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ABSTRACT OF THE DISSERTATION

Marked Temporal Point Processes for Irregular Time Series in the Context of Medical
Data and Recommendation Systems

by

Kazi Tasnif Islam

Doctor of Philosophy, Graduate Program in Computer Science
University of California, Riverside, December 2020

Dr. Christian Shelton, Chairperson

Many real-world systems consist of large volumes of event data measured at irregularly

spaced time intervals. The time interval between two events carries much information

about the system dynamics, alongside the type of the event and other associated data.

One such example of a system is the intensive care unit (ICU), where the captured patient

records consist of sparse, noisy, incomplete, heterogeneous, and unevenly sampled patients’

clinical data. Our first approach to model such data is a Bayesian structure learning based

marked temporal point process model. We model the event streams, including vital signs

and laboratory results in two different datasets using a piecewise-constant conditional in-

tensity model (PCIM), a type of marked point process. Next, we model the stream of dis-

crete clinical events in the continuous-time domain. We employ a neurally self-modulating

marked temporal point process model that uses continuous-time long short-term memory

(LSTM) cells as its building blocks. Our methods improve prediction performance in multi-

ple tasks, including in-hospital mortality prediction, while providing suitable regularization

and bypassing data imputation. We also experiment with a neural ordinary differential
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equation-based framework that simultaneously models the temporal point process’s inten-

sity function and learn the underlying stochastic process that governs the distribution of the

observed noisy measurements. This model achieves actual continuity as opposed to RNN

based models, where the continuity is achieved through learnable decay rates of the hidden

state, or through inputting the time between two observations as a scalar. Additionally,

we apply a variational Bayes scheme to add uncertainty and regularization to the recurrent

architectures on top of this framework. Another example of a real-world system contain-

ing a large amount of irregularly spaced time series-data is transaction systems, where the

user’s buying behavior can be considered a highly irregular temporal sequence. Predicting

the next return time of a user based on the transaction history is useful for providing the

recommendations at the right time. In this regard, we develop a hierarchical session-based

recommendation system that combines a discrete recurrent intra-session architecture and a

continuous LSTM based inter-session model. We train the model to simultaneously predict

a new session’s time using a temporal point process loss and recommend products within

each session.
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Chapter 1

Introduction and Motivation

1.1 Motivation

The real world has many examples of systems that evolve continuously in time

and are interrupted by stochastic events, spaced by non-uniform time intervals. In many

domains, such as social networks, global politics, computer systems, and the medical field,

the underlying system’s unknown dynamics can only be estimated by records of the events

and their real-valued times. In addition to short term dependencies, these kinds of data

can also have complicated long term dependencies on history. Data in the medical domain,

such as electronic health records (EHRs), contain detailed descriptions of patients’ symp-

toms, demographics, outcomes, and other encounter information. Electronic health records

can additionally have real-valued noisy physiological measurements of different variables,

including vital signs, drugs, and lab tests. These observations are inherently noisy due to

charting errors, calibration, or device noise. Another example lies in real-world transaction

data. User behavior in real-world transaction systems, for example, online marketplaces,
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also produce asynchronous event sequences. Understanding the complex temporal depen-

dencies in such sequences is essential for predicting future user activity, which is valuable

for content recommendation and personalization. In this thesis, we mainly focus on two

domains, medical applications and recommendation systems. However, the work is gener-

alizable across all disciplines which produce asynchronous event sequences.

1.2 Introduction

The first application area is data generated in an Intensive Care Unit (ICU). In

this thesis, we concentrate on records from stays in ICUs, because they provide an intense,

well-monitored, and (relatively) short duration episodes. These attributes allow for the

collection of a large number of patient trajectories with definite outcomes. We expect many

of the modeling lessons learned in this setting to be transferable to other areas of patients’

medical records.

We view the EHR data of a patient as a timeline of events happening throughout

the patient’s stay in the ICU, where an event for an individual patient is a new measurement

of a particular physiological variable, a new lab test, a dosage of a particular drug, or a

procedure performed, started or stopped. The measurements associated with such events are

indicative of patient states and the subject of constant monitoring from clinicians. However,

the temporal dynamics of the stream of events carry extra information for event forecasting

and understanding the severity of illness. For example, abnormal values for blood pressure

could indicate critical states of a patient, but a higher measurement rate could also indicate

a high degree of urgency. Higher values of a particular physiological variable could instigate

2



the clinicians to order a particular lab test. High values of that lab result could result

in the ordering of a related lab result, or initiate the dosage of a particular drug. These

complex temporal dependencies that arise due to time, value, and types of different events

throughout the timeline of a patient’s stay in an ICU could be vital in understanding the

temporal dynamics of the patient’s state(e.g., the severity of illness). These sorts of data

are not missing-at-random (or, more accurately, ”measured-at-random”).

One challenge in modeling medical data is the irregular arrival of different events.

Not only are the temporal patterns of measurements indicative of the patients’ conditions,

but those patterns do not correspond to regular sampling intervals and are dependent on

the previous history. Despite the irregular sampling property, traditionally, modeling is

performed in the discrete-time domain by aggregating the data within fixed time intervals.

However, just considering the sequence of events, without careful attention to modeling

the time between events ignores much of the critical information in the datasets. These

data often have long periods with no events, followed by bursts of events. Aligning the

time to regular intervals, to allow for a discrete-time model, typically assume that the data

is ”missing at random,” which is a simplified assumption for irregularly sampled data and

assuredly inaccurate for medical data. Also, this artificially reduces the variability of signals

because missing values are imputed with either zero, the population mean, or the value of

the last recorded measurement of the signal. Therefore, modeling this irregular, noisy, and

heterogeneous time series motivates models in the continuous-time domain, which does not

require a fixed sampling rate.
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In many real world systems including transaction systems, social networks, and

many other systems, users act to produce many user activity data, which can be considered

asynchronous event sequences. Each event has an irregularly sampled timestamp denoting

the user activity time, accompanied by information related to the activity, such as the type

of activity. Recommendation systems greatly benefit from predicting future user activity,

including when they are going to return to the website along with what types of activities the

user is going to perform next. The return time and the user’s activity are jointly dependent

on the history of the user’s action, which can be represented as an asynchronous event

sequence. Learning the temporal dynamics of such sequences would lead to predicting the

time and type of the user’s future action. Like the medical event sequences, this requires

modeling the underlying process that generates the events in continuous time.

Marked temporal point process and intensity functions, with a well-established

theoretical foundation, are a robust framework to model the event generation process. Next,

we give a brief introduction of the temporal point process and their mathematical properties.

Temporal Point Processes Let samples from an unknown process controlling

the dynamics of a system be available in the form of event streams containing a finite

set of events of unbounded random size. Each event has a real-valued time and a mark

consisting of a discrete-valued label specifying the type of the event. Additional marks

can accompany each event, such as observed noisy measurements of a patient in an ICU.

Formally, each sample S = {(t1, k1), (t2, k2), . . . , (tI , kI)} is an event sequence with non-

uniform time intervals, where ti is the time and ki is the mark associated with event i, and

ti < ti+1. For example, in a medical time series application, ki can be composed of the pair
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(ei, vi), where ei corresponds to the event-type at time ti, i.e.heart rate, blood pressure,

etc., and vi is the recorded noisy value of the measurement. The label, ei, is drawn from a

finite label set L, so |L| represents the total number of event-types. We let I represent the

total number of events, and T be the total length of the period (T ≥ tI).

Samples drawn from a temporal point process are a sequence of labeled events in

continuous time, which enables continuous-time modeling of labeled time-series data with

non-uniform time intervals without discretization and data imputation. Additionally, non-

Markovian temporal point process models have a strong mathematical foundation. They

can encode the entire previous history in the event sequence without specifying the order

as required by Markovian models.

Conditional Intensity Function: A temporal point process can be represented

as a counting process N(t), which records the number of events before time t. The distri-

bution over the next events conditioned on the history of events is specified using a condi-

tional intensity function, λ∗(t). Formally, for an infinitesimal time window , [t, t + dt),

the conditional intensity function, λ∗(t) is the expected infinitesimal rate at which events

are expected to occur in that window, conditioned on the history, Ht = {(ti, ki)|ti < t}, up

to but not including the event at t:

λ∗(t) = lim
dt→0

E{N(t, t+ dt)|Ht}
dt

(1.1)

where E{N(t, t+dt)|Ht} is the expected number of events happening in the window [t, t+dt)

conditioned on the history Ht. In case of a regular point process [108], two events coincide

with likelihood 0.
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The simplest case is a homogeneous Poisson process, which specifies the history

independent intensity function as a constant: λ∗(t) = λ. In this case, the inter-arrival times

are distributed independently and exponentially. If P (ti|Hi) denotes the density of the next

event occurring at time ti given the history Hi prior to the event at ti,

P (ti|Hi) = λe−λ(ti−ti−1). (1.2)

More generally, λ∗(t) = λ(t|H) is a function of the history which reduces the

density of the next event occurring at time ti to:

P (ti|Hi) = λ(ti|Hi)e
−

∫ ti
ti−1

λ∗(s)ds
. (1.3)

While λ(ti|Hi) denotes the conditional intensity of an event at time ti, the e
−

∫ ti
ti−1

λ∗(s)ds

term, known as the conditional survival function S(ti|Hi), denotes the probability of no new

event occurring up to time ti since time ti−1.

Popular Intensity Function Forms: Intensity functions are the most funda-

mental component in TPP modelling. Several forms of intensity functions have been pro-

posed in the literature. Apart from the Poisson Process, other popular forms include,

• Reinforced Point Process [96]: Captures the rich get richer mechanism through

an aging function. The form of the intensity function is λ(t) = λ0f(t)i(t), where f(t)

captures the aging effect and i(t) is the accumulation of history events

• Hawkes Process [53]: Describes an additive model to capture the

self-excitation of previous events. The intensity function form is λ(t) = λ0+
∑

ti<t
κ(t−

ti), where κ(t− ti) is the triggering kernel and captures the effect of history events on

the intensity.
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• Reactive Point Process [14]: Applies a self-inhibition term to the Hawkes process

intensity function. The intensity function is denoted by, λ(t) = λ0 +
∑

ti<t
κ(t− ti)−∑

ti<t
γ(t− ti), where γ(t− ti) captures the inhibition of previous history

• Self-correcting process [58]: The background rate increases steadily, but decreases

using a constant e−α < 1 when a new event is generated.

For a marked temporal point process observed within a time interval [0, T ), the

number of observed events I is finite, and the continuous log-likelihood of such a finite

event-stream is given by:

log(P (S)) =
∑
i

[log λ∗(ti) + logP (ki|Hi, ti)]−
∫ T

t=0
λ∗(t) dt. (1.4)

The conditional mark distribution P (ki|Hi, ti) can be any distribution over the result-

ing mark, given the history and that the event occurred at time ti. Popular choices for

P (ei|Hi, ti) are Bernoulli distributions, while P (vi|Hi, ti) are treated as Gaussian.

1.3 Outline of the Thesis

Structure learning: Our first approach for modeling asynchronous medical time

series data is based on a piecewise-constant conditional intensity model (PCIM) [50], a

decision-tree-based marked temporal point processes model. The conditional intensity func-

tion for each event type in a PCIM is represented using a decision tree, learned through

Bayesian structure learning. As medical time series data contain real-valued noisy mea-

surements too, we augment the PCIM model to jointly learn the parameters of the value
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distribution and the intensities of the different types of clinical events. We model the irregu-

lar event streams, including vital signs, laboratory results contained in two different datasets

(MIMIC III - Medical Information Mart for Intensive Care clinical database) and data ex-

tracted from the EHRs of patients in a tertiary pediatric intensive care unit) and apply it for

in-hospital mortality prediction, a highly critical clinical prediction task. Our experiments

capture meaningful temporal dependencies and show improvement in in-hospital mortality

prediction over traditional ICU scoring systems. One of the advantages of applying tree-

based models in medical data is the added interpretability, which is a desirable aspect of

machine learning models developed for deployment in the clinical setting. Our work is one

of the first approaches in the literature applying marked temporal point process models in

the context of clinical data and to our knowledge, the very first to apply point processes

for a clinical classification task. In Chapter 3, we detail our proposed model, description of

the cohort, experiments, and results.

Recurrent neural-networks-based temporal point process model for med-

ical time-series classification: The overwhelming success of deep learning in multiple

research areas combined with the fast development of deep learning theory and techniques,

especially for recurrent neural network models have motivated researchers to apply deep

models in temporal point process modeling. We apply some of the recently proposed RNN

architectures for point processes [82, 31] in the context of medical time-series data. EHR

data is used extensively for critical clinical problems, such as predicting patient acuity (the

risk or required level of care) during hospital stays, phenotyping, or predicting the length

of stays. While deep learning methods show superior performance in many tasks, including
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image classification, machine translation, and speech recognition, they rely on large-scale

datasets compared to traditional machine learning models. Medical data, however, is on a

much smaller scale compared to the areas mentioned above. Therefore, careful regulariza-

tion is vital for generalizability in clinical classification or regression tasks. We apply the

RNN architectures to simultaneously learn the distribution of the temporal event sequences

in the continuous-time domain and minimize the cross-entropy or the mean squared error

loss for four clinical benchmark classification and regression tasks. The advantage is two-

fold: First, we avoid discretization errors and the need for imputation in discrete-time RNN

models for medical time-series classification. Second, jointly learning the temporal distribu-

tion of the sequence and performing classification tasks improves the testing performance of

the later as solitary tasks. In Chapter 4, we provide details of the architectures, description

of the clinical tasks performed, experiments, and results.

Ordinary differential equation based temporal point process model with

a Bayesian filter: Many real-world systems evolve according to continuous dynamics and

get interrupted by stochastic events, i.e., systems that both flow (often described by a dif-

ferential equation) and jump. The stochastic event generation process can be modeled as

samples generated from a marked temporal point process model, in the form of event se-

quences with non-uniform time intervals. Additionally, each event is marked with the type,

and real-valued noisy measurements, such as blood pressure or heart-rate values, which

are realizations of another stochastic process with an unknown stochastic differential equa-

tion (SDE). We present a framework that simultaneously models the intensity function of

the temporal point process and learn the stochastic process governing the distribution of
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the observed noisy measurements. This framework is based on neural ordinary differential

equations [18], where the change in hidden state is expressed as a differential equation and

specified by a neural network. We learn the distribution of the temporal point process

by controlling the jump in the latent state at irregular observations by a regular RNN.

Additionally, we learn the distribution of the SDE governing the values with a Bayesian

filter, filtering the intrinsic noise in the observed measurements. The model achieves ac-

tual continuity as opposed to other RNN based models, where the continuity is achieved

through learnable decay rates of the hidden state, or through inputting the time between

two observations as a scalar.

In Bayesian modeling, there are two main types of uncertainties: aleatoric and

epistemic. Aleatoric uncertainty is concerned with the noise in the observations, like the

noisy measurements recorded in an ICU setting. On the other hand, epistemic uncertainty

represents the uncertainty that the model causes itself. We address epistemic uncertainty

by Bayesian neural networks, where probability distributions are placed as priors on the

parameters of the network, instead of the outputs. The motivations for introducing uncer-

tainty on the weights are two fold. First, it achieves regularization via a compression cost

on the weights, which is useful mainly for sparse and irregular data. Second, this allows

cheap model averaging for better representations and predictions.Model-based uncertainty

is useful for many different reasons, particularly in the context of irregularly spaced data.

As there can be extended periods of no observations, the proposed RNN architectures are,

therefore, prone to overfitting. In addition to the property of the data, the limited scale of

the data in the medical domain makes regularization a crucial aspect for better generaliz-

10



ability.

We outline the details of our framework and experimental evaluation in Chapter

5.
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Chapter 2

Related Work

The work in the temporal point process (TPP) literature can be divided into two

threads: traditional modeling and neural modeling using deep networks. Most of the earlier

work was based on statistical TPP models, with a pre-specified form of intensity function.

While they are interpretable and require a small amount of data, the fixed form of intensity

functions restrict model capacity. Since the overwhelming success of deep learning [46],

recent work in TPP modeling focuses more on neural network-based models, with recurrent

neural networks (RNNs) leading the way. Although less interpretable, neural models are

more flexible for a broader range of applications as they can make use of a large amount of

data available for learning the parameters of the model. Deep models can be further divided

according to two aspects of learning: likelihood free learning and maximum-likelihood-

estimation (MLE) based models. We discuss the related work in the literature along these

lines.
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2.1 Traditional Learning

Traditional temporal point process modeling can be divided into two areas: para-

metric models that require a fixed form of intensity function and non-parametric models

which do not require explicit parameterization of the intensity function. We discuss several

works in these two domains in the following subsections. Although fairly recent, we have

included the structure-learning based models in this section too.

2.1.1 Parametric models

Parametric models for temporal point processes are mostly based on optimiza-

tion of the log-likelihood or its lower bound. Parametric Hawkes process models usually

require specific forms of the background term and the triggering kernel. Most methods

assume constant background intensity and take the triggering kernel as an exponential.

Ozaki et al. [93] explicitly computed the Hessian and the gradients of the log-likelihood

function, but this leads to slow convergence rates. Due to the branching nature of a Hawkes

process, the background rates and the triggering effect can be de-clustered via expectation-

maximization (EM) [85]. Veen et al. [124] proposed an EM framework, where, at each

iteration, the parameters are decoupled and can be solved independently to optimize for

a bounded objective. For multi-dimensional processes (which are equivalent to marked

temporal point processes), sparse low-rank regularization is added to mitigate the curse of

dimensionality [136]. Other techniques, such as sampling-based methods, are adopted in

other forms of intensity functions, e.g., the reactive point process (RPP) [14].
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2.1.2 Non-Parametric models

Non-parametric models don’t require explicit parameterization of the intensity

function and therefore improve the model capacity. The model-independent stochastic

declustering (MISD) method [80], proposed in the context of seismicity, iteratively learns

the triggering and background weights and the seismic intensity (background rates and

excitation of previous earthquakes). Lewis et al. [72] further proposed the maximum

penalized likelihood estimation (MPLE) method with additional regularization to improve

the MISD method in terms of both accuracy and data size requirements. Zhou et al. [137]

proposed a method for learning the triggering kernels for multi-dimensional Hawkes process

through decoupling the parameters by constructing a tight upper-bound on the objective

function. Then, the Euler-Lagrange equation is applied to derive an ordinary differential

equation (ODE) for the optimal triggering kernels to satisfy.

2.1.3 Structure Learning

A conditional intensity model (CIM) is a set of non-negative conditional intensity

functions indexed by the labels or the event-types, {λl(t|H)}. The piecewise constant

conditional intensity Model (PCIM) [50] is a class of CIM where the conditional intensity

function is a piecewise-constant function of time for any history. For each label l, a PCIM

represents the conditional intensity function using a local structure Tl and local parameters

θl. The structure specifies regions in the timeline where the conditional intensity function is

constant and the parameters for each label θl represent the values of the intensity function

in those regions. Formally, PCIMs are composed of local structures Tl = (Σl, σl(t,H)) and

14



local parameters θl = {λls}s∈Σl , where Σl denotes the set of states where the conditional

intensity function is constant, λls are non-negative constants representing the intensities in

those states, and σl is a piece-wise constant state function in time that maps a time and

a history to Σl. In a PCIM, the state function for each label, σl, is represented using a

decision tree where the states s ∈ Σl are the leaves and the internal nodes are binary test

functions, formally defined as basis state functions [50]. They map a time t and a history

H to a subtree. If the test functions are picked to be piecewise-constant functions of time

for any event history, the intensity function λl(t|H) = λls, where s = σl(t,H) becomes

piecewise-constant as well.

The piecewise assumption allows the marginalization of the parameters. θ, to be

computed in the closed-form given the structure T using a product of gamma distributions

as a conjugate prior for θ. The decision trees are learned greedily by imposing a structural

prior, which allows a closed-form Bayesian score to be computed and locally optimized.

An extension to the PCIM model, known as conjoint piecewise constant conditional

intensity model (CPCIM) [94] specifies the state function as a function of the label, whose

intensity is being evaluated, in addition to the time and the history. Thus, the state function

σ(l, t,H) can be represented using a single decision tree, mapping the time, label, and history

to the states σs or the leaves of the decision tree, which results in a shared representation of

the intensity parameters λs across all event-types. Thus, a CPCIM learns a more compact

representation of the conditional intensity function and can require fewer parameters.
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2.2 Neural Models

The temporal point process literature on neural models can be divided into two

threads of research: models that maximize the likelihood in Equation 1.4 and more recent

approaches based on reinforcement learning and generative adversarial networks (GANs),

that do not require any form of specification of the intensity function.

2.2.1 Maximum Likelihood Estimation (MLE)

Maximize likelihood estimation based models maximize the likelihood in Equation

1.4 and are mostly based on recurrent neural network architectures.

Recurrent Neural Networks (RNN)

Recurrent Neural Networks and its variants, e.g., long short term memory networks

(LSTM) [56], process inputs sequentially and at each timestamp produce a hidden state,

which encodes all the inputs seen so far by the network. Therefore, RNNs can be used to

encode the influences of the previous history in an event sequence. The intensity function

and the mark distribution can then be obtained from the encoded history through separate

non-linear functions.

The first RNN approach for modelling temporal point processes was proposed by

Du et al. [31]. Given a set of sequences {Si} for Si = (tij , e
i
j)
ni
j=1

, the maximum likelihood

objective to optimize by the proposed network is

max
∑
i

∑
j

(logP (eij+1|hj) + logP (tij+1|hj), (2.1)

where hj is the hidden state of the RNN after processing input subsequences {(tk, ek)|tk <
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tj}. The distribution for the next event P (eij+1|hj) can be specified as a multinomial

distribution and the conditional intensity function λ(tij+1|Hij) is obtained from hj through

a non-linear function:

λ(tij+1|Hij) = exp

(
wt

ᵀ · hj︸ ︷︷ ︸
past influence

+ vt(tij+1 − tij−1)︸ ︷︷ ︸
present influence

+ bt︸︷︷︸
base intensity

)
. (2.2)

By contrast, the hidden state, h(t), is a continuous function of time in the Neural

Hawkes Process model [82]. One of the major differences between this model and that of

Du et al. is that the later models the intensity of any event-type using one single non-linear

function. However, the former has separate intensity functions for each event type and can

be calculated from the hidden state using separate non-linear functions. The continuous

dynamics of the model is achieved from the cell state vector, c(t) ∈ RD of a modified

long short term memory (LSTM) network. At each input-processing step, ti, the LSTM

produces a new steady-state vector, c̄i+1, a new starting cell vector, ci+1, and decay rates

δi+1. These learnable values are updated using regular LSTM update equations. Given

these values, the cell state vector smoothly changes over time as

c(t) = c̄i+1 + (ci+1 − c̄i+1) exp(−δi+1(t− ti)) (2.3)

for t ∈ (ti, ti+1), that is until the next event at ti+1. The hidden state vector h(t) ∈ (−1, 1)D

can be continuously obtained from c(t) through the output gates of the network. Label

independent intensity functions are learned from the continuous hidden state h(t) using the

scaled softplus non-linearity.

Xiao et al. [132] modeled the temporal point process using two separate RNNs, a

time-series RNN and an event sequence RNN. The motivation of using two separate RNNs

17



is to decouple the learning of the background rates of events from dynamic or continuously

changing features, such as age, heart rate, etc., and the effect of the previous history from

asynchronous events happening over longer time intervals. The encoded history learned

from the two synergic RNNs can be used to learn the intensities and the event probabilities.

The event probabilities were learned using a cross-entropy loss, while the density for the

next event time was learned using a Gaussian penalty function with fixed variance.

Attention-based RNN models have been proposed [125] to improve the inter-

pretability of RNN models. The attention mechanism captures the impact (either negative

or positive) of the previous events to the current one, which leads to uncovering the mutual

excitation or inhibition effects among different event types in the data.

Neural Ordinary Differential Equations

The recently proposed Neural ODEs [18] are a family of continuous-time models

where the hidden state h(t) is defined as a solution to an ODE initial-value problem (IVP):

˙h(t) = fθ(h(t), t), (2.4)

where h(t0) = h0 and fθ(h(t), t) is a multilayer perception (MLP) with parameters θ.
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The continuous hidden state h(t) can be evaluated at any set of times using a

numerical ODE solver:

h0, ..., hI = ODESolve(fθ, h0, (t0, ..., tI)). (2.5)

The ODE-based flow helps achieving model-based continuity, which is particularly

suited for applications where time is asynchronous. Chen et al. [18] discussed deriving

Poisson process likelihoods from the continuous hidden state by parameterizing the intensity

using an MLP. However, in many situations, the latent state can jump to new states after

each observation, which is not handled with this model. Also, notably, the derived Poisson

process likelihood from the ODE solutions at the observation times doesn’t depend on

history.

The ODE-RNN model proposed by [107] addresses the issue of jumps in the con-

tinuous latent state flowed according to an ODE, using recurrent units. The hidden state

flows continuously according to an ODE in between the observations, and the solution to

the ODE at time t is the input to a Gated Recurrent Unit(GRU) [25]. As a result, the hid-

den state is jumped and it starts flowing from the new state throughout the next interval.

Formally,

hi = ODESolve(fθ, h
′
i−1, (ti−1, ti)), (2.6)

where h′i−1 = GRU(hi−1, ki−1). That is, hi is the hidden state before the observation at

time ti, and h′i is the new latent state after the RNN sees the observation at time ti. Similar

history-independent Poisson process likelihoods are evaluated using the ODE-RNN, as in

the previous work.

Jia et al. [61] addressed the change in the latent state and also modeled the effect
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of history in the conditional intensity function of point processes. Their model addresses

how to adapt the adjoint method [99] for jumps in the latent state, which results in memory-

efficient learning.

Transformers

Recurrent Neural Networks are computationally expensive and fail to capture long

term dependencies. For example, in medical data setting, diagnosis of critical diseases

like diabetes might be dependent on long-term dependencies of the diagnosis history and

medications. Recently proposed transformer architectures [123] are more suitable to capture

long term dependencies and are much more inexpensive to compute.

Self-attention or intra-attention is an attention mechanism relating different posi-

tions of a single sequence to compute a representation of the sequence. In case of a point

process, embedding the sequence history requires self-attention between a particular event

(ti, ki) and all the prior events, (tj , kj) ∈ Hi. Additionally, the self-attention mechanism

requires a positional encoding, which captures the relative order between elements in a

sequence.

Formally, in a self attention module, the attention output P is computed by

P = Softmax(
QKT

√
MK

)V, (2.7)

where Q = XWQ,K = XWK , V = XW V . Q,K, V are the query, key, and value matrices

obtained from linear transformations of X using the weight matrices, where X is an em-

bedding of a sequence. Zuo et al. [138] proposed the Transformer Hawkes Process, where,

X ∈ RL×M , represents the embedding of the irregular sequence S, where each row is an
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M dimensional encoding of event (ti, ki). W
Q,WK ∈ RM×MK and W V ∈ RM×MV , are the

weight matrices for the linear transformations.

To encode the times t1, t2, t3, . . . , tL in a sequence, Zou et al.used the following

approach:

[z(tj)m] =


cos(tj/10000

(i−1)
M ), if m is odd

sin(tj/10000
i
M ), if m is even

(2.8)

where z(tj) ∈ RM , m ∈M is a dimension for the M dimensional encoding.

Zhang et al. [134], on the other hand, used a different time-encoding approach,

which is given by

z(tj)m = sin(ωm × j + wm × tj), (2.9)

where tj is the time of the j-th event in a sequence, and ωm and wm are the specified angle

frequencies for dimension m ∈M . Multiple sinusoidal functions with different wm and ωm

angular frequencies are used for encoding and are concatenated at the end. Even and odd

dimensions are generated from the sine and cosine functions respectively.

The embedding of the sequence, S, is specified by X = (UY + Z)T , where

Y = [k1, k2, k3, . . . , kL] ∈ RK×L is a collection of K dimensional one-hot encoding of the

events. Z = [z(t1), z(t2), . . . , z(tL)] ∈ RM×L is the concatenation of time encodings and

U ∈ RM×K is an embedding matrix for the events, where each column represent the M

dimensional embedding for a particular event type. Each row in X ∈ RL×M , corresponds

to the embedding of a particular event in the sequence.

For the Transformer Hawkes Process described by Zhou et al., X is then passed
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through the self attention module in Equation 2.7. Usually, multi-head attention is used for

model flexibility, so different attention outputs P1, P2, PH are obtained from different sets

of {WQ
h ,W

K
h ,W

V
h }Hh=1 weight matrices.

The aggregated attention output is P = [P1, P2, . . . , PH ]WO, where WO is an

aggregation matrix. The j-th column in P expresses the dependence of the j-th event in

the sequence on its history. To get the history embedding, the attention output is passed

through further linear and non-linear transformations, H = ReLU(PWFC
1 + b1)WFC

2 + b2,

using weight matrices WFC
1 and WFC

2 . The resulting matrix H is an L ×M dimensional

matrix containing hidden representations of all the events in the input sequence, and h(tj) =

H(j, :), the particular representation for event at tj .

The conditional intensity can then be obtained using

λk(t|Ht) = fk(αk((t− tj)/tj) + wTk h(t) + bk), (2.10)

where bk is a parameter specifying base intensity, αk((t− tj)/tj), captures the influence of

the current observed time and the last observed time, which is weighted by a coefficient

αk, and then wTk h(t) captures the influence of history, which is linearly transformed by the

weight matrix wk. The linear transformations then get passed through a non-linear softplus

function, fk(.) to obtain the desired intensity, where fk(x) = βk log(1 + exp(x/βk)) is the

softplus function with “softness” parameter βk.

After applying event embedding and adding it to the temporal encoding, the se-

quence embedding X is obtained similar to Transformer Hawkes Process, where xi denotes

the embedding for event i. Following the sequence
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{(t1, k1), (t2, k2), (t3, k3), . . . , (tL, kL)}, given a particular time t, to get the desired intensity

for event type k, an embedding, xi+1 is first obtained for (t, u) using the embedding ap-

proach described above. Then, to capture the similarity with previous events, the following

self-attention mechanism is applied:

hki+1 = (

i∑
j=1

f(xi+1, xj)g(xj))/

1∑
j=1

f(xi+1, xj), (2.11)

where, g(.) is a linear transformation using weight matrices and f(., .) is specified as an

embedded Gaussian, with f(xi, xj) = exp(xix
T
j ). This resembles Equation 2.7. However,

instead of transforming the xi-s using additional linear transformations, similarity is directly

captured using the f(., .) and g(.) functions.

The conditional intensity for event type k is calculated from the following equation:

λk(t|Ht) = softplus(µk,i+1) + (ηk,i+1 − µk,i+1) exp(−γk,i+1(t− ti)), (2.12)

where µk,i+1, ηk,i+1, γk,i+1 denote base intensity, peak intensity, and the decay rate respec-

tively. They are obtained from the history embedding, hki+1, through linear transformations

using weight matrices Wµ,Wη, and Wγ , and then applying GeLU and softmax non-linearity

functions.

Variational Auto Encoder

Mehrasa et al. [81] proposed a variational auto-encoder formulation for modelling

temporal point processes. The input sequences of event types and the asynchronous inter-

arrival times are encoded using a recurrent VAE model. At each time step, ti, the model

uses history, Hi, to produce a latent distribution, zi. The latent distribution in then used
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to decode two probability distributions: one for the type of the next event and the other for

the inter-arrival time for the next event. The latent distribution, zi, is encoded using a time-

dependent inference network, qφ(zi|Hi), which is approximated using a conditional Gaussian

with parameters, µφ(i), and σφ(i). qφ(zi|Hi) is matched closer to the prior, p(zi), using a KL

divergence loss. Instead of using a fixed prior and ignoring the temporal dependencies be-

tween events, a time-varied prior is incorporated, which also takes into account the history,

Hi. At step ti, the prior and posterior networks observe history, Hi. However, the prior

produces parameters for the conditional Gaussian distribution for next event at time, ti+1.

On the other hand, the posterior networks outputs the parameters for the current event in

consideration, observed at time, ti. Given the latent state, zi, the model generates two con-

ditionally independent distributions for the event type and for the inter-arrival time for the

next event. The distribution over event types is modeled using a multinomial distribution,

whereas the inter-arrival temporal distribution is modeled using an exponential distribu-

tion parameterized by λ(zn). The prior and posterior networks rely on an LSTM network

to encode the history and then an additional network is used to calculate the respective

priors and posteriors. Both, the temporal distribution and the event-type distributions are

decoded using a multi-layer perceptron from hidden state, zi.

2.2.2 Likelihood-free Learning

Maximum likelihood estimation is asymptotically equivalent to minimizing the

Kullback-Leibler (KL) divergence between two distributions. Conventional point process

models maximizing the likelihood are prone to noise and outliers, especially given multi-

modal distributions. Some of the recent approaches in temporal point process learning
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make use of reinforcement learning and generative adversarial networks [47], to devise an

intensity free learning approach.

Reinforcement Learning

Li et al. [73] framed the problem of learning temporal point processes in the deep

reinforcement learning (RL) setting, which results in a maximum-likelihood-estimation-

free learning paradigm which doesn’t suffer from model misspecification. The generation

process of new events is treated as taking new actions in the environment by the agent

in an RL setting. Formally, πe is an expert policy, which generates the observed event-

sequences. The goal is to learn a learner policy π(a|Ht), which specifies the probability

of the next event given the history Ht := {ti}ti<t. π(a|Ht) is specified by a recurrent neural

network, where the generated events are fed back into the RNN with stochastic neurons

[86]. Additionally, at each time ti, the event generation is associated with the value of

a reward function r(t) at time ti. However, the reward function is unknown and can be

learned via inverse reinforcement learning [87], which iterates between learning the reward

function and the stochastic policy. The discrepancy between the expert and learner policy is

minimized to avoid the problem of slow convergence in inverse reinforcement learning. The

authors show that, if the function class of the reward is the unit ball in reproducing kernel

Hilbert space (RKHS)[2], the optimal reward function can be specified in a non-parametric

closed form. The optimal stochastic policy can then be learned using a customized policy

gradient method with the optimal reward function.

Upadhyay et al. [121] specified both the actions taken by an RL agent and the

feedback received from the environment as asynchronous stochastic discrete events param-
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eterized by two separate temporal point processes. Unlike Li et al., the reward function

is known and can be arbitrarily complex. Formally, the action events, A = {(ti, ai)}, are

drawn from the distribution, p∗A,θ, specified by a temporal point process with conditional

intensity function λ∗θ and the conditional mark distribution m∗θ. Similarly, the feedback

events, F = {(ti, ki)}, are realizations of the temporal point process, p∗F ,φ = (λ∗φ,m
∗
φ), with

conditional intensity λ∗φ and conditional event distribution, m∗φ. The joint densities of the

action and the feedback sequence depend on the joint history of events Ht = {At ∪ Ft}.

Furthermore, the agent receives a stochastic reward R∗(T ) after period T , which depends

on it’s stochastic actions and the feedbacks from the environment. The action distribution

i.e. the policy, p∗A,θ = (λ∗θ,m
∗
θ), is parameterized using a recurrent neural net architecture,

similar to the Du model [31]. This reduces the objective function to

J(θ) = EAT∼p∗A,θ(·),FT∼p∗F,φ(.)[R
∗(T )]. (2.13)

The optimal policy p∗(A, θ) is derived by maximizing the expected reward function J(θ)

using stochastic gradient descent (SGD). It is shown that the REINFORCE trick [128] can

be adopted for deriving the gradients. However, additional differentiable regularizers are

added to the reward function to impose a budget on the number of action events and the

marks.

Generative Adversarial Networks (GANs)

Generative adversarial networks (GAN) [47], have a strong theoretical foundation

and empirical verification. Notably, recent improvements in the Wasserstein GAN (WGAN)

[3], which replaces the Jensen-Shannon (JS) distance adopted in the original GAN by the
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earth moving (i.e., Wasserstein) distance, makes the model more sensitive to the underlying

geometry structure of samples and robust to issues like mode-dropping.

The Wasserstein GAN Temporal Point Process (WGANTPP) model proposed by

Xiao et al. [130] aims to learn a parameterized generator gθ whose generated distribution

is close to the distribution generating temporal sequences. The distance is minimized using

the Wasserstein distance, and the unconditional generative model gθ takes as input ξl, a

random sequence sampled from a Poisson process. Unconditional generative models learn

the overall distribution of the training set, which cannot be directly used for sequence

modeling. Xiao et al. [131] proposed a conditional generative model, which is more suitable

for individual sequence level prediction. The observed history of each sequence is encoded

by a sequence-to-sequence recurrent network (seq2seq LSTM). A gradient-based Lipsitz

regularizer is added to the Wasserstein loss, which minimizes the distance between two

distributions, while the likelihood loss is also used in the final loss function to make the

best of two worlds.

2.3 Session time Prediction in Recommendation Systems

While predicting the right product to the right user is an essential task in rec-

ommendation systems, knowing when is the appropriate time for the return of a user and

curating the recommendations based on that is also extremely valuable. The return times of

users in online platforms can be considered as an irregular event sequence, where each event

can represent the beginning or end of a particular session and the mark ki can represent

an L-dimensional multi-hot encoding vector representing all the clicks or purchases within
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that session.

Formally, session data for user u can be represented by, Su = {(b1, e1, a1),

(b2, e2, a2), . . . , (bnu , enu , anu)}, where bi represents the begin time of session i, ei represents

the end time of session i, ai is the K dimensional sparse action vector, and nu is the total

number of sessions that user u participated in. The goal is to predict gap time bi − ei−1,

from the history, Hi.

Using the temporal point process terminology, the log-likelihood for the session

data of all the users can be written as,

Lp(S, T ) =
∑
u

nu∑
i=1

((

∫ bi

ei−1

λu(t)dt− log λu(bi)) + logP (ai))) +

∫ T

tnu

λu(t)dt, (2.14)

where T is the terminal time up to which user data is available, λu(t) is the intensity

function for user u for generating a new event, either a session-start or a session-end event,

and P (ai) is the probability of action ai for user u.

Jing et al. [62] represents the continuous function
∫ bi
ei−1

λu(t)dt as an approximation

by a piece-wise constant function:
∑t=bi;t+=δ(t)

t=ei−1
λu(t)δ(t).

Embedded user representation u, the gap time embedding di−1 = (bi−1 − ei−2),

user action embedding, ai−1 are concatenated and passed as an input to an LSTM, which

embeds the history hi. The desired intensity is then obtained from hi, by passing through

a linear transformation and then applying a softrelu non-linearity.

Vassøy et al. [122] frames the problem using a different terminology. Instead of

representing all the items in a session as a multi-hot encoded vector ai, each item is rep-

resented separately. However, a discrete-time intra-session RNN captures the dependencies
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within a session and that gets passed to an outer RNN, which is responsible for predicting

the session time. This leads to a joint hierarchical model, which tries to maximize the log-

likelihood for the next session time using a regular point process loss and simultaneously

improve the recommendation score of the items within each session using the discrete time

intra RNN. The two losses are optimized jointly using a weighted loss function.

2.4 Clinical Time Series Modeling

Approaches to clinical time series modeling can be categorized into two ways of

handling the temporal irregularity of measurements: i. methods that naturally capture the

irregularity, and ii. methods that adapt recurrent or convolutional neural networks to the

irregular time setting.

2.4.1 Methods naturally capturing the irregularity

Weiss et al. [127] extended the piecewise-constant conditional intensity models

(PCIMs) to a multiplicative forest-based temporal point process model (MFPP), building

on ideas from multiplicative-forest continuous-time Bayesian networks (mfCTBNs) [126].

MFPPs extends the tree structure of PCIMs to regression forests, using a multiplicative-

forest technique developed in CTBNs. The multiplicative property allows a concise rep-

resentation of composite rates of events without sacrificing the flexibility to model rates

with complicated dependencies. They apply their model for predicting the onset of myocar-

dial infarction from irregular and heterogeneous clinical time-series data. They conduct

experiments on two forecasting setups: first, where no labels are provided in the forecasting
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region, and second, where the outcomes in the forecasting region are used in training to

predict whether at least one event of myocardial infraction would occur in the forecasting

region for a patient in the test set.

Fauber et al. [37] used piecewise constant conditional intensity models (PCIMs)

[50] to model the data in continuous time for the reconstruction of monitor readings of

patient vitals from sparse EHR data. For the probabilistic inference of continuous monitor

values, a new Reversible Jump MCMC inference method [48] was developed around the

augmented PCIM, where the distribution of the values learned on the leaves of the tree.

Ranganath et al. [102] proposed a hierarchical survival model in the context of

the EHR, where all the observations, including patient covariates, are modeled jointly con-

ditioned on a rich latent structure, based on deep exponential families (DEF) [103]. DEFs

can capture a hierarchy of dependencies between latent variables and can be generalized to

many settings through exponential families. Instead of an arbitrary time zero as in tradi-

tional survival analysis, the authors propose to align the observations by their failure time

instead. Thus, risk can be evaluated at any particular time, not only in timepoints that

align with the particular synchronization event like the entry to a clinical trial. The au-

thors applied their method in patient stratification on the risk of developing coronary heart

disease (CHD) on 313,000 patients corresponding to 5.5 million months of observations.

MedGP [19] is a Bayesian nonparametric model based on Gaussian process (GP)

regression for hospital patient monitoring. The model is based on a highly structured

Gaussian process kernel that supports tractable computation over tens of thousands of time

points. Regularization was performed using sparsity inducing priors, which also allows in-
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terpretability and computational tractability. Additionally, the model can be tailored to

specific patients using nonparametric density estimation techniques. They evaluate the

method over 6,000 patients from three disease groups with more than four million measure-

ments.

Futoma et al. [42] employed a multi-output Gaussian process RNN for early sepsis

detection. Latent values from a Gaussian process at fixed grid points are fed into an

RNN model for classification. While this interpolates the irregularly spaced values, it does

not model the timing of the events directly. Other methods that naturally capture the

irregularity include variants of Gaussian Processes [74, 112].

Razavian et al. [105] proposed a multitask model based on the temporal con-

volutional network to predict disease onsets from sparse lab measurements. One of the

contributions of the approach was a differentiable multivariate kernel estimation for im-

puting missing values, which can be learned jointly with the parameters of the CNN. The

method was applied for the onset of multiple disease prediction from the observed window of

36 months on a dataset containing lab measurement and diagnosis information for 298,000

individuals.

2.4.2 RNNs adapted for irregular clinical time-series modeling

Most of the work in temporal clinical time series modeling falls in the second

class of methods involving RNNs and CNNs. The first example of the use of RNNs for

EHR data [75] used long short-term memory recurrent neural networks (LSTM-RNNs)

for disease phenotyping. They employed a discrete (hourly) time-window approach, and

imputed values in the missing windows using either a forward or back-filling strategy. For

31



added regularization, they replicate the targets at each window, instead of having the target

only at the last time-step and then back-propagating the error. In a subsequent work [76],

they experiment with different imputation strategies, notably imputing missing values with

0s, using binary indicator variables, or using both. Experiments suggest a combination of

both strategies perform the best for an LSTM.

Doctor AI [21], is a temporal predictive model for diagnosis prediction using re-

current neural networks (RNN). The model was applied to longitudinal time-stamped EHR

data from a large cohort of 260K patients and 2,128 physicians over eight years. The inputs

to the model are a multi-hot encoding of the detailed patient encounter records, including

diagnosis, medication codes, or procedure codes. Additionally, the duration between the

previous and the current visit is added as an input to the model. The RNN learns to predict

the time of the next visit and the diagnosis and medication categories associated with it.

Aczon et al. [1] developed a dynamic mortality risk prediction model using LSTM-

RNNs for pediatric ICU data. At any time t, where at least one variable is observed, the

RNN takes as input the vectored observations (missing values are imputed with 0s) and

a controllable ∆t term. The RNN then learns to predict the risk score of the patient at

t + ∆t. The ∆t term and no discretization allows a dynamic model, which can adapt to

new observations, and the risk score can be computed at any time.

Che et al. [16] introduced trainable decays for both the input and the hidden states

of Gated Recurrent Units (GRUs) to capture the temporal structure of the missing values. If

an input variable is missing, instead of directly replacing it with it’s last measured value xl,

or the empirical mean xm, the value of the missing variable becomes, δvxl+xm−δvxm, where
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δv, is a learnable decay parameter for variable v. Also, a decay parameter is introduced to

the GRU update equations, by decaying the previous hidden state ht−1 as ht−1 = γht ◦ht−1,

before computing the new hidden state ht.

Habiba et al. [51] extends on the works of Che et al. by incorporating a continuous

neural-ODE network. The proposed models use the continuous differential equation solvers

in order to compute the hidden dynamics of the model. The imputed data is calculated

using differential equation solvers, where the missing observations of variables are replaced

by the derivative of the value of the available observations of the corresponding variables.

Additionally, the decay rates are computed as derivatives of time t. Unlike Che at al. the

time series are treated as a continuous function of t, not of a discrete sequence.

Ma et al. [78] experimented with attention-based recurrent models for diagnosis

prediction. They experimented with three different attention strategies for computing the

attention weights: computing the weights directly from the previous hidden states hi, con-

catenating the current hidden state ht with hi, and with adding a weight matrix as hiWαht.

Song et al.[116] used the seminal transformer model [123] in the context of clinical time

series data for four clinical benchmark prediction tasks.

Tan et al. [119] proposed an end-to-end network named DATA-GRU, which con-

sists of a time-aware structure to handle the irregular time intervals. The value for a

particular missing variable at timestamp, t∗, is imputed using a conditional Gaussian dis-

tribution. However, the imputed values are not always reliable compared with the actual

records. Additionally, different imputed data can have different degrees of reliability. This

motivates to set an ”unreliability score” for each value, where the score, U [x∗] for value x∗
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is 0 if it’s an actual record, or it’s set as Con[x∗] > 0, if it’s an imputed value, where Con[x∗]

denotes the co-variance functions for the Gaussian distributions imputing the values. The

GRU then takes inputs the times of the measurements, the values of the measurements,

and additionally the unreliability scores to compute the hidden state. Additionally, time

intervals are incorporated into the network to adjust the hidden states. The following decay

function is used in the paper and then multiplied with the hidden state to get the decayed

hidden state

w∆t = 1/ log(e+ ∆t) (2.15)

hdt−1 = ht−1 � w∆t (2.16)

, where hdt−1 denotes the decayed hidden state and w∆t is the corresponding weight for inter-

val ∆t. To weight the reliabilities of different types of data, i.e, imputed data and real data,

an unreliability-aware attention mechanism is proposed to adjust the weights assigned to

different data and ensure high-quality data play more important roles in the prediction per-

formance. Additionally, to incorporate the medical knowledge into missingness, a symptom

aware attention mechanism is proposed.

Harutyunyan et al. [52] curated a benchmarking dataset of four clinically relevant

tasks and proposed comparisons between LSTMs and other linear and non-linear classifiers

such as logistic regression. In a subsequence work, they proposed two other methods using

LSTMs, one using a bidirectional LSTM preprocessor and the other using replicated targets

at each timestep. For the four benchmark tasks, these two methods have the current state-

of-the-art performance.
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2.4.3 Other Deep Learning Methods for EHR

Researchers have used deep learning methods in various other tasks such as concept

embedding, augmenting the health records data, and EHR data privacy. While phenotyp-

ing is a particular case of concept embedding, as various data elements are mapped to

a particular phenotype, other concept embedding models like med2vec [22] also provide

vector representations of the phenotypes. Concept embedding is often trained in an unsu-

pervised learning setup, leveraging massive datasets to extract patient representations or

embeddings [22, 84]. Autoencoders and their variants (sparse and denoising) are the pre-

ferred deep learning methods used in concept embedding. Generative adversarial networks

(GANs) [47] have been used in the medical domain for data augmentation and synthesis by

generating continuous medical time series data [35] and discrete codes [23, 15].

EHR data privacy is concerned about creating de-identified patient records. Re-

cently, LSTMs [30] and hybrid LSTM models [77] have been used in this domain with

success. As this a large area, a full review is out of the scope. We refer to [129] for a good

review of different directions of research for applying deep learning methods for EHR data.
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Chapter 3

Marked Temporal Point Process

with Structure Learning for

Severity of Illness Assessment

3.1 Summary

Electronic Health Records (EHRs) consist of sparse, noisy, incomplete, heteroge-

neous, and unevenly sampled clinical data of patients. They include physiological signals,

lab test results, procedural events, clinical notes. Such data can be treated as a temporal

stream of events of varied types occurring at irregularly spaced time points. Our first ap-

proach to model such data is a Bayesian structure learning based marked temporal point

process model named PCIM [50]. We model the event streams, including vital signs, labo-

ratory results contained in two different datasets (MIMIC III — ‘Medical Information Mart
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for Intensive Care’ clinical database — and data extracted from EHRs of patients in a ter-

tiary pediatric intensive care unit) using a piecewise-constant conditional intensity model

(PCIM), a type of marked point process. Our experiments capture meaningful temporal

dependencies and show improvement in in-hospital mortality prediction over traditional

ICU scoring systems.

3.2 Introduction

Our general goal is to explore how modeling the temporal dynamics of the raw

EHR data stream in the continuous-time domain could facilitate specific critical decision-

making tasks performed in an ICU. To achieve that goal, we have performed mortality

prediction in the ICU using the first 24 hours of ICU data from two different datasets,

including the publicly available MIMIC-III database [65].

The severity of illness (SOI) assessment and mortality modeling is a broad area of

research in health informatics. SOI and mortality scores are used to predict patient out-

comes and often used as the principal measures of quality-of-care comparison among ICUs

and stratification for clinical trials. Scoring systems like SAPS-I (Simplified Acute Physiol-

ogy Score) [69], SAPS-II [68], PIM2 (Pediatric Index of Mortality) [115], and PRISM3 [98]

are the accepted current practices in ICU acuity scoring, but are based on static snapshots

of certain clinical variables over a patient’s stay in the ICU and ignore the rapidly evolving

temporal dynamics of the clinical variables. Several works in the literature have focused on

boosting the predictive power of such scoring systems using valuable clinical information

present in an EHR such as clinical notes [43, 70].
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While the temporal dynamics of the topics derived from the notes using traditional

topic modeling techniques are useful [63, 44] for patient risk assessment, the temporal in-

formation present in patient trajectories of vital signs or lab measurements has not been

extensively studied. We conclude that temporal modeling of clinical variables, including vi-

tal signs and lab tests, can complement the standard scoring systems and improve mortality

prediction performance.

In this chapter we discuss the following contributions.

• We model the temporal dependency in streams of measurement data using piecewise-

constant conditional intensity models (PCIMs).

• For modeling the measurement values, we extend the PCIM model to allow marks

that contain continuous-values, in addition to the discrete-valued labels.

• From the learned models, we assign risk scores to each patient trajectory with vital

signs and lab tests and use these as inputs to a feedforward neural network [57] to

predict mortality.

3.3 Methods

We chose PCIM, which is a class of marked point process, due to its flexible

representation of the rate function as a decision tree. This promotes an interpretable and

concise representation of the temporal dependencies.
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3.3.1 Piecewise-Constant Conditional Intensity Model

Assume events are drawn from a finite label set L, representing the different event

types. An event can then be represented by a pair: a time stamp t and a label l ∈ L. An

event sequence x is {(ti, li)}ni=1, where 0 < t1 < . . . < tn. We use hi = {(tj , lj)|(tj , lj) ∈

x, tj < ti)} for the history of event i. Let t(y) for an event sequence y be the time of the

last event in y, such that t(hi) = ti−1.

A conditional intensity function λ(t|x) associated with a temporal point process

is the expected instantaneous rate at which events are expected to occur at time t given

the history before t. A conditional intensity model (CIM) is a set of such non-negative

conditional intensity functions indexed by the labels {λl(t|x, θ)}l∈L. The likelihood of event

sequence x can then be written as

p(x|θ) =
∏
l∈L

n∏
i=1

λl(ti|hi; θ)1l(li)e−Λl(ti|hi;θ), (3.1)

where Λl(t|h; θ) =
∫ t
t(h) λl(τ |h; θ)dτ . If l′ = l, the indicator function 1l(l

′) is one, and it

is zero otherwise. λl(t|h; θ) is the expected rate of event l at time t given h and model

parameters θ. As it is conditional on the entire history, the process is non-Markovian.

A PCIM is a class of CIM where the conditional intensity function is a piecewise-

constant function of time for any history. For each label l, a local structure Sl specifies

regions in the timeline, where the conditional intensity function is constant and local pa-

rameters for each label θl represent the values of the intensity function in those regions.

Formally, PCIMs are composed of local structures Sl = (Σl, σl(t, x)) and local parameters

θl = {λls}s∈Σl , where Σl denotes the set of states where the conditional intensity function

is constant, λls are non-negative constants representing the intensities in those states, and
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σl is a piecewise constant state function in time that maps a time and a history to Σl. In

a PCIM, the state function for each label, σl, is represented using a decision tree where

the states s ∈ Σl are the leaves and the internal nodes are binary test functions, formally

defined as basis state functions [50]. They map a time t and a history h to a subtree. If the

test functions are picked to be piecewise-constant functions of time for any event history,

the intensity function λl(t|h) = λls, where s = σl(t, h) becomes piecewise-constant as well.

The resulting likelihood of the event sequence x can then be written as

p(x|S, θ) =
∏
l∈L

∏
s∈Σl

λ
cls(x)
ls e−λlsdls(x) , (3.2)

where S = {Sl}l∈L, θ = {θl}l∈L. c and d are the sufficient statistics for likelihood calculation.

cls(x) is the total number of events of label l occurring in x that map to state s, and dls(x)

is the total duration when the trajectory for l is mapped to s. An example of a PCIM

model is given in Figure 3.1.

The basis state functions or the test functions need to be carefully chosen to control

the capacity of the resulting model. One of the approaches is to index the functions based

on predefined time windows and thresholds. Some examples are

• Is the time of day between 6am and 9am?

• Is the number of events with the label B in the past half an hour greater than a

threshold?

• Was the most recent event of label A?

The piecewise-constant assumption allow for efficient inference and learning of the

model. Gunawardana et al. showed that the marginal likelihood of an event sequence, x, can

be computed in closed form given the structure S using a product of gamma distributions
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A in [t-2,t-1)
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rate=0.2
(s=A3)
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(s=A1)
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(s=A2)

No

B in [t-1,t)

B in [t-2,t-1)

Yes

A in [t-5,t)

No

rate=0.01
(s=B1)

Yes

rate=5.0
(s=B2)

No

rate=0.2
(s=B3)

Yes

rate=0.01
(s=B4)

No

t 0 1 2 3

events A A B A

σA A3 A2 A1 A3 A1 A2

σB B4 B3 B2 B3

Figure 3.1: Top: Example decision trees representing a PCIM for two labels A and B. Bottom:

Example trajectory and the corresponding piecewise-constant assignment of time to states (leaves

of the PCIMs).

as a conjugate prior for θ.

For learning the decision trees greedily, imposing a structural prior allows a closed

form Bayesian score to be computed. Given a structure, the rates associated with the states

(leaves) can be selected using maximum a posteriori or maximum likelihood estimation.

In the previous sections, we have represented an event sequence as a sequence of

pairs, where each pair consists of the time stamp and label representing the time and type

of a particular event. For EHR data, we take the label to be the type of measurement

(pulse, for example). However, these events also have associated values (the heart rate

measurement, for example). In this thesis, we have focused only on events with numerical

values. However, we expect our modeling lessons to be transferable to other forms of event

data including clinical notes which can be represented in numerical format, such as topic

proportions.
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Incorporating the values, an event is now a triple: a time stamp t, a label l ∈

L and the value of the event v ∈ R. The notation for an event sequence x then be-

comes {(ti, li, vi)}ni=1, where 0 < t1 < . . . < tn. We have extended the original PCIM

model to model the values in each state s ∈ Σl. We impose a Gaussian distribution

1
σls
√

2π
e
− 1

2σ2
ls

(v−µls)2
on the value v associated with an event from a particular state s, rep-

resented by a leaf in the decision tree.

The parameter set θl is now {λls, µls, σls}s∈Σl , and, after incorporating the product

of Gaussians with the product of the exponential distributions in Equation 3, the likelihood

is

p(x|Sl, θl) =
∏
s∈Σl

Λlsλ
cls(x)
ls e−λlsdls(x) , (3.3)

where

Λls =

(
1

σls
√

2π

)cls(x)

e
− 1

2σ2
ls

(uls(x)−2µlsmls(x)+µ2lscls(x))
. (3.4)

Here, uls(x) =
∑

v←s v
2, mls(x) =

∑
v←s v are the sufficient statistics where v ← s indicates

that v is the value of an event of the portion of x that has been mapped to state s. We add a

normal-gamma distribution as the (independent) prior over each µls-σls pair of parameters

to allow for closed-form Bayesian scores for structure learning via the greedy tree-growing

algorithm.

3.4 Cohorts

Mortality modeling is often performed among heterogeneous population of patients

to compare quality of care between different ICUs. To demonstrate the generality of our

proposed modeling approach, we focus on two different cohorts, a cohort of pediatric patients
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in a tertiary PICU and a cohort of adult patients.

3.4.1 Cohort 1

We used data from the EHR archive of PICU at Children’s Hospital Los Angeles

(CHLA), which consists of 11684 patient episodes, collected over a period of 10 years.

It includes demographics, outcomes, PIM2 and PRISM3 scores, and times and value for

measurements of vital signs, interventions, drugs, and lab tests.

3.4.2 Cohort 2

The MIMIC-III database is the largest publicly available clinical dataset. It inte-

grates de-identified clinical data of patients admitted to the Beth Israel Deaconess Medical

Center in Boston between 2001 and 2012 [65]. The dataset includes demographics, vital

signs, laboratory results, medications, charted observations, clinical notes, and more. Our

second cohort consists of adult patients in MIMIC-III, aged 18 years or older.

3.5 Experiments

To show the effectiveness of our proposed temporal dependency modeling ap-

proach, we conducted experiments to predict in-hospital mortality based on the first 24

hours of clinical data for both the cohorts. The pre-processing step involves aggregating

multiple related variables and normalization. Next, using a hold-out validation set, we se-

lect the final set of variables to be included in the PCIM models, based on the univariate

performance of each variable. The final set of variables correspond to the set of event types
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or the label set L. Critical components of the models such as the basis state functions were

also chosen using the validation set. Next, we learned two separate sets of PCIM models

on the training set for the two classes of patients: patients who died in hospital and those

who survived. Finally, we obtain severity of illness scores from the two sets of models using

the log-odds ratio and use the scores as mortality predictors. Details for each of the steps

in our experimental process are explained in the following subsections.

3.5.1 Data Pre-Processing and Experimental Setup

For both datasets, some of the most commonly used clinical variables used in ICU

scoring systems (PRISM3, SAPS-I, SAPS-II) were used to compose the primary sets of

variables to perform our experiments. For the MIMIC-III dataset, we aggregated multiple

related variables into one using a publicly available codebase1. The same codebase was also

used to extract patient mortality outcomes, SAPS-I, SAPS-II score, and measurements for

the first 24 hours. The CHLA data were similarly mapped.

For the cohort of pediatric patients, we normalized the values of age-dependent

variables, such as heart rate, dividing by the median value among healthy children of the

same age range and sex, according to published tables [39]. Then, we performed z-score

normalization for all variables and removed data falling outside of ±4 standard deviations

from the mean of each variable. For adult patients there is relatively low variability on

variables across different age groups and therefore we performed only z-score normalization.

The two class labels are “death” and “survival.” We take the former to be the

positive class. For both datasets, we randomly perform a (65-15-20) training-validation-test

1https://github.com/MIT-LCP/mimic-code
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split. The validation set was used for hyper-parameter tuning and selection of the set of

binary tests (both type and parameters). In order to make comparisons with PIM2 and

PRISM3, we ran our final experiments for the CHLA dataset on patient episodes with both

PIM2 and PRISM3 scores reported in the dataset (PRISM3 scores of 0 were dropped).

This resulted in a final dataset containing 4601 patient episodes (mortality rate 6.2%).

Constructing only the test set with patient episodes having both scores reported would

have introduced bias. For MIMIC-III, the final dataset included 34971 patient episodes

corresponding to the first ICU and hospital stay of the patient (in hospital mortality rate

11.67%).

3.5.2 Choice of Binary Tests

The base binary tests available for internal nodes for the PCIM are listed in Ta-

ble 3.1. The tests for checking whether the total number of measurements within some

time interval is greater than a particular threshold (τ) is to allow the model to capture the

burstiness in measurements of certain vital signs and lab tests. These tests allow model-

ing of self-excitation (burstiness) and self-suppression. We also introduce a test to check

whether the number of measurements with value ≥ τ ′ is greater than a particular threshold

(τ) within a particular time interval. This allows the rate of subsequent events to depend

on the values of previous events (e.g. measurements with extreme values of a particular

variable causing more events of the same or a different variable in near future).

The full bank of binary tests are chosen by selecting the parameters from pre-

determined sets of values. In particular, “past t hours” uses t ∈ {1/60, 1/12, 1/4,

1/2, 1, 24}; “value ≥ τ ′” uses τ ′ ∈ {−3.0,−2.5,−2,−1.5, 1.5, 2, 2.5, 3.0}×std. dev+
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number of measurements of variable X in past t hours is ≥ τ

number of measurements of variable X in past t hours with value ≥ τ ′ is ≥ τ

current time t is within a particular interval within the day

Table 3.1: Binary Tests for learning PCIM. X denotes any measurement variable and τ and τ ′ are

each one of a set of thresholds. Perhaps add more information on the thresholds?

mean; “number of measurements ≥ τ” uses τ ∈ {0, 1, 5, 10, 20, 30, 50}; and “current time

is within a particular interval of the day” uses range of one of “within δt minutes of the

top of the hour,” where δt ∈ {1, 2, 5, 15} or within the first t hours of the day where

t ∈ {1, 2, 3, . . . , 24}.

3.5.3 Computing Severity of Illness Scores

Denote the set of models learned for the “died” class as Mdeath and the set for the

“survived” class as Msurvive. Both sets include PCIM models learned on the measurement

timings and values of the selected variables. While each PCIM tree models the rate for one

particular variable, the binary tests in the tree can look at all available variables (both vitals

and labs) to capture the temporal dependencies with other variables. If the corresponding

PCIM trees for a particular variable v in the two sets Mdeath and Msurvive are denoted by

mvd and mvs respectively then, the SOI score corresponding to variable v for patient with

event sequence x is calculated by the log-odds: log p(mvd|x)
p(mvs|x) . These individual SOI scores

for each variable can be summed up to form a single SOI score or can be used as inputs

along with other features to a final classifier model.
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3.5.4 Predicting Mortality

We use a feedforward neural network as the final classifier using the computed

severity of illness scores (as above) and other features. For MIMIC-III, the static features

include age, gender, minimum Glasgow Coma Scale, minimum ratio of partial pressure arte-

rial oxygen and fraction of inspired oxygen, total urine output, co-morbidity, and reception

of ventilation, all collected in the first 24 hours. For the CHLA dataset, we used PIM2 score

as a feature.

For both datasets, we use a feedforward architecture with 3 hidden layers with 256

hidden units each. Number of hidden layers and number of hidden units were selected based

on performance on validation data. Dropout [117] rate of 0.5 was used for each hidden layer.

All the models were trained with the Adam optimization method [67] using early stopping.

We used Keras Deep Learning Library [24] for the implementation.

3.5.5 Baselines

For evaluating the predictive performance of our approach, we compare with PIM2

and PRISM3 scores for Cohort 1, and SAPS-I and SAPS-II scores for Cohort 2.

3.6 Results and Discussion

In this section, we present a comparative evaluation of our method with the stan-

dard ICU scoring systems. Statistical significance of the difference between the ROC curves

presented was measured using MedCalc statistical software2 [29].

2https://www.medcalc.org
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Figure 3.2: Comparison of all methods for in hospital mortality prediction
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Figure 3.3: Comparison of all methods for the scoring of labs and vitals variables in MIMIC-III
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Figure 3.2a shows the comparison of ROC curves for PIM2, PRISM3, and SOI

scores computed from PCIM models. SOI scores computed from the learned PCIM models

outperform standard scoring system baselines, PIM2 and PRISM3 (p(PCIM ∼ PRISM3) <

0.024 and p(PCIM ∼ PIM2) = 0.146). The reason for relatively higher p-values is highly

likely to be caused by the small test set size of the Cohort 1. PCIM models do not directly

incorporate information such as admission baseline features which capture how ill a child

was at the time of admission. PIM2 is largely based on such features calculated within two

hours of admission and outperforms PRISM3 in our experiments on the holdout testset.

Best performance is achieved when PIM2 is combined with the SOI score obtained from the

PCIM models by adding PIM2 as an extra feature to the feedforward net.

ROC curves for SAPS-I, SAPS-II, and SOI scores computed from PCIM models

on the MIMIC-III dataset are presented in Figure 3.2b. Similar to the CHLA dataset, pre-

admission and in-ICU information, such as ventilation and comorbidity were not directly

incorporated in the PCIM models. When added to our method (again, as features to the

feedforward net), we outperform both SAPS-I and SAPS-II with statistical significance

(AUROC difference has p < 0.0001).

For MIMIC-III, Figure 3.3a shows the ROC curves using only labs or only vital

signs. Scores computed from the four vital variables significantly outperform (AUROC,

p < 0.0001) the isolated vitals scores of both SAPS-I and SAPS-II, computed using certain

ranges of values, Figure 3.3b. The area under the ROC curve difference computed only

using the lab variables is similarly statistically significant (p(PCIM ∼ SAPS-I) < 0.0001

and p(PCIM ∼ SAPS-II) = 0.0001), Figure 3.3a.
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3.7 Differences with existing Recurrent Neural Network based

Methods

While existing RNN based approaches [75, 1, 52, 76, 16] can strongly capture the

temporal trend of the values of the variables, our proposed methodology is also taking

into account the intensity of different events by directly modeling the generation of a new

event of a particular type with respect to previous events’ values, timings, and types. One

particular advantage to directly model the event generation process in continuous time

domain is to avoid discrete window based aggregation and any form of data imputation.

Another advantage of our method is the model interpretability, added flexibility of model

selection through the choice of basis state functions.

3.8 conclusion

Our contribution has been to demonstrate the efficacy of directly modeling the

continuous time temporal dependencies of discrete events recorded in an EHR. Our results

indicate that a severity of illness score computed using our proposed modeling technique

improves the performance of hospital mortality prediction.

One of the limitations of our approach is the use of a generative model for the task

of classification, using the log-odds calculated from the representative models for the two

class labels, learned separately. However, careful choice of the basis state functions from

a validation set resulted in significant discrimination between learned models of the two

classes and improved prediction performance.
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Our method provided one prominent feature for the final classifier. We added

other static measurements (age, minimum Glasgow Coma Scale, minimum ratio of partial

pressure arterial oxygen and fraction of inspired oxygen, total urine output, Pa02, and co-

morbidity) as features to the classifier. These could have also been added as possible values

for binary tests in the PCIM model. This, particularly in conjunction with disciminative

PCIM training, might work better as a classifier. We also focused only on nine variables

for MIMICIII because those are used in SAPS-II. The model might also be improved with

an more expansive variable set. For the Cohort 1 data, we used more variables and saw

a larger improvement. In one case, this was not statistically significant; we expect this is

because of the relatively smaller sample size.
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Chapter 4

Neural Hawkes Process for

Classification of Irregularly

Sampled Time Series

4.1 Summary

We model the stream of discrete clinical events in an EHR in continuous time

using a neurally self-modulating marked temporal point process model which uses

continuous-time long short-term memory (LSTM) cells as its building blocks. Our

experiments show that joint learning of the distribution of the temporal event sequence in

continuous time setting, along with minimizing the cross-entropy for four clinical benchmark

classification tasks improves testing performance of the later as solitary tasks.
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4.2 Introduction

One challenge in modeling such a heterogeneous event stream is the irregular

time spacing of different events. Despite the irregular nature of the data, traditionally

modeling is performed in the discrete-time domain by aggregating the data within fixed

time intervals. Typically, these approaches assume that the data is “missing at random,”

which is a simplified assumption for irregularly sampled data and assuredly inaccurate

for medical data. Also, this artificially reduces the variability of signals because missing

values are imputed with either zero, the population mean, or the value of the last recorded

measurement of the signal.

Therefore, we directly model the underlying generation process of clinical events

using methods that naturally capture the temporal irregularity. Motivated by the recent

success in deep learning in the health-care domain, we base our model architecture on a

neural continuous-time marked point process model [82] in which the distribution of the

event sequence evolves according to a continuous-time LSTM network, a variant of the

highly popular discrete-time LSTM [56].

A general assumption in the temporal point process framework is that only one

type of event can occur at a particular instant, which does not hold in many real-world

event sequences. For example, multiple vital signs can be recorded at once in a patient’s

ICU record. Therefore, we design our neural network architecture to capture the dynamics

of event sequences where multiple event-types can co-occur at any particular time instant.

Most approaches in the literature for clinical classification tasks involve discretiz-

ing patient sequences into hourly time intervals, feeding the data into a discrete LSTM
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architecture, and training the model using the cross-entropy loss for the prediction problem

at hand. Because our method provides a full joint distribution over the event sequence

(not just a final output prediction), we can train on both the sequence likelihood and the

output prediction. We show that the former improves the latter, as it provides suitable

regularization.

Overall, by modeling the data using a generative continuous-time point process,

we can 1) avoid making any missing-at-random assumptions, 2) model the entire sequence

without data aggregation, and 3) train on the full likelihood. Taken together, these provide

new state-of-the-art results on standard ICU benchmark tasks. We demonstrate our ap-

proach’s performance on in-hospital mortality prediction, length-of-stay prediction, patient

“phenotyping,” and decompensation prediction.

4.3 Preliminaries

Formally, our goal is to model a stream of events S = {(t1, k1), (t2, k2), . . . , (tI , kI)},

where ti is the time and ki is the mark (the type of event and the corresponding recorded

value) associated with event i. We let I represent the total number of events and T be

the total length of time (T ≥ tI). For all cases, ti < ti+1. Because EHR data frequently

records multiple measurements at the same time (for instance, vital signs like heart rate,

blood pressure, and respiratory rate), our marks need to account for multiple values. To do

this, the mark ki consists of the pair (ei, vi). The first component is a multi-hot encoding of

the set of all L measurement types (heart rate, glucose, blood pH, etc.): ei ∈ {0, 1}|L|. The

second, vi, is a vector of values with one element for each of the L measurements: vi ∈ R|L|.
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Event types that co-occur have non-zero values in the multi-hot encoding representation

and the corresponding elements in vi are the associated measurements. Elements of the

vector vi corresponding to the event-types that did not occur at time ti are represented

with 0s.

For a marked point process observed within a time interval [0, T ), the number of

observed events I is finite, and the continuous log-likelihood of such a finite event-stream

is given by
I∑
i=1

(log p(ti|Hi) + log p(ki|Hi, ti)) + log p(tI+1 > T |H) (4.1)

whereHi denotes the history prior to event i, {(t1, k1), (t2, k2), . . . , (ti−1, ki−1)}, and p(ti|Hi)

is the density of the next event occurring at time ti given the history through event i− 1.

A continuous-time marked point process quantifies the distribution over the next

event using an intensity function, λ(t). The simplest case of a homogeneous Poisson

process specifies the intensity function as a constant: λ(t) = λ. In this case, the inter-

arrival times are distributed exponentially: p(ti|Hi) = λe−λ(ti−ti−1).

More generally, we let λ(t) be a function of the history and

p(ti|Hi) = λ(ti,Hi)e
−

∫ ti
ti−1

λ(s,Hi)ds . (4.2)

The conditional mark distribution p(ki|Hi, ti) can be any distribution over the resulting

mark, given the history and that the event occurred at time ti. We use a continuous-

time LSTM model to capture λ(t) and describe the mark distribution p(ki|Hi, ti) by a

neural network with inputs from the LSTM’s state and outputs parameterizing a mixture

of Bernoulli (for ei) and Gaussian (for vi) distributions.
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Figure 4.1: Illustration of the neural Hawkes process architecture using our mixture components.

The model takes ei, vi at time ti to update the initial cell state ci+1 (not shown in diagram) and

the new target cell state c̄i+1. The continuous hidden state h(t) is dictated by the continuous cell

state c(t) within the interval (ti, ti+1). h(ti+1) dictates the intensity at time ti+1 and the mixture

parameters ({πm, P (e)
m , p

(v)
m }m) for the distribution of ki+1 = (ei+1, vi+1). Components in blue

represent terms used in the (negative log) likelihood loss (Equation 4.11). Components in green

represent loss terms used for intermediate predictions and the component in yellow represents the

loss term for predictions based on the entire sequence (Equations 4.12 and 4.13).
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4.4 Methods

4.4.1 Neural Hawkes Process

The Hawkes process[53] is a well-known example of a marked point process in

which past events in the history H have additive influence to the rate of future events. This

influence decays over time according to a kernel function. However, real world influences can

be both excitatory and inhibitory. The neural Hawkes process [82] removes this restriction

by using a recurrent neural network (RNN) to learn a complex dependency of the intensity

functions on the order, number, and timing of past events. The fundamental building

block of the architecture is a novel continuous-time long short-term memory cell. Figure

4.1 schematically shows some components of the process, along with our additions for the

distribution of multiple simultaneous marks and per-event and per-sequence predictions.

The continuous-time LSTM cells control the dynamics of the distribution of the

temporal event stream through the cell state vector c(t) ∈ RD. This cell state changes

continuously and smoothly over time, with jumps at event times. At such event times,

a new steady state value for the cell state vector, c̄, is outputted by the RNN as well as

the rate at which c(t) will approach this steady state value, δ. After event i, the RNN

produces a new steady-state vector, c̄i+1, and a new starting cell vector, ci+1, for the next

time interval. We give the details of how these are calculated below. Given these values,

the cell state smoothly changes over time as

c(t) = c̄i+1 + (ci+1 − c̄i+1) exp(−δi+1(t− ti)) (4.3)

for t ∈ (ti, ti+1), that is, until the next event at ti+1. This is shown in Figure 4.1 by the red
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arrows, decaying from ci+1 to c̄i+1.

The hidden state vector h(t) ∈ (−1, 1)D, also a continuous function of time t, is

continuously obtained from c(t). At each time t > 0 the hidden state h(t) can be computed

from c(t) using the output gates oi+1 (also described below) from the previous event time

ti as

h(t) = oi+1 � (2σ(2c(t))− 1), t ∈ (ti, ti+1] . (4.4)

Given the history up through t, the conditional intensity of an event at time t,

λ(t), is continually obtained from the continuous hidden state h(t) through a non-linear

transfer function g with parameters Wt:

λ(t) = g(W ᵀ
t h(t)) . (4.5)

This intensity function describes when the next event will occur (see Equation 4.2). Once

it occurs, the hidden state at the event time, h(ti+1), is used to determine the distribution

over the mark, ki+1, as described in Section 4.4.2.

At an event time ti, the cell state changes discontinuously, based on the mark

produced, ki = (ei, vi); the current value of the cell, c(ti); and the target steady-state value

for the cell computed at the last event, c̄i. The updates of the fundamental components of
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the continuous-time LSTM network are given through the equations

ii+1 ← σ(Wiei +Wvivi +Whih(ti) + bi) (4.6a)

īi+1 ← σ(Wīei +Wvīvi +Whīh(ti) + bī) (4.6b)

fi+1 ← σ(Wfei +Wvfvi +Whfh(ti) + bf ) (4.6c)

f̄i+1 ← σ(Wf̄ei +Wvf̄vi +Whf̄h(ti) + bf̄ ) (4.6d)

zi+1 ← 2σ(Wzei +Wvzvi +Whzh(ti) + bz)− 1 (4.6e)

oi+1 ← σ(Woei +Wvovi +Whoh(ti) + bo) (4.6f)

ci+1 ← fi+1 � c(ti) + ii+1 � zi+1 (4.6g)

c̄i+1 ← f̄i+1 � c̄i + īi+1 � zi+1 (4.6h)

δi+1 ← g(Wdei +Wvdvi +Whdh(ti) + bd) . (4.6i)

W s and bs denote parameters of the model. Other quantities with subscripts exist only at

event times. Subscripts of i+ 1 denote those quantities produced just after event i and are

used to describe the rate and distribution for event i+ 1. These equations are represented

by the purple circles in Figure 4.1.

These updates resemble the discrete-time LSTM except for the extra update equa-

tions for the initial and target cell state and the decay rates (the last three equations). The

fundamental difference, however, is that the previous hidden state obtained just after read-

ing the input tuple (ki−1, ti−1) is not used in the update equations, rather it uses the decayed

value of h(ti) at time ti, after it has decayed for the period (ti − ti−1) through the decay

rates δi.
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For all non-linear transfer functions denoted by g in the above equations, we have

used scaled softplus function g(x) = s log(1+exp(x/s)), each of which has scale s as separate

learnable parameters.

4.4.2 Mark Distribution

The mark distribution P (ei, vi|Hi, ti) is also obtained from the decayed hidden

state h(ti). It is modeled as a mixture of joint Bernoulli-Normal distributions:

p(ei, vi|Hi, ti) =
M∑
m=1

πmP
(e)
m (ei|h(ti))p

(v)
m (vi|h(ti)) (4.7)

where

πm =
eW

ᵀ
mh(t)∑

m′ e
W ᵀ
m′h(t)

. (4.8)

The mixture weights are denoted by πm. Given a mixture component and the history,

the distribution over the measurement types recorded, e, and the values recorded for those

measurements, v, are independent. The probability P
(e)
m (e|h) is a Bernoulli distribution:

P (e)
m (e|h) =

|L|∏
j=1

[σ(W ᵀ
jmh)]ej [1− σ(W ᵀ

jmh)]1−ej , (4.9)

where σ is the sigmoidal transfer function and Wjm controls the probability of event type

j ∈ L under mixture component m. The density for the values under mixture component

m is a normal distribution:

p(v)
m (v|h) =

|L|∏
j=1

N (vj ,W
ᵀ
µjmh, g(W ᵀ

σjmh)), (4.10)

where the value of event type j under mixture component m is modeled using a normal

distribution with mean W ᵀ
µjmh and variance g(W ᵀ

σjmh). The function g is a non-linear
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transfer function keeping the variance positive, and Wµjm and Wσjm are the parameters of

the linear and non-linear transfer functions respectively.

4.4.3 Log-likelihood

The log-likelihood of the event stream S over the finite time interval T is given by

log(p(S|W)) =
∑
i

[log λ(ti;W) + log p(ei, vi|h(ti);W)]

−
∫ T

t=0
λ(t;W) dt (4.11)

where W is the set of all parameters including the LSTM parameters and the parameters

controlling the dynamics, such as the mixture weights, event intensities, and the joint density

of the events and their values. The −
∫ T
t=0 λ(t)dt term integrates the log-probability of the

infinitely many non-events that did not occur within the the time interval T . This loss is

represented by the blue boxes in Figure 4.1.

The integral can be approximated by Monte Carlo sampling. The total log-

likelihood can be maximized by any stochastic gradient method to learn the parameters

inW. In our experiments, we have minimized − log(p(S|W)), or the negative log-likelihood

loss (nllh).

4.4.4 Jointly learning to classify

Given a finite event stream, ST = (t1, k1), (t2, k2), . . . (tT , kT ) as input to a continuous-

time LSTM network, the hidden state h(t) is updated continuously as the network processes

the input stream. At any point in time it can be passed through a multilayer-perceptron

(MLP) network to obtain desired outputs for solving a classification or regression problem.
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Or, the final h(T ) obtained after processing sequences up to a finite time T can be used to

sample times, values, and the types of future events in a sequence.

We use an sigmoidal transfer function for the output layer of the MLP network

for a binary classification task, and a softmax transfer function for a multilabel task. We

evaluate our method in the context of four clinically relevant classification tasks by jointly

minimizing the negative log-likelihood loss − log(p(S|W)), denoted by LS and the cross-

entropy losses for the respective tasks. In case of binary classification, the classification loss

is

Lpb = −y · log y′ + (1− y) · log(1− y′), (4.12)

where y′ = σ(W ᵀ
pbh(t′)) is the predicted probability of the positive class at time t′ ob-

tained from a multilayer perceptron network with weights Wpb, σ() is the sigmoidal transfer

function, and h(t′) is the hidden state at prediction time t′.

In case of a multilabel classification problem with K labels, the cross-entropy loss

is

Lpm =
1

K

K∑
k=1

−yk · log y′k + (1− yk) · log(1− y′k), (4.13)

where y′k = softmax(W ᵀ
pmh(t′)) is the output probability of the kth class at time t′ obtained

from the softmax function, and Wpm is the weights of the MLP network. This loss is

represented by the yellow box in Figure 4.1.

For tasks that require intermediate predictions, we employ the same multilayer

perceptron, using the intermediate value of h(t) for prediction time t < T . The losses are

then averaged across all prediction times. This loss is represented by the green boxes in

Figure 4.1.
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The final loss to optimize then becomes

L = wl · LS + wc · Lc, (4.14)

where Lc is the suitable classification loss and LS is the negative log-likelihood. The weights

wl and wc are the tunable weights to control the relative importance of these two terms.

The model is trained to minimize L in an end-to-end fashion.

4.5 MIMIC-III Benchmarks and Task Description

In this section, we describe the MIMIC-III benchmarking tasks used to evaluate

our method and the corresponding benchmarking datasets.

Measuring the progress in machine learning for health care research is often hin-

dered due to a lack of benchmarking tasks and datasets. To alleviate the problem, [52]

created four clinically relevant benchmarking tasks and curated data for the tasks from the

MIMIC-III database, described in section 3.4.2. We have used this benchmarking dataset

of 33,798 unique patients with a total of 42,276 hospital admissions and ICU stays and

time-series of 17 physiologic variables. We briefly describe the tasks and evaluation metrics

below:

4.5.1 In Hospital Mortality

In-hospital mortality prediction is a highly relevant clinical task that is used pri-

marily for patient outcome prediction, triage, stratification of clinical trials, and quality-of-

care comparison among ICUs. It involves predicting the outcome o the patients, i.e., death

during the hospital stay or discharge as alive. Among the benchmark cohort, the mortality
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rate was 13%. We frame the problem as a binary classification task, and the input to our

models is data from the first 48 hours of ICU-stay of the patient. To compare to previous

methods, we also used the Area Under the Curve for the Receiver Operating Characteristic

plot (AUC-ROC) and the Area Under the Curve for the Precision-Recall plot (AUC-PRC)

as evaluation metrics.

4.5.2 Phenotyping

Another benchmarking task used in our experiments is phenotyping, which is the

classification of acute-care phenotypes. The task involves retrospectively predicting 25

common conditions the patient might have had using all data from admission to discharge.

The conditions include 12 critical conditions such as respiratory/renal failure, eight chronic

conditions such as diabetes, and 5 “mixed” conditions such as liver infections. As the patient

can be involved with multiple conditions, we frame the task as a multilabel classification

problem. Following [75] and [52], we use macro and micro-AUC-ROC as our evaluation

metrics. While the former averages the AUC for all tasks, the latter combines all tasks and

calculates a single AUC.

4.5.3 Decompensation

Treatment planning for deteriorating patients requires early warning scores to be

computed based on accurate prediction of mortality within a fixed time window, for example,

24 hours after assessing a patient. We frame the task as a binary classification problem,

where, at each hour, the task is to predict whether the patient would die in the next 24
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Table 4.1: Task Specific Sample Sizes for MIMIC-III benchmarking dataset

Task Train Validation Test

Mortality 14681 3222 3236

Phenotyping 29242 6371 6281

Decompensation 29242 6371 6281

Length of Stay 29242 6371 6281

hours. In our experiments, we perform this binary prediction at timepoints closest to the

top of the hour mark. Thus, we roughly capture the same distribution used in [52], where

the measurements are divided into hourly bins, and a binary prediction is performed at each

of these hourly windows. We used the same evaluation metrics for the in-hospital mortality

task hold in the decompensation prediction task.

4.5.4 Forecasting Length of Stay

Forecasting length of stay is an essential clinical task as early identification of

patients who would need lengthy stays help to manage hospital resources. For each mea-

surement time, the remaining length of stay is transformed into one of ten buckets to pose

the problem as a multilabel classification task. The buckets are one bucket for less than

a day, seven buckets of the length of a day for each day of the first week, and two outlier

buckets — one for stays more than a week but less than two weeks, and one for stays higher

than two weeks [52]. Similar to the decompensation task, we only predict timesteps closest

to the top of the hour mark. We use Cohen’s linear weighted kappa [26] for our evaluation

metric, which measures the correlation between ordered items.
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4.6 Experiments

We discuss the experimental setup, datasets, baseline models, and the results in

this section.

4.6.1 Experimental Setup

A 85%-15% training-test split is defined by the benchmarking data. We further

split the training set into 82% for model training and 18% for model hyper-parameter

validation. The total number of predictions for each task are shown in Table 4.1. We kept

a strict divide between training and testing data, and the final test set was not used in any

part of our experiment until our final evaluation, which is reported in this thesis.

We selected the best possible hyperparameter combination by performing a grid

search over possible hyperparameter values and choosing the best configuration based on

performance in the validation set. The set of hyperparameters included the number of cells

in the continuous-time LSTM layers, number of layers (one or two) in the dense network,

number of units in the dense network, number of mixture components, learning rate, dropout

probability, and weights of the two losses, wc and wl in case of joint learning (Equation 4.14).

We pick the number of cells in the continuous-time LSTM layers from {64, 128, 256, 512}, the

number of units in the dense layers from {16, 32, 64} and the number of mixture components

from {1, 4, 8, 12}. In all cases we use the Adam optimizer [67] with parameters β1 = 0.9,

β2 = 0.99 and ε = 10−8. We used dropout [117] only in the fully connected layers. After

cross-validation, we set the learning rate to 0.001 for in-hospital mortality tasks and 0.005

for all other tasks. For all of our experiments using the validation set, we have found
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adjustments to wc and wl have minimum effect on prediction performance in case of joint

learning and as a result set both of them to 1. We use early stopping based on the validation

set accuracy and train our models for a maximum of 30 epochs.

4.6.2 Baselines and Our Model

We compare our methods with the state-of-the-art models provided in [52] includ-

ing generalized linear models such as logistic regression and deep learning methods based

on LSTM networks. Below we briefly describe these methods, along with the two versions

of our modified neural Hawkes process that we tested.

Logistic Regression (LR)

Six different sample statistic features on seven different subsequences of the 17

time series variables are used as features to a logistic regression model. The statistical hand-

engineered features from each sub-sequence include minimum, maximum, mean, standard

deviation, skew, and the number of measurements within the subsequences.

Standard LSTM (S)

Each time series is split into regularly spaced hourly intervals. Only the value of

the last measurement is used if multiple measurements exist in the same interval. Missing

values are imputed using the value of the last measurement if exists and a pre-specified

’normal’ value otherwise. Binary masks are also used as inputs which indicate which values

are ’true’ and which are imputed measurements. Z-score normalization is performed after

missing value imputation.
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Channel-wise LSTM (C)

This is a modified LSTM model which uses additional bi-directional LSTM lay-

ers for pre-processing. Separate bi-directional LSTM layers independently pre-process the

masks and each imputed time-series split into regularly spaced hourly intervals. Then, the

outputs of these LSTM layers are concatenated and fed into the final LSTM model for

classification.

Standard LSTM with Deep Supervision (S+DS)

For in-hospital mortality and phenotype predictions tasks, deep supervision is

performed by replicating the labels at each time-step. A modified cost function controls

the strength of supervision and learns to predict the replicated timesteps too. This helps to

mitigate the difficulty of passing information across many time-steps, which is particularly

an issue in case of long sequences. For length-of-stay and decompensation prediction tasks,

both the standard LSTM model and the channel-wise model perform predictions on multiple

prediction instances created from the same ICU stay (each hourly prediction is treated as a

separate prediction instance). Deep supervision in this case is achieved when these samples

derived from the same ICU stay are grouped together and prediction is performed in a

single pass instead of treating them as separated prediction instances.

Channel-wise LSTM with Deep Supervision (C+DS)

The deep supervision is similar to the above, however the channel-wise LSTM

model is the base architecture instead of a regular LSTM network.
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Neural Hawkes maximizing prediction only (NH:pred)

We use the same architecture as neural Hawkes process described in section 4.4.1,

however instead of minimizing − log(p(S|W)) in 4.14, we only learn to minimize the cross-

entropy losses for the classification tasks. In terms of Figure 4.1, we only use loss associated

with the green (for intermediate predictions) or yellow (for sequence predictions) losses.

Thus, we directly optimize the predictions, and do not consider how well the underlying

neural Hawkes process matches the event sequences.

Neural Hawkes maximizing prediction score and sequence likelihood (NH:pred+llh)

In this version, we jointly learned to minimize − log(p(S|W)) along with the cross-

entropy losses described in 4.4.4 (that is, the blue loss functions from Figure 4.1, as well

as the green or yellow boxes). The final loss function to minimize is Equation 4.14. Note

that deep supervision is implicitly built into this method as in case of decompensation and

length-of-stay, we do not create multiple instances from the same stay but predict them in

a single pass and also have the loss functions for estimating p(e, v) and λ(t). For in-hospital

mortality and phenotyping, we do not replicate the labels but the model learns to predict

the next timestep, events, and the values of the immediate next measurement.

We do not include the multitask baselines proposed in [52] in our discussion be-

cause, in the later version of that paper, apart from the in-hospital mortality task, the

channel-wise and deep supervision techniques outperform multitask learning. The reason

is the regularization capacity for multitask learning gets mitigated by channel-wise pre-

processing and deep supervision for single task models. Similarly, in our case, learning the
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distribution of the sequence alongside minimizing the prediction loss acts as a surrogate

task to improve the prediction performance. We discuss this in detail in section 4.6.7.

In the following subsections, we provide comparisons among the above baselines

and discuss the results for the four benchmarking tasks. We also provide a 95% confidence

interval estimation in the results tables. Following [52], we resample the test set K times and

use 2.5 and 97.5 percentiles of the predicted scores in the resampled set as our confidence

interval estimate. For in-hospital mortality and phenotype prediction tasks, we select K as

10000, and for decompensation and length-of-stay, K is 1000.

4.6.3 Results for In-Hospital Mortality Task

The results for the in-hospital mortality task are provided in Table 4.2 and Fig-

ure 4.2(a). We notice that the neural Hawkes process, trained only on the prediction

loss (NH:pred) has a similar AUC-ROC score to the discrete LSTM (S). However, it

achieves much better area under the precision-recall curve. The neural Hawkes model which

jointly learns the distribution of the sequence alongside the cross-entropy loss for prediction

(NH:pred+llh) has similar AUC-ROC with the channel-wise model, which improves upon

the discrete LSTM baseline. However, the NH:pred+llh model achieve the best area under

the precision-recall curve among all competing methods. Also, the performance improve-

ment by joint learning is noticeable as NH:pred+llh is significantly better than NH:pred

according to both comparison metrics. The best performing NH model has one recurrent

layer with 128 units, two layered MLP network at the end with 16 units each with no

dropout and 12 mixture components.
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Figure 4.2: Plots of the average performance and ranges for (a) in-hospital mortality AUC-PR,

Table 4.2, (b) length-of-stay Kappa, Table 4.3, (c) phenotyping Macro AUC-ROC, Table 4.4, and

(d) decompensation AUC-PR, Table 4.5. We omitted logistic regression (LR), as it consistently did

not perform as well as the other methods.
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Table 4.2: In-Hospital Mortality Prediction Task Results

Model AUC-ROC AUC-PR

LR 0.8485 (0.8279, 0.8682) 0.4744 (0.4188, 0.5293)

S 0.8547 (0.8349, 0.8732) 0.4848 (0.4308, 0.5372)

S + DS 0.8558 (0.8362, 0.8750) 0.4928 (0.4379, 0.5486)

C 0.8623 (0.8436, 0.8807) 0.5153 (0.4640, 0.5680)

C + DS 0.8543 (0.8340, 0.8734) 0.5023 (0.4472, 0.5544)

NH:pred 0.8547 (0.8350, 0.8737) 0.5119 (0.4581,0.5632)

NH:pred+llh 0.8619 (0.8433, 0.8801) 0.5236 (0.4702, 0.5730)

4.6.4 Results for Length-of-stay Task

Results for length-of-stay prediction are provided in Table 4.3 and Figure 4.2(b).

As mentioned previously, we perform this prediction at timesteps that are closest to the

hourly mark. As many hourly intervals do not contain any measurement and we haven’t

performed any imputation, the comparison with the baseline models requires a small mod-

ification: For hours without measurements, we carried our most recent previous prediction

forward to the vacant hour. This allows us to make predictions on exactly the same set

of testing data. From the table, we can see that the NH:pred model performs slightly

better than the channel-wise model. However, it is slightly worse than the channel-wise

model with deep supervision. However, the NH:pred+llh model significantly outperforms

all the baseline methods and achieves a kappa score of 0.4698. Similar to in-hospital mor-

tality, the utility of joint learning is evident by comparing the performance of NH:pred and
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Table 4.3: Length-of-stay Task Results

Model Kappa

LR 0.4024 (0.4006, 0.4043)

S 0.4382 (0.4365, 0.4400)

S + DS 0.4315 (0.4297, 0.4334)

C 0.4421 (0.4403, 0.4438)

C + DS 0.4508 (0.4490, 0.4527)

NH:pred 0.4452(0.4422, 0.4461)

NH:pred+llh 0.4698(0.4671, 0.4716)

NH:pred+llh. As mentioned previously, the NH:pred is already performing deep supervi-

sion by predicting all values for a single ICU stay in one pass. However, jointly learning to

minimize the negative log-likelihood (nllh) loss for the sequence distribution further boosts

performance. The best performing NH model has one recurrent layer with 512 hidden units,

a two-layered MLP network with 32 units and 8 mixture components. Dropout didn’t im-

prove performance significantly.

4.6.5 Results for Phenotyping Task

We provide the results for the phenotyping task in Table 4.4 and Figure 4.2(c).

The neural Hawkes model which jointly learns the distribution of the sequence alongside

the cross-entropy loss for prediction (NH:pred+llh) has similar micro AUC-ROC with the

channel-wise model, which improves upon the discrete LSTM baselin. However, it is slightly
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better in macro AUC-ROC. The performance of the NH model trained only on the prediction

loss is relatively poor among all models. We believe because phenotyping is performed on

full patient history and we do not perform discrete time aggregation, the average sequence

length is quite high compared to a time-windowed regular LSTM network. This results in

difficulty to back-propagate the error without suitable supervision in the intermediate steps.

As a result, adding the llh loss to the final loss function causes a performance boost. The

best performing NH: pred+llh model has one recurrent layer with 512 hidden units and a

two-layered MLP network with 32 units each and no mixture components. Note that the

performances of all the baseline models and our NH:pred+llh model in this task are highly

similar. This could because phenotyping is a multi-label classification problem where the

model is trained to simultaneously predict the probabilities for all the 25 phenotypes. This

can be considered a multi-task learning and has a regularization effect itself. As a result, all

the other regularization techniques do not provide significantly better performance boost

over a regular LSTM model.

4.6.6 Results for Decompensation Task

We provide the results for the decompensation task in Table 4.5 and Figure 4.2(d).

Similar to the length of stay model, to make comparisons for hours without measurements,

we carried our most recent previous prediction forward to the vacant hour. The neural

Hawkes model (NH:pred+llh) has the best AUC-ROC AUC-PR among all models. The

NH:pred model has similar performance with the regular LSTM model. The channel-wise

model with deep supervision has the best performance among the other baseline models.
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Table 4.4: Phenotyping Task Results

Model Macro AUC-ROC Micro AUC-ROC

LR 0.7385 (0.7338, 0.7431) 0.7995 (0.7961, 0.8030)

S 0.7702 (0.7657, 0.7747) 0.8212 (0.8177, 0.8246)

S + DS 0.7737 (0.7692, 0.7781) 0.8231 (0.8196, 0.8265)

C 0.7764 (0.7719, 0.7806) 0.8251 (0.8217, 0.8284)

C + DS 0.7730 (0.7688, 0.7773) 0.8224 (0.8191, 0.8257)

NH:pred 0.7588 (0.7545, 0.7610) 0.8114 (0.8096, 0.8239)

NH:pred+llh 0.7781(0.7742, 0.7825) 0.8240 (0.8199, 0.8273)

Again, the utility of joint learning is evident from the performance improvement obtained

from the NH:pred+llh model over the NH:pred model.

4.6.7 Joint Learning Prevents Overfitting

To investigate the utility of jointly minimizing the negative log-likelihood of the

sequences along with minimizing the binary cross-entropy loss for in-hospital mortality

prediction, in Figure 4.3 we plot the evolution of training and validation losses as train-

ing progresses. As the figure suggests, without the intermediate losses at each timestep

for learning the distribution P (e, v|h) and the intensity function λ(t), the NH:pred model

minimizing only the binary cross entropy loss quickly starts to overfit and prediction per-

formance suffers. However, jointly optimizing both losses helps prevent over-fitting and the
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Table 4.5: Decompensation Task Results

Model AUC-ROC AUC-PR

LR 0.8700 (0.8666, 0.8734) 0.2138 (0.2054, 0.2227)

S 0.8917 (0.8886, 0.8950) 0.3235 (0.3135, 0.3326)

S + DS 0.9039 (0.9008, 0.9069) 0.3247 (0.3142, 0.3349)

C 0.9056 (0.9026, 0.9086) 0.3334 (0.3233, 0.3440)

C + DS 0.9106 (0.9076, 0.9133) 0.3445 (0.3341, 0.3541)

NH:pred 0.8905 (0.8830, 0.8935 ) 0.3205 (0.3120, 0.3317)

NH:pred+llh 0.9186(0.9135, 0.9230) 0.3511 (0.3391, 0.3627)
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Figure 4.3: Training and validation loss comparison as training progresses
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Figure 4.4: Average validation loss decreases as the number of mixture components for the mark

distribution is increased.

negative log-likelihood term − log(p(ST |W)), denoted by LS in the final loss function in

Equation 4.14, implicitly acts as a regularizer. This explains the superior performance of

the NH:pred+llh model in classification over the NH:pred model.

4.6.8 Mixture Components lower Negative Log-likelihood Loss

For all the tasks, we have chosen the number of mixture components on the basis

of performance on the validation set. However, particularly for the in-hospital mortality and

the phenotyping task, we noticed that changing the number of mixture components didn’t

have a significant effect on classification performance. This could be due to the fact that the

LS term in the final loss function in Equation 4.14 has similar regularization capacity for

any number of mixture components. However, the utility of adding the mixture components
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is more pronounced when considering the generative capacity of the models. To investigate

this, for the in-hospital mortality task, we plot the average negative log-likelihood (nllh) loss

in the validation set for different number of mixture components, M , as training progresses.

As Figure 4.4 shows, without the mixture components, the nllh loss is significantly higher.

However, as the number of mixture components is increased, the nllh loss drops is the lowest

at M = 12. The convergence behavior is similar for all cases.

4.7 Summary

We have demonstrated new state-of-the-art results on benchmark clinical predic-

tion tasks. Our results use a neural Hawkes process [82] which we modified to allow for

multiple simultaneously recorded measurements values, which we augmented for prediction

tasks (not just fitting sequence log-likelihood).

Fitting a combination of prediction loss and log-likelihood loss allowed for better

testing prediction performance. Previous approaches to this clinical prediction problem did

not build on generative models and did not address the irregularly spaced time intervals di-

rectly. Therefore, they were not able to benefit from the implicit regularization of including

the sequence likelihood in the loss function. We demonstrated the value of generative mod-

els, particularly for clinical time series classification problems in which data are (relatively)

sparse and irregular.
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Chapter 5

Neural Stochastic Differential

Equations with Bayesian Jumps for

Marked Temporal Point Process

5.1 Summary

Many real-world systems evolve according to continuous dynamics and get inter-

rupted by stochastic events i.e. systems that both flow (often described by a differential

equation) and jump. If the equation of the continuous motion is unknown, the stochastic

event generation process can be modeled as samples generated from a marked temporal

point process, in the form of event sequences with non-uniform time intervals. Additionally,

each event is marked with the type of the event and a real-valued noisy measurement. The

noisy measurements themselves are the realizations of a stochastic process with an unknown
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stochastic differential equation (SDE). We present a framework that simultaneously models

the intensity function of the temporal point process and learn stochastic process governing

the distribution of the observed noisy measurements. Similar to the underlying system of

interest, the latent dynamics of our framework evolves continuously according to ordinary

differential equations (ODEs) while, the jumps at the observations are controlled by Gated

Recurrent Units (GRUs) through a Bayesian update, which accounts for the observation

noise. We present data fitting results on a real-world medical dataset.

5.2 Introduction and Related Work

The real world has many examples of systems that evolve continuously in time

and are interrupted by stochastic events, spaced by non-uniform time intervals. In many

domains, such as social networks, global politics, and computer systems, the “equations of

motion” are unknown and the unknown dynamics of the underlying system can only be

estimated by records of the events and their real-valued times. Data in the medical domain,

for example, electronic health records (EHRs), can additionally contain real-valued noisy

physiological measurements of different variables including vital signs, drugs, and lab tests.

These observations are inherently noisy due to charting errors, calibration, or device noise.

Our goal is to model the dynamics of such systems where in addition to the real-valued

irregularly sampled times, each event is accompanied by the type of the event and also a

real-valued noisy measurement.

Given such event sequences with non-uniform time intervals, marked temporal

point process and intensity functions are a powerful mathematical framework to model
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the event generation process. The measurement variables can be modeled by the Fokker-

Plank equation [106] and the measurements viewed as noisy observations of this underlying

stochastic process. Recurrent Neural Networks (RNNs) are not a natural fit for model-

ing such data, as they naturally assume the observations are regularly spaced across the

temporal dimension. Usual tricks to adapt RNNs for irregular time series data divide the

timeline into equally-spaced time-intervals [76, 52, 118], use the time difference between

the observations as an input to the model [16, 31], or decay the hidden state exponentially

when no observation is made [82, 16]. However, these approaches either make the simplified

“missing at random” assumption, fail to capture the continuously evolving dynamics of the

underlying system or use a fixed form of evolution in between observations.

We present a framework based on the recently proposed neural ordinary differential

equations (Neural ODEs) [18] for jointly learning the two intertwined stochastic processes,

that is the temporal point process generating the stochastic events and the stochastic pro-

cess generating the associated real-valued noisy measurements. We encode the state of the

underlying system in a latent state vector h(t), which evolves piecewise-continuously ac-

cording to a neural ODE. The jumps at the observation times are controlled by GRUs [20],

which changes the trajectory of h(t). Additionally, a Bayesian update term accounts for

the noise in the measurements to learn the true distribution of the underlying multivariate

stochastic process of the measurement variables. The intensity function of the point process

and the mark distributions are generated from h(t) with additional neural nets.

In a neural ordinary differential equation (Neural ODE) framework, the differential

equation expressing the flow dynamics is parameterized by a neural network without consid-
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ering potential jumps of the latent state. Jia et al. [61] address the jumps using a neural net

and also an adjoint-operator formulation of the gradient for learning in constant memory

and model the intensity of point processes and distribution of real-valued features. However,

they ignore the stochasticity of the underlying process generating the noisy measurements.

Brouwer et al. [13] proposes a Bayesian update network using GRUs to regularize the

neural ODE to better track a true belief state for the underlying system without directly

addressing the event generation process concerning event history. Rubanova et al. [107]

proposes an ODE-RNN hybrid where the hidden state dynamics flow according to a neural

ODE and the jumps according to a GRU unit. They applied their model for learning the

intensity function without accounting for the event history and did not address the noise in

the measured observations. We address all these issues in modeling noisy, irregularly-sample

time series altogether using a unified framework combining the above ideas.

Finally, we present preliminary data fitting results on a real-world electronic health

records from the MIMIC-III (’Medical Information Mart for Intensive Care’) database [65],

a publicly available critical care database.

5.3 Preliminaries

We want to model the dynamics of a hybrid system whose samples contain a finite

set of events of unbounded random size; each event has a real-valued time and a mark

consisting of a discrete-valued label and a real-valued noisy measurement of that label. We

use the same notations as 4.3 for the subsequent discussion.
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We postulate that the measurements vi are observations of an L-dimensional con-

tinuous stochastic process V(t), which is driven by an unknown stochastic differential equa-

tion (SDE):

dV(t) = M(V(t))dt+ Σ(V(t))dW (t), (5.1)

where dW (t) is a Wiener process. The distribution of V(t) evolves according to the Fokker-

Planck equation. The continuous mean and the covariance function for the probability

density function (PDF) of V(t) is denoted by M(t) and Σ(t) in equation 5.1. From the

noisy measurements observed at irregular times, we need to model the two unknown mean

and the covariance function. Note that, observations from all dimensions are not sampled

at the same time, which results in the missing values in vi. Additionally, we assume the

observation noise in the sampled measurement for dimension l is drawn from a Gaussian

distribution with zero mean and standard deviation of σobsl .

We postulate that the observation times are drawn from a general continuous-

time point process, whose intensity may depend on the history of both V and the previous

observation times. Its conditional intensity function, λ(t,H), may depend on both the raw

time t, and the history up through time t, H. If we let Hi be the observed history up to

but not including event i, Hi = {(t, k) | (t, k) ∈ S ∧ t < ti}, the density of the distribution

over the time of event i, given the history is:

P (ti | Hi) = λ(ti,Hi)e
−

∫ ti
ti−1

λ(s,Hi) ds . (5.2)

For a marked point process observed within a time interval [0, T ), the number of

observed events I is finite, and the continuous log-likelihood of such a finite event-stream
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is given by,

I∑
i=1

[logP (ti | Hi) + logP (ki | Hi, ti)] + logP (tI+1 > T | H) . (5.3)

The middle P (ki | Hi, ti) term is a combination of the distribution for the event label,

ei, and the complex marginal distribution over V(ti) conditioned on Hi, as implied by the

Fokker-Planck equation. We assume, the distribution for the event label, ei, is drawn from

its own distribution conditioned on history: P (ei | Hi, ti). As the labels are discrete-valued,

this distribution could be folded in to the intensity, to create a separate intensity for each

event label possibility (with the total intensity being the sum of the intensities over all

possible labels). However, for our model, a global intensity and a multinomial distribution

over labels is more natural.

If the SDE (Equation 5.1) were known, the inference would depend on tracking

the belief state of V: P (V(t) | H). Rather than parameterizing and estimating the SDE

and then developing an (almost assuredly approximate) belief-state filtering method for V,

we propose to learn the belief-state filter directly, never explicitly modeling the underlying

SDE. To this end, we next describe a continuous-time neural ODE process with jumps that

we train to track both the SDE and the point process. Thus, its hidden state, h, serves as

a sufficient summary of the history to model the belief state of V and the history, H, as

necessary for the conditional intensity, λ(t,H).
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∫
λ(t)
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Figure 5.1: Illustration of our proposed framework. Just before processing input observation (ei, vi),

the negative log-likelihood loss for the intensity and the mark distribution is calculated from the

continuous hidden state, obtained from the solution of the ODE solver at ti. After the GRU (shown

by the gray box) processes the observation, the hidden state jumps to the new state (indicated by

the brown dots) and the KL divergence loss (shown by the green arrows) is computed (Equation

5.13).

5.4 Proposed Framework

Figure 5.1 schematically shows the components of our framework. We describe

each component in the sections below.

5.4.1 ODE-GRU

Recently proposed Neural ODEs [18] are a family of continuous-time models where

the hidden state h(t) is defined as a solution to an ODE initial-value problem (IVP):

˙h(t) = fθ(h(t), t), (5.4)

where h(t0) = h0 and fθ(h(t), t) is a multi-layer perception (MLP) with parameters θ.

The continuous hidden state h(t) can be evaluated at any set of times using a
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numerical ODE solver:

h0, ..., hI = ODESolve(fθ, h0, (t0, ..., tI)). (5.5)

Similar to the ODE-RNN model [107], the hidden state in our framework evolves

according to an ODE in between the noisy observations, and the solution to the ODE at

time t is the input to an RNN unit that provides the jump at observations. For the RNN

unit, we choose the Gated Recurrent Unit (GRU) [20]. This jump allows the hidden state to

incorporate the observation and track the belief state of the underlying system. Formally,

hi = ODESolve(fθ, h
′
i−1, (ti−1, ti)), (5.6)

where h′i = GRU(hi, ki). That is, hi is the hidden state before the observation at time ti,

and h′i is the hidden state after the observation at time ti.

The hidden state is coupled with the processes through four MLPs, gλ, ge, gµ, and

gvar:

λ(t) = gλ(h(t)) (5.7)

p(ei | ti, h(ti)) = B (ei; g
e(h(ti))) (5.8)

p(vi | ti, h(ti)) = N (vi; g
µ(h(ti)), g

var(h(ti))) (5.9)

where gλ maps h to the intensity of an observation event (a non-negative scalar), ge maps

h to |L| independent Bernoulli distributions (that is, the |L| independent probabilities that

each label appears at an observation), gµ maps h to |L| means, and gvar maps h to |L|

variances. For vi, we assume that, conditioned on the hidden state h, each observed label’s
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value is drawn independently from a normal distribution. Thus, gel (hi) is the model’s

predicted probability that label l appears in the observation at time ti. Similarly, gµl (hi)

and gvar
l (hi) are the mean and variance of the predicted normal distribution over the value

associated with label i, if it appears in the ith observation.

5.4.2 Maximizing the Log-likelihood

We train the model using maximum likelihood estimation. The log-likelihood of

the event stream S over the finite time interval T is derived from Equation 5.2 and 5.3 as:

log(p(S|W)) =
∑
i

[log λ(ti | h(ti);W) + log p(ki | h(ti), ti;W)]−
∫ T

t=0
λ(t) dt, (5.10)

where W is the set of all parameters including the ODE-GRU parameters and the MLP

parameters controlling the dynamics, such as the event intensities, and the joint density of

the events and their values. The −
∫ T
t=0 λ(t) dt term integrates the log-probability of the

infinitely many non-events that did not occur within the the time interval T .

The model evolves according to Equation 5.6 where hi is equivalent to h(ti), the

history, Hi, prior to event i. The intensity for event i and the mark distribution p(ki|h(ti), ti)

in Equation 5.10 therefore is obtained from hi, which is the solution of the ODE-solver with

initial value h′i−1 (state after the GRU processes event i− 1), at time ti−1.

5.4.3 Bayesian Jump

We add the Bayesian Jump framework [13] to regularize the system by encouraging

its output to track the Bayes filter and account for the noise in the observed measurements.

Consider the observation of the lth label’s value at time ti. Just before the observation
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event, the model’s belief over its value has a mean and variance of gµl (hi) and gvar
l (hi).

After making the observation, the hidden state jumps to h′i. The new belief has a mean and

variance of gµl (h′i) and gvar
l (h′i). We would like these beliefs to be consistent with a Bayesian

update of a belief state, assuming a known zero-mean observation noise with variance σ2
obs.

Assuming we observe value vi,l, the posterior distribution over the value of event

type l should have mean and variance

µBayes,l =
σ2

obs · g
µ
l (hi)

gvar
l (hi) + σ2

obs

+
gvar
l (hi) · vi,l

gvar
l (hi) + σ2

obs

(5.11)

σ2
Bayes,l =

gvar
l (hi) · σ2

obs

gvar
l (hi) + σ2

obs

. (5.12)

If we let pBayes,l be this Bayesian update normal distribution (with mean µBayes,l

and variance σ2
Bayes,l) and let p′i,l be the normal distribution predicted by the model after

the GRU update (with mean gµ(h′i) and variance gvar(h′i)), we add a KL-divergence loss to

encourage the two distributions to be the same:

KLLoss(ti, ei,vi) =
∑
l

ei,lDKL(pBayes,l ‖ p′i,l) , (5.13)

which sums over the individual event type observations, because the model assumes that

each component is independent given h. The joint loss to optimize then becomes

− log(p(S|W)) +
∑
i

KLLoss(ti, ei,vi) , (5.14)

which can be optimized using gradient descent.

To aid the network in making the correct update, we augment its input. For the

ith event, instead of directly feeding the mark ki to the GRU, vi is appended with the means

and variances of the predicted outputs (gµl (hi) and gvar
l (hi) for all l) and the normalized
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error terms (vi,l − gµl (hi))/
√
gvar
l (hi) (for all l), which are then multiplied by a dimension

specific weight vector Wl and passed through a ReLU non-linearity to produce qi. Non-

observed dimensions in qi is zeroed out and is appended with ei to be passed as input to

the GRU. While this extra information is already available in hi, the prevents the GRU

from needing to learn to recalculate it.

5.4.4 Bayesian ODE-RNN

Instead of only adding the Bayesian jump framework at the observations, we also

experiment with a Bayesian architecture that adds uncertainty to the network weights

instead. The goal is to achieve regularization through model based uncertainty, and not

just observational uncertainty as in the Bayesian Jump framework.

We apply Bayes by Backprop [40, 11] to learn the posterior distributions θ′ ∈ Rd of

the overall ODE-RNN architecture. θ′ consists of the parameters of the GRU architecture,

which controls the jump and the parameters of the feed forward net fθ, which controls the

flow of the ODE-architecture. The posterior distribution of the parameters are drawn from

a Gaussian with mean parameters. µ ∈ Rd and standard deviation, σ ∈ Rd. The network

is trained to minimize the variational free energy:

L(θ′) = Eq(θ′)[log
q(θ′)

p(y|θ′, x)p(θ′)
], (5.15)

where, p(θ′) is a prior on the parameters and p(y|θ′, x) is the log-likelihood of the

model. Equation 5.15 is equivalent to maximizing the log-likelihood, p(y|θ′, x), subject to
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a KL divergence loss on the parameters of the network that acts as a reguraliser:

L(θ′) = −Eq(θ′) log p(y|θ′, x) +KL[q(θ′)||p(θ′)]. (5.16)

Here, log p(y|θ′, x) is equivalent to the log-likelihood of the sequence S, with respect

to the parameters of the whole network W, p(S|W), where, θ′ ∈ W. So, 5.14, which

represents the total loss to optimize now becomes, {−Eq(θ′) log p(S|W) +KL[q(θ′)||p(θ′)]}

5.5 Experiments

One of the prominent use-cases of irregular time series modeling is patient time

series data observed in an Intensive Care Unit (ICU) setting, which are highly noisy, sparse,

and irregularly sampled. We perform our experiments on a subset of the publicly available

MIMIC-III database curated as a benchmark for evaluating machine learning models in

healthcare settings [52], containing 17 physiological time-series variables. Unlike the pro-

posed methods in the corresponding paper [52], we do not discretize the data, instead,

take into account each time where at least one variable is measured, and represent the

measurement variables and their values as ei and vi (section: 5.3).

We fit our models on the first 24 hours of data on a training set containing 5000

samples. We report the data-fitting performance on a separate hold-out set with 1000 sam-

ples. To properly use batching and achieve speedup in training, we rounded the observation

times into the nearest minute and took the aggregate of measurements taking place in the

same rounded minute. This results in (24 ∗ 60 + 1) or 1441 possible measurement times.

Note that, rounding to the minute results in very little information loss compared to hourly

aggregation. All the ODEs in a minibatch are solved continuously for each 1441 measure-
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ment times, however, the jumps using the RNN occur only at the observation times for each

sample. A separate boolean mask matrix indicates the times where an observation occurred

for each sample in the minibatch.

We used ODE Solvers from torchdiffeq python package [18], particularly the fifth-

order ”dopri5” solver with adaptive step size. The relative and absolute tolerances were set

as 1e-3 and 1e-4 respectively. The adjoint method described in [18] and [61] can be used

to reduce the memory use, with the cost of added computational time. We used Adam

optimizer [67] for learning the parameters of all the MLPs and the RNN. The integral term

in equation 5.10 can be directly obtained by augmenting the ODE with an integral over

λ(t), which is obtained from the hidden state using gλ.

We refer to our model as ODE-RMTPP.It has three versions: ODE-RMTPP with-

out the observational or model uncertainty, ODE-RMTPP + Bayes is the version with the

bayesian jump framework, while the Bayesian ODE-RMTPP is the model described in sec-

tion 5.4.4. We report the average negative log-likelihood (NLLH) loss and also the individual

losses: the intensity loss, event loss, and the value loss. LSTM refers to the model proposed

by Du et al. [31], and the CTLSTM model refers to the model proposed by [82], based on

continuous time Long Short Term Memory cells, described in section 4.4.1.

Results (Table: 5.1) show that adding the Bayes filter improves the data-fitting

performance, as the NLLH in the test set reduces for each distribution. The most significant

reduction in the NLLH loss occurs for the value distribution. This makes sense, as the Bayes

Filter is particularly tracking the belief state for the values. However, the KL divergence loss

also implicitly acts as a regularizer, which results in loss reduction for both the intensity
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Table 5.1: MIMIC-III Results

Model Avg. Sequence

NLLH

Avg. Event

NLLH

Avg. Intensity

NLLH

Avg. Value

NLLH

ODE-RMTPP 13.98 6.58 3.41 4.12

ODE-RMTPP

+ BAYES

13.76 6.54 3.39 3.83

Bayesian ODE-

RMTPP

13.85 6.43 3.55 3.87

LSTM 14.37 6.72 4.1 3.90

Bayesian

LSTM

14.29 6.54 3.76 3.99

CTLSTM 14.22 6.38 3.88 3.96

Bayesian CTL-

STM

14.15 6.31 3.81 4.1
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and the event distribution. Additionally, model uncertainty also helps improve the data

fitting performance for all the models, including the baseline LSTM and CTLSTM.

5.6 Discussion and Future Work

We have developed a framework based on Neural Ordinary Differential Equations,

with a Bayesian Jump Framework to simultaneously capture the irregularity and noise in

time-series data. Also, we experimented with a Bayesian architecture, where uncertainties

are imposed on the model weights themselves. Our model is best suited for temporal

point process modeling in time-series data where, the irregularly sampled temporal event-

sequences are marked with a real-valued noisy measurement, in addition to the type of the

event e.g. medical time series.
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Chapter 6

A Joint Hierarchical Discrete RNN

and Continuous Temporal Point

Process Recurrent Model for Time

and Item Predictions

6.1 Summary

User behavior in real world transaction systems such as, transaction or music

websites can be considered as an irregularly spaced temporal sequence. However, when an

user joins a session and engages in the website, the user behavior within each session is likely

to be discrete, but the return time of a user to the system or the start of the next session is

irregular. We propose a hierarchical recommendation system, where the behavior of users
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within each session is captured using a discrete recurrent network architecture and the user

return time is modeled using a continuous-time recurrent architecture, which treats each

session’s starts as samples drawn from a temporal point process. The models are jointly

learned to predict the items that the user is likely to consume within each session and when

the user is going to return back in the system and create a new session.

6.2 Preliminaries and Problem formulation

The return times of users in online platforms can be considered as an irregular

event sequence, where each event can represent the beginning or end of a particular session.

Formally, session data for user u can be represented by, Su = {(b1, e1, a1),

(b2, e2, a2), . . . , (bnu , enu , anu)}, where bi represents the begin time of session i, ei represents

the end time of session i, ai is the K dimensional sparse action vector performed by the

user within each session, and nu is the total number of sessions that user u participated in.

The goal is to predict gap time bi− ei−1, the initial and subsequent recommendation scores

for all the items in session i, from the history Hi.

6.3 The Joint Model

We propose a continuous hierarchical recurrent model (CHRNN), that consists

of a discrete recurrent architecture enhanced with a continuous time Long Short Term

Memory (CTLSTM) model for predicting the return times of an user. The representations

of previous sessions together with contextual information are inputted to the hierarchical

model, followed by the item representations within each session.
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The CHRNN model is inspired by [122], and consists of an inter-session and an

intra-session RNN. The inter-session RNN which is responsible for predicting the return

times, using temporal point process loss, is composed of CTLSTM cells [82]. This model is

fed with a fixed number of preceding session representations, along with embedding of the

gap times of the previous sessions, and other contextual embedding such as, user embedding.

Together, they constitute the history Hi, for session i. Conditioned on Hi, the CTLSTM

model predicts the next gap time, bi − ei−1, assuming it’s drawn from a temporal point

process model, and the first item predictions for the next session i.

The intra-sesssion discrete RNN architecture takes the last hidden state of the

inter-session RNN, uses it as it’s initial state, and take the item embeddings as inputs. For

each item embedding, the corresponding output of the discrete RNN is passed to a linear

layer, which calculates the scores for each target item. The k items with the highest scores

are then selected as recommendations to be given to the user.

6.3.1 Context representation

The context within each session is embedded along with the last hidden state of

the intra-session RNN, which then gets inputted to the inter-session RNN. We consider

three types of contextual representations, similar to the work of Vassoy et al. [122]. They

are:

• User embedding: Unique user embedding to capture the user behavior across all

sessions. This helps capturing the effect of long term user behavior in case, some

session data are noisy and sporadic
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• Item embedding: Item embeddings represent each unique item in the dataset and gets

inputted to the intra-session RNN.

• inter-session gap time embedding: The time gaps between each session are also em-

bedded according to [122]. The gaps are first normalized and then divided into unique

buckets, IDs of which are then used as index to the embedding layers.

6.3.2 Loss

Similar to [122], we use temporal point process as our temporal model to predict

the next session time, conditioned on the history. However, instead of a discrete RNN

architecture, we employ the continuous Long Short Term Memory model to continuously

learn the underlying intensity function.

Using the temporal point process terminology, the log-likelihood for the session

data of all the users can be written as,

Lp(S, T ) =
∑
u

nu∑
i=1

(

∫ bi

ei−1

λu(t)dt− log λu(bi))) +

∫ T

tnu

λu(t)dt, (6.1)

where T is the terminal time up to which user data is available. The goal is to maximize

this likelihood in the training. In prediction time, we can use the learned intensity function

to use forward sampling to predict the next return time of the user.

The total loss to optimize then becomes a weighted loss, weighted by hyperparme-

ter β,

Ltotal = −βLp(S, T ) + (1− β)
∑
j,l,u

Lrec(sj+1, l), (6.2)
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where Lrec(sj+1, l), is the softmax for item l, given session representation at time j+ 1, i.e.,

sj+1, for each user u. The intra-rnn discrete time model is responsible for optimizing the

item prediction loss
∑

j,l,u Lrec(sj+1, l).

New session times can be forecast from the learned intensities and sample new

times in forward using Poisson-process thinning.

6.3.3 Experiments and Results

Dataset

The evaluation is performed on the LastFM dataset [7], containing the listening

habits of users on the music website Last.FM. The data was pre-processed according to

[122]. First, noisy and irrelevant data were removed. Next, user data were divided into

sessions based on an fixed inactivity time period, δt. That is, if an user’s consecutive

actions happened within the time limit, then they belong to the same session. Formally,

for a specified time limit, δt, and a list of user actions, {at0 , at1 , at2 , . . . , atnu}, consecutive

interactions ati and ati+1 belong to the same session. if ti+1 ≤ ti + δt. Also, if any session

consisting of greater thanM items are split into two sessions. The resulting dataset statistics

are given in table 6.1.

Time Prediction Results

To evaluate how the model is performing for predicting the next time, we train on

80 percent of each user’s session, and try to predict the rest of the sessions’ timings. We

present the time prediction results in Figure 6.1 and compared with [122], who employs a
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Number of users 977

Number of sessions 630,774

Sessions per user 645.6

Average session length 8.1

Table 6.1: Statistics of the LastFM dataset after preprocessing

0 2 4 6 8 10 12 14 16 18 20
Time Gaps <= (Days)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

M
AE

Time Gaps in Days v Mean Absolute Error (MAE)
LSTM (Vassøy et al.)
CTLSTM

Figure 6.1: Time prediction results for the Last.FM dataset. Mean absolute errors are plotted versus

the cumulative number of sessions with time gaps ≤ x days
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discrete LSTM architecture for the time prediction. As we can see, the continuous LSTM

based model as the inter-session gap time predictor outperforms the discrete LSTM based

model, as more and more sessions with larger gap times are included. This makes sense, as

for longer time periods, the continuous decay property of the architecture is more suitable

for capturing long term signals in the data and improve prediction performances for session

with longer time gaps.

6.4 Conclusion

We present a hierarchical recurrent neural architecture to jointly improve item

prediction performance and predict the next time an user is going to return to the system

and join a new session. We improve on the existing literature by replacing the time-predictor

inter-session discrete RNN, with a continous LSTM architecture. Our model improves time

prediction performance, particularly when user return times are longer.
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Chapter 7

Conclusions

Our research’s purposes have been two-fold: extend some of the state of the art

recurrent neural network architectures and structure learning-based models for temporal

point processes and apply the extensions to two application areas: recommendation systems

and electronic health records.

From the architectural extension perspective, we extend the structure learning

frameworks proposed by [50, 94] to simultaneously model the distributions for the mea-

surement values and the intensities of the events in the same PCIM structure. Then, we

extend some of the existing recurrent neural architectures to account for multiple recorded

events at the same time. Additionally, we take the architectures’ hidden states and learn

the parameters of a mixture of Gaussian-Bernoulli distributions for the mark distributions.

For the recently proposed ODE-RNN architectures, we propose extensions in the form of

observational and model uncertainty. For the observational uncertainty, we combine the

works of [107] and [13] to learn the point process intensities and account for the inherent
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noise in the measurements. Additionally, we experiment with model-based uncertainties

by introducing priors on the weights and optimizing using Bayes by Backprop proposed by

[11, 40].

From the perspective of the application, a large chunk of our work has been ap-

plied to medical time-series, where patient history in an Intensive Care Unit are stored in

the form of electronic health records. First, we apply our structure learning work on an

in-hospital-mortality task. Secondly, we apply the continuous RNN-architecture and the

extension to jointly learn the temporal point process losses and the classification losses for

four benchmarking tasks [52]. We apply the ODE-RNN architecture and the extensions

on data fitting of the MIMIC-III dataset. Lastly, we learn a hierarchical architecture to

optimize the item prediction losses within each user session at a music website and opti-

mize a temporal point process loss to predict the users’ return time on the website, using a

continuous LSTM architecture.

One of the weaknesses of our proposed work in Chapter 3 was using a generative

model to learn a discriminative task. The weaknesses were partially solved using designing

more discriminative tests for the model to choose from. This weakness was resolved using

deep neural network architectures, where we simultaneously optimized for the generative

and discriminative losses in an end-to-end fashion. The discrete nature of the LSTM ar-

chitecture, and the fixed form of decay in the CTLSTM architectures, were resolved by

using the neural ODE architectures, where the infinitesimal change in hidden state is rep-

resented as a neural network, which allows the model to flow in between the observations

continuously, without a fixed parametric form.
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This thesis can be extended in quite a few directions. First, one of the weaknesses

of the ODE based architectures is it is slow training time, which makes it challenging to

deploy the models in real-world settings. Lessons learned from the works of [38], can be

applied to the extended ODE architectures to reduce training time. Additionally, lessons

learned from our modeling techniques can be extended to more recent transformer-based

architectures to see whether classification and modeling performances improve over the

RNN based models. PCIMs can be extended to allow discriminative training, which is

more suitable for the classification tasks we performed. Further works can also be done on

the explainability of the models by combining the predictive power of the structure learning-

based models and the predictive capacity of the deep learning architectures. Additionally,

research in the explainable AI domain can be applied solely on the RNN architectures to

explain the RNN models’ behaviors.
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