistently
resolve to the same (drawn) result without regard to any posi-
tion features all resolve quickly with all reported processing
methods. We can nonetheless observe some striking perfor-
mance differences with the remaining three material balances.

Performing distance-one merging across each of F , D, and
R prior to the first expansion pass of ESPRESSO consistently
yields a clear and substantial processing time advantage. Ac-
cordingly, we always apply compaction hereafter.

Executing the complete ESPRESSO algorithm noticeably
improves ON-cover cardinality versus performing only a sin-
gle expansion pass, but the associated time penalty is also
noticeable. Having examined only three nondegenerate ma-
terial balances so far, we will further investigate this tradeoff
with additional material balances later in this section.

Canonicalization substantially increases the opportunities
for minimizing the cardinalities of the ON- and OFF-covers.
As with compaction, canonicalization yields a substantial
minimization-time processing advantage; thus, we always ap-
ply it hereafter.

4A full discussion thereof would take us far astray: see Brayton
et al. [1984] for details.

5One caveat is that we do not yet take advantage of an additional
symmetry that exists when White and Black have the same material,
which limits performance in the KQkq and KRkr cases.



compaction, then compaction, expansion, compaction, then
material T compaction just expansion then irredundancy full ESPRESSO
balance clauses in F time (h) clauses in F time (h) clauses in F time (h) clauses in F time (h) clauses in F

Kk 492 0.000 94 0.000 1 0.000 1 0.000 1

KQk 24 851 0.005 4586 0.008 235 0.009 204 0.013 187

KRk 27 212 0.005 4415 0.007 191 0.007 170 0.011 158

KBk 28 215 0.004 4326 0.004 1 0.004 1 0.004 1

KNk 29 060 0.004 3528 0.004 1 0.004 1 0.004 1

KPk 85 018 0.010 12 971 0.033 2706 0.035 2243 0.173 2004

KQQk 1 199 825 0.820 125 819 18.016 6257 18.229 4681 25.767 4089

KQRk 1 385 863 0.876 120 377 9.778 2097 9.848 1702 12.485 1492

KQBk 1 429 843 1.392 149 698 11.911 6820 12.153 5026 21.509 4252

KQNk 1 465 555 1.290 133 683 9.731 3789 9.859 2905 15.048 2500

KQPk 4 308 718 5.152 221 360 45.909 8100 46.080 6020 68.381 5183

KRRk 1 385 236 0.554 107 206 6.227 415 6.245 320 6.553 288

KRBk 1 554 111 1.354 149 201 8.644 4421 8.796 3214 14.252 2640

KRNk 1 589 978 1.260 132 801 8.884 2588 8.968 1955 11.983 1685

KRPk 4 653 226 4.292 197 993 34.201 6035 34.315 4444 44.218 3860

KBBk 1 481 141 2.328 149 839 4.072 2579 4.170 1874 5.526 1747

KBNk 1 644 205 1.904 165 696 18.767 9343 19.103 6956 35.726 6042

KBPk 4 841 590 12.420 313 838 148.817 27 711 149.388 21 321 287.409 18 686

KNNk 1 562 304 1.054 106 484 5.085 110 5.091 90 5.172 76

KNPk 4 974 103 13.666 292 502 149.774 30 974 150.271 24 052 323.855 21 335

KPPk 3 803 456 5.134 262 735 98.877 23 176 99.146 16 777 169.534 14 480

KQkq 1 120 431 4.629 250 785 19.446 32 145 20.915 21 019 135.959 17 641

KQkr 1 329 609 1.642 153 187 13.767 12 247 14.154 8396 32.541 7279

KQkb 1 413 932 2.108 204 852 22.151 12 951 22.745 7878 51.109 6798

KQkn 1 461 810 1.604 166 111 13.353 9539 13.746 5015 22.371 4215

KQkp 4 316 927 9.388 308 727 67.112 24 827 67.648 18 944 143.350 16 958

KRkr 1 349 331 2.884 200 785 13.695 17 138 14.415 11 151 60.862 9432

KRkb 1 553 387 2.456 191 334 13.675 13 094 14.203 9258 40.476 7995

KRkn 1 601 265 2.691 202 919 15.192 29 200 16.114 21 890 134.434 18 682

KRkp 4 669 822 16.430 387 566 140.715 57 060 141.867 45 850 604.759 40 943

KBkb 1 480 764 1.693 153 678 10.012 36 10.015 33 10.034 33

KBkn 1 661 198 1.079 108 600 6.472 22 6.474 20 6.485 20

KBkp 4 870 169 10.361 407 929 79.057 40 749 80.032 30 224 320.567 25 952

KNkn 1 568 855 1.183 124 679 6.280 21 6.282 20 6.295 20

KNkp 4 669 822 9.480 410 373 78.993 46 307 79.876 35 363 342.261 31 040

KPkp 3 720 494 25.243 580 870 111.430 133 103 assertion failure assertion failure

Table 4: ON-cover cardinality reduction when using don’t care for acanonical placements

3.2 Two- through four-piece results

We now include four-piece endgames as we attempt to ex-
plore further the trade-off of minimization time versus the
cardinality of F . The processing treatment that has been
added to Table 4 is to apply compaction, expansion, and irre-
dundancy, without performing the full ESPRESSO algorithm.

Attempting to run ESPRESSO when using the KPkp
material balance results in an assertion failure being issued
from within the irredundancy portion of ESPRESSO’s code.
The root cause is that the 16-bit field used to store cube in-
dices while determining an irredundant cover is insufficiently
capacious when processing sufficiently large data sets.

We assess the irredundancy pass to be both relatively quick
and effective at further reducing the cardinality of F af-

ter the expansion pass has been performed. When the full
ESPRESSO algorithm also completes relatively quickly, it
is in cases where it provides no substantial additional min-
imization over and above what expansion and irredundancy
together achieve. In many other cases, running the full
ESPRESSO algorithm is extremely time-consuming, and fur-
thermore, there is every reason to expect it to remain pro-
hibitively expensive as problem size increases.

The additional effort to continue to reduce cover cardi-
nality undertaken by the full ESPRESSO algorithm may be
particularly valuable in the electronics manufacturing con-
text. For example, simpler circuits are associated with us-
ing either fewer lookup tables (“LUT”s), or less die space
and less power. However, the extra effort of executing full
ESPRESSO does not appear to be an efficient use of our lim-



ited processing power: given our intention to obtain usable
compressed PCN versions of larger EGTs as economically as
possible, applying compaction, expansion, then irredundancy
appears to be our best trade-off.

3.3 Compression effectiveness
We now take each product clause in F generated when us-
ing compaction, expansion, and irredundancy. Each clause
can be represented in PCN in 64 bits with room to spare.
We have generated a binary file per material balance contain-
ing each row in PCN. Table 5 reports the bytes consumed by
the uncompressed PCN in memory (which is eight bytes per
product clause in F ), the bytes consumed by the compressed
PCN files that would be stored persistently, and the size of the
(already compressed) Syzygy WDL tables that are currently
stored persistently when used with Chess engines.

The final row of Table 5 shows that the WDL information
for all successfully processed endings requires 948 292 bytes
in the compressed PCN format, versus 1 017 456 bytes for
the same data in the Syzygy WDL format. Given that there
has been a half-century of endgame table technology devel-
opment leading to the Syzygy format, and that numerous op-
portunities to improve compression results using this novel
method remain, we are comfortable claiming that this method
of lossless compression has promise.

4 Contributions
Logic minimization techniques have previously been ap-
plied widely within EDA, and also within image processing-
like and stream compression contexts [Yang et al., 2006;
Amarú et al., 2014]. We have provided a top-level expla-
nation of essential two-level logic minimization algorithms,
clarified some relationships between techniques described
within its literature, and shown experimentally that logic
minimization may be an effective technique for compressing
Chess endgame tables.

Acknowledgments
We thank the University of California, Riverside for access to
computational resources. The first author is also an employee
of Google LLC, however, this research has been performed
with neither awareness of any applicable insider Google LLC
knowledge that might exist nor use of resources associated
with that employment. Any statements and opinions ex-
pressed do not necessarily reflect the position or the policy
of either Google LLC or the University of California; no of-
ficial endorsement should be inferred.

References
[Adel'son-Vel'skii et al., 1970] G. M. Adel'son-Vel'skii, V. L. Ar-

lazarov, A. R. Bitman, A. A. Zhivotovskii, and A. V. Uskov. Pro-
gramming a computer to play Chess. Russian Mathematical Sur-
veys, 25(2):221–262, April 1970.

[Allis et al., 1991] L.V. Allis, M. van der Meulen, and H.J. van den
Herik. Databases in Awari. In D.N.L. Levy and D.F. Beal, edi-
tors, Heuristic Programming in Artificial Intelligence 2: the Sec-
ond Computer Olympiad, pages 73–86. Ellis Horwood, 1991.

material uncompressed compressed Syzygy WDL
balance PCN size (B) PCN size (B) size (B)

Kk 8 64 n/a (80)

KQk 1632 748 272

KRk 1360 636 208

KBk 8 64 80

KNk 8 64 80

KPk 17 944 6252 7824

KQQk 37 448 13 652 7056

KQRk 13 616 5096 4560

KQBk 40 208 14 332 4944

KQNk 23 240 8728 3600

KQPk 48 160 18 432 12 496

KRRk 2560 1244 1936

KRBk 25 712 8976 2832

KRNk 15 640 5776 2320

KRPk 35 552 13 816 5136

KBBk 14 992 5748 58 000

KBNk 55 648 21 040 7632

KBPk 170 568 60 612 81 424

KNNk 720 424 1360

KNPk 192 416 69 272 93 200

KPPk 134 216 47 460 25 104

KQkq 168 152 66 140 16 528

KQkr 67 168 25 956 20 496

KQkb 63 024 23 160 6672

KQkn 40 120 15 820 10 064

KQkp 151 552 54 624 58 064

KRkr 89 208 36 328 12 944

KRkb 74 064 29 092 32 912

KRkn 175 120 69 512 100 048

KRkp 366 800 131 720 179 408

KBkb 264 176 1232

KBkn 160 140 2256

KBkp 241 792 88 784 107 472

KNkn 160 140 1168

KNkp 282 904 104 264 148 048

totals 2 552 144 948 292 1 017 456

Table 5: Endgame table sizes

[Amarú et al., 2014] L. Amarú, P. Gaillardon, A. Burg, and G. De
Micheli. Data compression via logic synthesis. In Nineteenth
Asia and South Pacific Design Automation Conference (ASP-
DAC), pages 628–633, 2014.

[Augustine et al., 1995] Jacob Augustine, Wen Feng, Anamitra
Makur, and James Jacob. Switching theoretic approach to im-
age compression. Signal Processing, 44(2):243 – 246, 1995.

[Bellman, 1965] Richard Bellman. On the application of dynamic
programing to the determination of optimal play in Chess and
Checkers. Proceedings of the National Academy of Sciences of
the United States of America, 53(2):244, 1965.

[Brayton et al., 1984] Robert King Brayton, Alberto L.
Sangiovanni-Vincentelli, Curtis T. McMullen, and Gary D.
Hachtel. Logic Minimization Algorithms for VLSI Synthesis.
Kluwer Academic Publishers, Norwell, MA, USA, 1984.



[Campbell et al., 2002] Murray Campbell, A. Joseph Hoane, Jr.,
and Feng-hsiung Hsu. Deep Blue. Artif. Intell., 134(1-2):57–83,
January 2002.

[Coudert, 1994] Olivier Coudert. Two-level logic minimization: an
overview. Integration, the VLSI Journal, 17(2):97–140, October
1994.

[Culberson and Schaeffer, 1998] Joseph C. Culberson and Jonathan
Schaeffer. Pattern databases. Computational Intelligence,
14(3):318–334, 1998.

[Damodare et al., 1996] R. P. Damodare, J. Augustine, and J. Jacob.
Lossless and lossy image compression using Boolean function
minimization. Sadhana, 21(1):55–64, February 1996.

[Falsinelli et al., 2015] Basil Falsinelli, Jon Dart, and Ronald
de Man. Fathom. https://github.com/jdart1/Fathom, 2015.

[Fišer and Hlavička, 2001] Petr Fišer and Jan Hlavička. Implicant
expansion methods used in the BOOM minimizer. 2001.

[Fišer and Kubátová, 2006] Petr Fišer and Hana Kubátová. Flex-
ible two-level Boolean minimizer BOOM-II and its applica-
tions. In 9th EUROMICRO Conference on Digital System Design
(DSD’06), pages 369–376, August 2006.

[Fišer and Toman, 2009] Petr Fišer and David Toman. A fast SOP
minimizer for logic functions described by many product terms.
pages 757–764, 2009.

[Fišer et al., 2008] Petr Fišer, Přemysl Rucký, and Irena Váňová.
Fast Boolean minimizer for completely specified functions. pages
122–127, 2008.

[Gasser, 1996] Ralph Gasser. Solving Nine Men’s Morris. Compu-
tational Intelligence, 12(1):24–41, 1996.

[Heinz, 1999] E.A. Heinz. Endgame databases and efficient in-
dex schemes for Chess. Journal of the International Computer
Games Association, 22(1):22–32, 1999.

[Hong et al., 1974] S. J. Hong, R. G. Cain, and D. L. Ostapko.
MINI: a heuristic approach for logic minimization. IBM Journal
of Research and Development, 18(5):443–458, September 1974.

[killrducky, 2018] killrducky. TB rescoring. https://blog.lczero.org/
2018/09/tb-rescoring.html, 2018.

[Lemire et al., 2018] Daniel Lemire, Owen Kaser, Nathan Kurz,
Luca Deri, Chris O’Hara, François Saint-Jacques, and Gregory
Ssi-Yan-Kai. Roaring bitmaps: Implementation of an optimized
software library. Software: Practice and Experience, 48(4):867–
895, 2018.

[Nalimov et al., 2000] E. V. Nalimov, G. McC. Haworth, and
E. A. Heinz. Space-efficient indexing of Chess endgame ta-
bles. Journal of the International Computer Games Association,
23(3):148–162, 2000.

[Newell et al., 1958] Allen Newell, J. C. Shaw, and Herbert A. Si-
mon. Chess-playing programs and the problem of complexity.
IBM Journal of Research and Development, 2(4):320–335, 1958.

[Patashnik, 1980] Oren Patashnik. Qubic: 4x4x4 tic-tac-toe. Math-
ematics Magazine, 53(4):202–216, 1980.

[Quinlan, 1983] John Ross Quinlan. Learning efficient classifica-
tion procedures and their application to Chess end games. In Ma-
chine Learning: an Artificial Intelligence Approach, pages 463–
482, 1983.

[Sarkar, 1996] Debranjan Sarkar. Boolean function-based approach
for encoding of binary images. Pattern Recognition Letters,
17(8):839 – 848, 1996.

[Schaeffer et al., 2007] Jonathan Schaeffer, Neil Burch, Yngvi
Björnsson, Akihiro Kishimoto, Martin Müller, Robert Lake,
Paul Lu, and Steve Sutphen. Checkers is solved. Science,
317(5844):1518–1522, 2007.

[Shannon, 1950] Claude E. Shannon. A Chess-playing machine.
Scientific American, 182(2):48–51, February 1950.

[Silver et al., 2018] David Silver, Thomas Hubert, Julian Schrit-
twieser, Ioannis Antonoglou, Matthew Lai, Arthur Guez, Marc
Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, Tim-
othy Lillicrap, Karen Simonyan, and Demis Hassabis. A general
reinforcement learning algorithm that masters Chess, Shogi, and
Go through self-play. Science, 362(6419):1140–1144, 2018.

[Stiller, 1989] Lewis Stiller. Parallel analysis of certain endgames.
The Journal of the International Computer Chess Association,
12(2):55–64, 1989.

[Stiller, 1991] Lewis Stiller. Group graphs and computational sym-
metry on massively parallel architecture. The Journal of Super-
computing, 5(2-3):99–117, 1991.

[Stiller, 1996] Lewis Stiller. Multilinear algebra and Chess
endgames. Games of no chance, 29:151–192, 1996.

[Ströhlein, 1970] T. Ströhlein. Untersuchungen über Kombina-
torische Spiele (“Investigations on Combinatorial Games”). PhD
thesis, Fakultät für Allgemeine Wissenschaften der Technische
Hochschule München (“Faculty of General Sciences of Munich
Technical University”), 1970.

[Thompson, 1986] Ken Thompson. Retrograde analysis of certain
endgames. The Journal of the International Computer Chess As-
sociation, 9(3):131–139, 1986.

[Turing, 1953] Alan Mathison Turing. Digital computers applied to
games. Faster than Thought, 1953.

[v. Neumann, 1928] J. v. Neumann. Zur theorie der
gesellschaftsspiele (“On the theory of parlor games”). Math-
ematische Annalen (“Mathematical Annals”), 100:295–320,
1928.

[van den Herik and Herschberg, 1985] H.J. van den Herik and I.S.
Herschberg. The construction of an omniscient endgame data
base. The Journal of the International Computer Chess Associa-
tion, 8(2):66–87, 1985.

[Yang et al., 2006] Jeehong Yang, Serap A. Savari, and Oskar
Mencercv. Lossless compression using two-level and multi-
level boolean minimization. In 2006 IEEE Workshop on Signal
Processing Systems Design and Implementation, pages 148–152,
2006.

[Zakharov and Maknhychev, 2013] V. Zakharov and V. Maknhy-
chev. Creating tables of Chess 7-piece endgames on the
Lomonosov supercomputer. Superkomp’yutery (“Supercomput-
ers”), 15, 2013.

[Zermelo, 1913] Ernst Zermelo. Über eine anwendung der men-
genlehre auf die theorie des schachspiels (“On an application of
set theory to the theory of the game of Chess”). Proceedings of
the Fifth International Congress of Mathematicians, 2:501–504,
1913.

https://github.com/jdart1/Fathom
https://blog.lczero.org/2018/09/tb-rescoring.html
https://blog.lczero.org/2018/09/tb-rescoring.html

	Introduction
	Game-theoretic error-free endgame play
	State-of-the-art Chess endgame data compression
	Objectives

	Two-level logic minimization
	MINI
	Positional cube notation
	Distance-one merging
	Expansion
	Reduction

	ESPRESSO
	Irredundancy
	Distance-one merging

	Pupik
	A simple position encoding scheme
	Modifications of ESPRESSO
	Compaction
	Function cover consistency
	Function consistency
	Technical debt repayment


	Experimentation
	Two- and three-piece endgame tables
	Canonicalization
	Results

	Two- through four-piece results
	Compression effectiveness

	Contributions

